Bacterial infections may lead to diverse acute or chronic diseases (e.g., inflammation, sepsis and cancer). New antibiotics against bacteria are rarely discovered in recent years, which necessitates the exploration ...Bacterial infections may lead to diverse acute or chronic diseases (e.g., inflammation, sepsis and cancer). New antibiotics against bacteria are rarely discovered in recent years, which necessitates the exploration of new antibacterial agents. Engineered nanomatetials {ENMs) have been extensively studied for antibacterial use because of their long lasting killing effects in wide spectra of bacteria. Graphene oxide (GO) is one of the most widely studied ENMs and exhibit strong bactericidal effects. The physicochemical properties of GO play important roles in bacterial killing by triggering a cascade of toxic events. Many studies have explored the signaling pathways of GO in bacteria. Although molecular initiating events (MIEs) of GO in bacteria dominate its killing efficiency as well as toxicity mechanisms, they have been rarely reviewed. In this report, we discussed the structure-activity relationships (SARs) involved in GOinduced bacterial killing and the MIEs including redox reaction with biomolecules, mechanical destruction of membranes and catalysis of extracellular metabolites. Furthermore, we summarized the clinical or commercial applications of GO-based antibacterial products and discussed their biosafety in mammal. Finally, we reviewed the remaining challenges in GO for antibacterial applications, which may offer new insights for the development of nano antibacterial studies.展开更多
基金supported by the National Natural Science Foundation of China (31671032)Key Project of Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (17KJA310003)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)supported by the Recruitment Program of Global Youth Experts of ChinaStrategic Project for Developing Outstanding Institutes in Suzhou (MCMX201604)
文摘Bacterial infections may lead to diverse acute or chronic diseases (e.g., inflammation, sepsis and cancer). New antibiotics against bacteria are rarely discovered in recent years, which necessitates the exploration of new antibacterial agents. Engineered nanomatetials {ENMs) have been extensively studied for antibacterial use because of their long lasting killing effects in wide spectra of bacteria. Graphene oxide (GO) is one of the most widely studied ENMs and exhibit strong bactericidal effects. The physicochemical properties of GO play important roles in bacterial killing by triggering a cascade of toxic events. Many studies have explored the signaling pathways of GO in bacteria. Although molecular initiating events (MIEs) of GO in bacteria dominate its killing efficiency as well as toxicity mechanisms, they have been rarely reviewed. In this report, we discussed the structure-activity relationships (SARs) involved in GOinduced bacterial killing and the MIEs including redox reaction with biomolecules, mechanical destruction of membranes and catalysis of extracellular metabolites. Furthermore, we summarized the clinical or commercial applications of GO-based antibacterial products and discussed their biosafety in mammal. Finally, we reviewed the remaining challenges in GO for antibacterial applications, which may offer new insights for the development of nano antibacterial studies.