As industrial pollution continues to contaminate ecosystems worldwide,researchers have engineered a breakthrough solution:a single bacterial strain that can tackle five persistent organic pollutants at once.
The gut microbiome is closely associated with human health and the development of diseases. Isolating, characterizing, and identifying gut microbes are crucial for research on the gut microbiome and essential for adva...The gut microbiome is closely associated with human health and the development of diseases. Isolating, characterizing, and identifying gut microbes are crucial for research on the gut microbiome and essential for advancing our understanding and utilization of it. Although culture-independent approaches have been developed, a pure culture is required for in-depth analysis of disease mechanisms and the development of biotherapy strategies. Currently, microbiome research faces the challenge of expanding the existing database of culturable gut microbiota and rapidly isolating target microorganisms. This review examines the advancements in gut microbe isolation and cultivation techniques, such as culturomics, droplet microfluidics, phenotypic and genomics selection, and membrane diffusion. Furthermore, we evaluate the progress made in technology for identifying gut microbes considering both non-targeted and targeted strategies. The focus of future research in gut microbial culturomics is expected to be on high-throughput, automation, and integration. Advancements in this field may facilitate strain-level investigation into the mechanisms underlying diseases related to gut microbiota.展开更多
OBJECTIVE:To investigate the effects of gut microbes regulation of the trimethylamine(TMA)/flavin containing monooxygenase 3(FMO3)/trimethylamine N-oxide(TMAO)pathway on platelet aggregation in acute coronary syndrome...OBJECTIVE:To investigate the effects of gut microbes regulation of the trimethylamine(TMA)/flavin containing monooxygenase 3(FMO3)/trimethylamine N-oxide(TMAO)pathway on platelet aggregation in acute coronary syndrome(ACS)rats and the intervention of Huayu Qutan formula(化瘀祛痰方).METHODS:The ACS rats with syndrome of phlegm and blood stasis rats were established.Platelet,platelet aggregation,platelet activation markers and TMA/FMO3/TMAO pathway were detected.Metagenomics technology was employed to analyze the characteristics of the gut microbiota.RESULTS:Huayu Qutan formula and gut microbes could inhibit high platelet reactivity and regulate the TMA/FMO3/TMAO pathway.The dominant bacteria in ACS rats including but not limited to the major phyla,Firmicutes,Bacteroidetes,Actinobacteria,and Proteobacteria,also including some low abundance phyla,Fusobacteria,Verrucomicrobia,Spirochaetes,and Deferribacteres.The dominant bacteria in the Huayu Qutan formula group were Synergistetes,Deferribacteres,Deferribacteraceae,Faecalibacterium and Mucispirillum.In the Huayu Qutan formula combined with fecal bacteria enema group,the dominant bacteria were Verrucomicrobia,Verrucomicrobiae,Akkermansia and Verrucomicrobium.These gut microbiota were correlated with pathways such as Riboflavin metabolism and Arachidonic acid metabolism.CONCLUSION:Huayu Qutan formula may prevent ACS by modulating gut microbes Synergistetes,Faecalibacterium and Allobaculum,regulating the iron metabolism of Deferribacteres,and driving the TMA/FMO3/TMAO pathway to regulate gut microbiota function,and improving platelet aggregation.Akkermansia may serve as a promising probiotic,which could drive TMA/FMO3/TMAO pathway to regulate Arachidonic acid metabolism to improve platelet aggregation.The findings of this study provide a theoretical basis for the theory of"the heart is connected with the small intestine".展开更多
Three typical rural-suburban-urban artificial wetlands Pinus elliottii forest in Nanchang City were selected as research objects to mensurate the soil nutrient content.And the annual average values and seasonal change...Three typical rural-suburban-urban artificial wetlands Pinus elliottii forest in Nanchang City were selected as research objects to mensurate the soil nutrient content.And the annual average values and seasonal changes of microbes in forest soil were analyzed.The results showed that soil bulk density,total phosphorus (TP) and pH increased,while soil organic carbon (SOC),total nitrogen (TN) declined with rural-to-urban gradient.At different eco-boundary,annual average values showed that actinomycetes quantity bacteria quantity fungi quantity.Total microbe number was urban suburb rural areas.The number of bacteria and fungi was urban suburbs rural areas,but the number of actinomycetes was suburb urban rural areas.Eco-boundary,season and microbes actinomycetes and fungi reached an extreme significant level (P 0.001).Bacteria in soil at different eco-boundary had significant effects,but season had no significant effect on bacteria.Eco-boundary and season had a very significant interaction on actinomycetes and fungi (P 0.001),but they had no significant interaction on bacteria (P 0.05).Eco-boundary showed significantly positive correlation with actinomycetes and fungi (P 0.001),but season had no significant corelation with microbes.In conclusion,urbanization process caused the physical-chemical properties changes of forest soil and affected the amount of soil microbes obviously.展开更多
[Objective] The research aimed to lay the foundation for high-efficiency biological degradation microbial inoculums. [Method] under the 60℃ temperature the cellulolytic microbes in pig manure were isolated and determ...[Objective] The research aimed to lay the foundation for high-efficiency biological degradation microbial inoculums. [Method] under the 60℃ temperature the cellulolytic microbes in pig manure were isolated and determined the CMCase and Fpase,then proceeded the 16S rRNA gene analysis. [Result]The results showed that:BC1 and BC3 strains characterized higher carboxymethyl cellulose enzyme activity and higher filter paper activity,but their difference was small,then the 16S rDNA sequence of BC1 and BC3 strains were related to pseudomonas sp. (98% and 99% similarities,respectively).[Conclusion] the experiment laid foundation for high-efficiency biological heating agent.展开更多
Based on the close relationship between MGBA and PSCI,one PSCI related case is reported,and it is emphasized to improve clinicians'understanding of MGBA theory in the treatment of PSCI,thereby providing new ideas ...Based on the close relationship between MGBA and PSCI,one PSCI related case is reported,and it is emphasized to improve clinicians'understanding of MGBA theory in the treatment of PSCI,thereby providing new ideas for exploring pathogenesis and treatment of PSCI.展开更多
The expected rise in temperature and decreased precipitation owing to climate change and unabated anthropogenic activities add complexity and uncertainty to agro-industry. The impact of soil nutrient imbalance, misman...The expected rise in temperature and decreased precipitation owing to climate change and unabated anthropogenic activities add complexity and uncertainty to agro-industry. The impact of soil nutrient imbalance, mismanaged use of chemicals, high temperature, flood or drought, soil salinity, and heavy metal pollutions, with regard to food security, is increasingly being explored worldwide. This review describes the role of soil-plant-microbe interactions along with organic manure in solving stressed agriculture problems. Beneficial microbes associated with plants are known to stimulate plant growth and enhance plant resistance to biotic (diseases) and abiotic (salinity, drought, pollutions, etc.) stresses. The plant growth-promoting rhizobemteria (PGPR) and mycorrhizae, a key component of soil microbiota, could play vital roles in the maintenance of plant fitness and soil health under stressed environments. The application of organic manure as a soil conditioner to stressed soils along with suitable microbial strains could further enhance the plant-microbe associations and increase the crop yield. A combination of plant, stress-tolerant microbe, and organic amendment represents the tripartite association to offer a favourable environment to the proliferation of beneficial rhizosphere microbes that in turn enhance the plant growth performance in disturbed agro-ecosystem. Agriculture land use patterns with the proper exploitation of plant-microbe associations, with compatible beneficial microbial agents, could be one of the most effective strategies in the management of the concerned agriculture lands owing to climate change resilience. However, the association of such microbes with plants for stressed agriculture management still needs to be explored in greater depth.展开更多
The microbial consortium GF-20(GF-20) can efficiently decompose corn stover at low temperatures. The present study explored the key microbes of GF-20 and evaluated different culture conditions on its composition stabi...The microbial consortium GF-20(GF-20) can efficiently decompose corn stover at low temperatures. The present study explored the key microbes of GF-20 and evaluated different culture conditions on its composition stability to promote the utilization of corn stover decomposing microbes in low temperature regions. GF-20 was subcultured to the 15 th generation under different temperatures, pHs, carbon, and nitrogen sources. Then, the dynamics of fermenting pH, cellulose enzyme activities, carbohydrate concentration, and oxidation reduction potential were determined to estimate the degradation efficiency of corn stover with GF-20. Furthermore, the structural stability and functional microbes of GF-20 were identified on the basis of PCR-denaturing gradient gel electrophoresis(DGGE) profiling and principal component analysis. The results showed that the offspring of GF-20 subcultured under different temperatures(4–30°C) and pH(6.0–9.0) conditions maintained stable growth, decomposition function, and composition structure. Furthermore, consortia GF-20 had a stable composition structure, which induced GF-20 to secrete cellulose and promote substrate decomposition as corn stover and ammonium were used as sources of carbon and nitrogen, respectively. According to the PCR-DGGE profiles, the key strains of GF-20 were determined to be Bacillus licheniformis, Cellvibrio mixtus subsp. mixtus, Bacillus tequilensis, Clostridium populeti, and Clostridium xylanolyticum.展开更多
[Objective] The aim was to study on effect of different temperatures on microbes and its quality of green pepper during circulation. [Method] Measurement was conducted on change of colibacillus, salmonella, Listeria n...[Objective] The aim was to study on effect of different temperatures on microbes and its quality of green pepper during circulation. [Method] Measurement was conducted on change of colibacillus, salmonella, Listeria number, and its quality of green pepper stored at 9 and 20 ℃ respectively. The green peppers stored at 9 ℃ for 16 d were under simulated sale. In addition, effects of microbe number of green peppers stored at 20 ℃ for 4 d by different washing methods were measured. [Result] Indices of green pepper were different when green peppers were stored for 16 d at 9 ℃ and sold at 20 ℃ after 16 d storage. Specifically, under the former condition, sensory quality, weight-loss rate, Vc content, chlorophyll content and soluble protein were 4.1, 1.79%, 95.6, 20.3, and 93.3 mg/100 g; under the latter condition, the corresponding indices were 3.3, 3.87%, 81.2, 16.5, 85.6 mg/100 g, respectively. Colibacillus numbers for green pepper stored 16 d at 9 ℃, sold for 1 d at 20 ℃ after 16 d storage and stored for 4 d at 20 ℃ were 46, 3.2×103 and 3.1×104 cfu/g; during the test, salmonella and Listeria were not found; colibacillus in green pepper could be eliminated by 1×10-3 ml/L of chloros and most colibacillus in green pepper could be cleared away by 1 drop/L of detergent and running water. [Conclusion] Stored at 9 ℃, quality of green pepper could be better preserved and colibacillus propagation could be controlled.展开更多
It has been estimated that a typical gram of soilcontains around 90 100 million bacteria and about200 000 fungi, with the majority of these organismsbeing located around the roots of plants. This locali-zation reflect...It has been estimated that a typical gram of soilcontains around 90 100 million bacteria and about200 000 fungi, with the majority of these organismsbeing located around the roots of plants. This locali-zation reflects the fact that plant roots typically exudea large fraction of the carbon that they fix by photo-synthesis, and soil microbes utilize this exuded carbonas a food source.展开更多
Hypertension is an important global public health issue because of its high morbidity as well as the increased risk of other diseases.Recent studies have indicated that the development of hypertension is related to th...Hypertension is an important global public health issue because of its high morbidity as well as the increased risk of other diseases.Recent studies have indicated that the development of hypertension is related to the dysbiosis of the gut microbiota in both animals and humans.In this review,we outline the interaction between gut microbiota and hypertension,including gut microbial changes in hypertension,the effect of microbial dysbiosis on blood pressure(BP),indicators of gut microbial dysbiosis in hypertension,and the microbial genera that affect BP at the taxonomic level.For example,increases in Lactobacillus,Roseburia,Coprococcus,Akkermansia,and Bifidobacterium are associated with reduced BP,while increases in Streptococcus,Blautia,and Prevotella are associated with elevated BP.Furthermore,we describe the potential mechanisms involved in the regulation between gut microbiota and hypertension.Finally,we summarize the commonly used treatments of hypertension that are based on gut microbes,including fecal microbiota transfer,probiotics and prebiotics,antibiotics,and dietary supplements.This review aims to find novel potential genera for improving hypertension and give a direction for future studies on gut microbiota in hypertension.展开更多
The bio-sandstone, which was cemented by microbe cement, was firstly prepared, and then the microstructure evolution process was studied by X-ray computed tomography (X-CT) technique. The experimental results indica...The bio-sandstone, which was cemented by microbe cement, was firstly prepared, and then the microstructure evolution process was studied by X-ray computed tomography (X-CT) technique. The experimental results indicate that the microstructure of bio-sandstone becomes dense with the development of age. The evolution of inner structure at different positions is different due to the different contents of microbial induced precipitation calcite. Besides, the increase rate of microbial induced precipitation calcite gradually decreases because of the reduction of microbe absorption content with the decreasing pore size in bio-sandstone.展开更多
The thermochemical kinetics of the rare earth ternary complex Sm(Gly) 4Im(ClO 4) 3·2H 2O (Gly glycine, Im imidazole) reacting with microbes (escherichia coli, bacillus subilis, staphylococcus aureus) was st...The thermochemical kinetics of the rare earth ternary complex Sm(Gly) 4Im(ClO 4) 3·2H 2O (Gly glycine, Im imidazole) reacting with microbes (escherichia coli, bacillus subilis, staphylococcus aureus) was studied by means of Calvet microcalorimeter. The rate constant k of microbe growth was calculated, and the inhibition effect of these complexes to microbes was compared.展开更多
In an era of electronics,recovering the precious metal such as gold from ever increasing piles of electronic-wastes and metal-ion infested soil has become one of the prime concerns for researchers worldwide.Biological...In an era of electronics,recovering the precious metal such as gold from ever increasing piles of electronic-wastes and metal-ion infested soil has become one of the prime concerns for researchers worldwide.Biological mining is an attractive,economical and nonhazardous to recover gold from the low-grade auriferous ore containing waste or soil.This review represents the recent major biological gold retrieval methods used to bio-mine gold.The biomining methods discussed in this review include,bioleaching,bio-oxidation,bio-precipitation,bio-flotation,bio-flocculation,bio-sorption,bio-reduction,bioelectrometallurgical technologies and bio accumulation.The mechanism of gold biorecovery by microbes is explained in detail to explore its intracellular mechanistic,which help it withstand high concentrations of gold without causing any fatal consequences.Major challenges and future opportunities associated with each method and how they will dictate the fate of gold bio-metallurgy from metal wastes or metal infested soil bioremediation in the coming future are also discussed.With the help of concurrent advancements in high-throughput technologies,the gold bio-exploratory methods will speed up our ways to ensure maximum gold retrieval out of such low-grade ores containing sources,while keeping the gold mining clean and more sustainable.展开更多
Microbe cementitious material as a binder has been developed due to the ever increasing awareness of environmental protection.The new cementitious material relies on microbiologically induced precipitation of calcium ...Microbe cementitious material as a binder has been developed due to the ever increasing awareness of environmental protection.The new cementitious material relies on microbiologically induced precipitation of calcium carbonate to bind loose particles or repair surface defects and cracks of cement-based material.This paper elaborates the research on loose sand particles cemented by microbe cement from three aspects:compressive strength,pore structure and microstructure.In addition,the research on restoration surface defects and cracks of cement-based material by microbe cement is introduced from two parameters:surface water absorption and compressive strength recover coefficient.The results show that microbe cementitious material can bind loose particles and repair surface defects or cracks of cement-based material.展开更多
A pot culture experiment was carried out in a glasshouse to compare the physiology and growth of sweet corn plants (Zea mays L. cv. Honey Bantam) grown under organic and chemical fertilizations with or without microbi...A pot culture experiment was carried out in a glasshouse to compare the physiology and growth of sweet corn plants (Zea mays L. cv. Honey Bantam) grown under organic and chemical fertilizations with or without microbial inoculation (MI). The organic fertilizer used was fermented mainly using rice bran and oil mill sludge, and the MI was a liquid product containing many beneficial microbes such as lactic acid bacteria, yeast, photosynthetic bacteria and actinomycetes. The application amounts of the organic fertilizer and chemical fertilizers were based on the same rate of nitrogen, phosphorus and potassium. Sweet corn plants fertilized with organic materials inoculated with beneficial microbes grew better than those without inoculation. There were no significant differences in physiology and growth of the sweet corn plants between treatments of chemical fertilizers with and without MI. Among the organic fertilization treatments, only the sweet corn plants with organic fertilizer and MI applied 4 weeks before sowing had similar photosynthetic capacityj total dry matter yield and ear yield to those with chemical fertilizers. Sweet corn plants in other organic fertilization treatments were weaker in physiology and growth than those in chemical fertilization treatments. There was no significant variance among chemical fertilization treatments at different time. It is concluded from this research that this organic fertilizer would be more effective if it was inoculated with the beneficial microbes. Early application of the organic fertilizer with beneficial microbes before sowing was recommended to make the nutrients available before the rapid growth at the early stage and obtain a yield similar to or higher than that with chemical fertilizations.展开更多
Some strains and culture of bacteria which are able to decolorize dyes and degrade polyvinyl alcohol(PVA) were isolated and selected. A pilot scale facultative anaerobic-aerobic biological process was applied for trea...Some strains and culture of bacteria which are able to decolorize dyes and degrade polyvinyl alcohol(PVA) were isolated and selected. A pilot scale facultative anaerobic-aerobic biological process was applied for treatment of textile wastewater containing dyes and PVA. Activated carbon adsorption was used as a tertiary treatment stage, and residual sludge from clarifier returned to the anaerobic reactor again. The pilot test were carried out with two systems. One was inoculated by acclimated sludge, and the another was adding the mixed culture of dye-decoloring and PVA-degrading bacteria for forming biological films, the latter was observed to be more effective than the former. The test has run normally for ten months with a COD loading of 2.13 kg/m3/day, a BOD5 loading of 0.34 kg/m3/day in anaerobic reactor; a COD loading of 1.71 kg/m3/day, a BOD5 loading 0.44 kg/m3/day in aerobic reactor. The pollutants removal efficiency by adding microbes was about 20% higher than that by acclimated sludge. The average removal efficiency of COD stood about 92%, BOD5 97%, PVA 90% and decolorization 80%. The other parameters of effluent quality are also satisfactory.展开更多
Background Anthocyanins(AC)showed positive effects on improving the intestinal health and alleviating intestinal pathogen infections,therefore,an experiment was conducted to explore the protective effects of supplemen...Background Anthocyanins(AC)showed positive effects on improving the intestinal health and alleviating intestinal pathogen infections,therefore,an experiment was conducted to explore the protective effects of supplemented AC on Salmonella-infected chickens.Methods A total of 240 hatchling chickens were randomly allocated to 4 treatments,each with 6 replicates.Birds were fed a basal diet supplemented with 0(CON,and ST),100(ACL)and 400(ACH)mg/kg of AC for d 60,and orally challenged with PBS(CON)or 10^(9) CFU/bird(ST,ACL,ACH)Salmonella Typhimurium at d 14 and 16.Results(1)Compared with birds in ST,AC supplementation increased the body weight(BW)at d 18 and the average daily gain(ADG)from d 1 to 18 of the Salmonella-infected chickens(P<0.05);(2)AC decreased the number of Salmonella cells in the liver and spleen,the contents of NO in plasma and inflammatory cytokines in ileal mucosa of Salmonella-infected chickens(P<0.05);(3)Salmonella infection decreased the ileal villi height,villi height to crypt depth(V/C),and the expression of zonulaoccludins-1(ZO-1),claudin-1,occludin,and mucin 2(MUC2)in ileal mucosa.AC supplementation relieved these adverse effects,and decreased ileal crypt depth(P<0.05);(4)In cecal microbiota of Salmonella-infected chickens,AC increased(P<0.05)the alpha-diversity(Chao1,Pd,Shannon and Sobs indexes)and the relative abundance of Firmicutes,and decreased(P<0.05)the relative abundance of Proteobacteria and Bacteroidota and the enrichment of drug antimicrobial resistance,infectious bacterial disease,and immune disease pathways.Conclusions Dietary AC protected chicken against Salmonella infection via inhibiting the Salmonella colonization in liver and spleen,suppressing secretion of inflammatory cytokines,up-regulating the expression of ileal barrier-related genes,and ameliorating the composition and function of cecal microbes.Under conditions here used,100 mg/kg bilberry anthocyanin was recommended.展开更多
Production and storage-transportation of crude oil can not only give rise to soil pollution but also destroy ecological environment. Degradation of microbes for oily soil was studied with the instnunent, Geofina Hydro...Production and storage-transportation of crude oil can not only give rise to soil pollution but also destroy ecological environment. Degradation of microbes for oily soil was studied with the instnunent, Geofina Hydrocarbon Meter (GHM), by experimental analysis qualitatively and quantitatively in the paper. Analytical result showed that the crude oil could be considerably degraded by eating-oil microbes in oily soil and the number of eating-oil microbes increased while the working hours of oil-well risi...展开更多
The quantity of soil microbes and the structure of ammonium oxidizing bacterial (AOB) community were analyzed using the dilution plate counting and most probable number method (MPN), and denaturing gradient gel el...The quantity of soil microbes and the structure of ammonium oxidizing bacterial (AOB) community were analyzed using the dilution plate counting and most probable number method (MPN), and denaturing gradient gel electrophoresis (DGGE), respectively. Fertilizer application tended to increase the number of soil microbes and alter the AOB community compared to the control with no fertilizer application (CK). Among the eight fertilizer treatments, soil samples from the treatments of mineral fertilizers (e.g., N, P, K) in combination with farmyard manure (M) had greater number.s of soil microbes and more complex structure of AOB community than those receiving mineral fertilizers alone. The principal component analyses (PCA) for ammonium oxidizing bacterial community structure showed that the eight fertilizer treatments could be divided into two PCA groups (PCA1 and PCA2). For the soil sampled after rice harvest, PCA1 included NP, NM, NPM and NPKM fertilizer treatments, while PCA2 was consisted of CK, N, M and NPK fertilizer treatments. For soil samples collected after wheat harvest, PCA1 was consisted of M, NM, NPM and NPKM fertilizer treatments, while PCA2 was composed of CK, N, NP and NPK fertilizer treatments. For a given rotation, the richness of AOB community in PCA1 was greater than that in PCA2. In addition, AOB community structure was more complex in the soil after rice harvest than that after wheat harvest. The results indicated that different fertilizer treatments resulted in substantial changes of soil microbe number and AOB community. Furthermore, mineral fertilizers (N, NP, NPK) combined with farmyard manure were effective for increasing the quantity of soil microbes, enriching AOB community, and improving the soil biofertility.展开更多
文摘As industrial pollution continues to contaminate ecosystems worldwide,researchers have engineered a breakthrough solution:a single bacterial strain that can tackle five persistent organic pollutants at once.
文摘The gut microbiome is closely associated with human health and the development of diseases. Isolating, characterizing, and identifying gut microbes are crucial for research on the gut microbiome and essential for advancing our understanding and utilization of it. Although culture-independent approaches have been developed, a pure culture is required for in-depth analysis of disease mechanisms and the development of biotherapy strategies. Currently, microbiome research faces the challenge of expanding the existing database of culturable gut microbiota and rapidly isolating target microorganisms. This review examines the advancements in gut microbe isolation and cultivation techniques, such as culturomics, droplet microfluidics, phenotypic and genomics selection, and membrane diffusion. Furthermore, we evaluate the progress made in technology for identifying gut microbes considering both non-targeted and targeted strategies. The focus of future research in gut microbial culturomics is expected to be on high-throughput, automation, and integration. Advancements in this field may facilitate strain-level investigation into the mechanisms underlying diseases related to gut microbiota.
基金Supported by National Natural Science Foundation of China Project:based on the Theory of“the Heart is in Harmony with the Small Intestine”to Explore the Influence and Mechanism of Gut Microbes on High Platelet Reactivity of Acute Coronary Syndrome with Phlegm and Blood Stasis Syndrome(No.82104841)Education Department of Liaoning Province Young Science and Technology Talents"Seedling"Project:to Explore the Effect and Mechanism of Huayu Qutan Formula on Platelet Function in Acute Coronary Syndrome Patients with Phlegm and Blood Stasis Syndrome after Percutaneous Coronary Intervention based on Intestinal Microbiome(No.L202039)。
文摘OBJECTIVE:To investigate the effects of gut microbes regulation of the trimethylamine(TMA)/flavin containing monooxygenase 3(FMO3)/trimethylamine N-oxide(TMAO)pathway on platelet aggregation in acute coronary syndrome(ACS)rats and the intervention of Huayu Qutan formula(化瘀祛痰方).METHODS:The ACS rats with syndrome of phlegm and blood stasis rats were established.Platelet,platelet aggregation,platelet activation markers and TMA/FMO3/TMAO pathway were detected.Metagenomics technology was employed to analyze the characteristics of the gut microbiota.RESULTS:Huayu Qutan formula and gut microbes could inhibit high platelet reactivity and regulate the TMA/FMO3/TMAO pathway.The dominant bacteria in ACS rats including but not limited to the major phyla,Firmicutes,Bacteroidetes,Actinobacteria,and Proteobacteria,also including some low abundance phyla,Fusobacteria,Verrucomicrobia,Spirochaetes,and Deferribacteres.The dominant bacteria in the Huayu Qutan formula group were Synergistetes,Deferribacteres,Deferribacteraceae,Faecalibacterium and Mucispirillum.In the Huayu Qutan formula combined with fecal bacteria enema group,the dominant bacteria were Verrucomicrobia,Verrucomicrobiae,Akkermansia and Verrucomicrobium.These gut microbiota were correlated with pathways such as Riboflavin metabolism and Arachidonic acid metabolism.CONCLUSION:Huayu Qutan formula may prevent ACS by modulating gut microbes Synergistetes,Faecalibacterium and Allobaculum,regulating the iron metabolism of Deferribacteres,and driving the TMA/FMO3/TMAO pathway to regulate gut microbiota function,and improving platelet aggregation.Akkermansia may serve as a promising probiotic,which could drive TMA/FMO3/TMAO pathway to regulate Arachidonic acid metabolism to improve platelet aggregation.The findings of this study provide a theoretical basis for the theory of"the heart is connected with the small intestine".
基金Supported by Natural Science Foundation of Jiangxi Province(2007GQN1935)~~
文摘Three typical rural-suburban-urban artificial wetlands Pinus elliottii forest in Nanchang City were selected as research objects to mensurate the soil nutrient content.And the annual average values and seasonal changes of microbes in forest soil were analyzed.The results showed that soil bulk density,total phosphorus (TP) and pH increased,while soil organic carbon (SOC),total nitrogen (TN) declined with rural-to-urban gradient.At different eco-boundary,annual average values showed that actinomycetes quantity bacteria quantity fungi quantity.Total microbe number was urban suburb rural areas.The number of bacteria and fungi was urban suburbs rural areas,but the number of actinomycetes was suburb urban rural areas.Eco-boundary,season and microbes actinomycetes and fungi reached an extreme significant level (P 0.001).Bacteria in soil at different eco-boundary had significant effects,but season had no significant effect on bacteria.Eco-boundary and season had a very significant interaction on actinomycetes and fungi (P 0.001),but they had no significant interaction on bacteria (P 0.05).Eco-boundary showed significantly positive correlation with actinomycetes and fungi (P 0.001),but season had no significant corelation with microbes.In conclusion,urbanization process caused the physical-chemical properties changes of forest soil and affected the amount of soil microbes obviously.
基金Supported by Foundation of Henan Educational Committee(2010B530001)~~
文摘[Objective] The research aimed to lay the foundation for high-efficiency biological degradation microbial inoculums. [Method] under the 60℃ temperature the cellulolytic microbes in pig manure were isolated and determined the CMCase and Fpase,then proceeded the 16S rRNA gene analysis. [Result]The results showed that:BC1 and BC3 strains characterized higher carboxymethyl cellulose enzyme activity and higher filter paper activity,but their difference was small,then the 16S rDNA sequence of BC1 and BC3 strains were related to pseudomonas sp. (98% and 99% similarities,respectively).[Conclusion] the experiment laid foundation for high-efficiency biological heating agent.
文摘Based on the close relationship between MGBA and PSCI,one PSCI related case is reported,and it is emphasized to improve clinicians'understanding of MGBA theory in the treatment of PSCI,thereby providing new ideas for exploring pathogenesis and treatment of PSCI.
文摘The expected rise in temperature and decreased precipitation owing to climate change and unabated anthropogenic activities add complexity and uncertainty to agro-industry. The impact of soil nutrient imbalance, mismanaged use of chemicals, high temperature, flood or drought, soil salinity, and heavy metal pollutions, with regard to food security, is increasingly being explored worldwide. This review describes the role of soil-plant-microbe interactions along with organic manure in solving stressed agriculture problems. Beneficial microbes associated with plants are known to stimulate plant growth and enhance plant resistance to biotic (diseases) and abiotic (salinity, drought, pollutions, etc.) stresses. The plant growth-promoting rhizobemteria (PGPR) and mycorrhizae, a key component of soil microbiota, could play vital roles in the maintenance of plant fitness and soil health under stressed environments. The application of organic manure as a soil conditioner to stressed soils along with suitable microbial strains could further enhance the plant-microbe associations and increase the crop yield. A combination of plant, stress-tolerant microbe, and organic amendment represents the tripartite association to offer a favourable environment to the proliferation of beneficial rhizosphere microbes that in turn enhance the plant growth performance in disturbed agro-ecosystem. Agriculture land use patterns with the proper exploitation of plant-microbe associations, with compatible beneficial microbial agents, could be one of the most effective strategies in the management of the concerned agriculture lands owing to climate change resilience. However, the association of such microbes with plants for stressed agriculture management still needs to be explored in greater depth.
基金supported by the National Natural Science Foundation of China (31760353 and 31560360)the National Key R&D Program of China (2017YFD0300804 and 2016YFD0300103)+2 种基金the earmarked fund for China Agriculture Research System (CARS-02-63)the Crop Science Observation & Experiment Station in Loess Plateau of North China, Ministry of Agriculture, China (25204120)the Advanced Talented Scholars of Inner Mongolia Agricultural University, China (NDYB2016-15)
文摘The microbial consortium GF-20(GF-20) can efficiently decompose corn stover at low temperatures. The present study explored the key microbes of GF-20 and evaluated different culture conditions on its composition stability to promote the utilization of corn stover decomposing microbes in low temperature regions. GF-20 was subcultured to the 15 th generation under different temperatures, pHs, carbon, and nitrogen sources. Then, the dynamics of fermenting pH, cellulose enzyme activities, carbohydrate concentration, and oxidation reduction potential were determined to estimate the degradation efficiency of corn stover with GF-20. Furthermore, the structural stability and functional microbes of GF-20 were identified on the basis of PCR-denaturing gradient gel electrophoresis(DGGE) profiling and principal component analysis. The results showed that the offspring of GF-20 subcultured under different temperatures(4–30°C) and pH(6.0–9.0) conditions maintained stable growth, decomposition function, and composition structure. Furthermore, consortia GF-20 had a stable composition structure, which induced GF-20 to secrete cellulose and promote substrate decomposition as corn stover and ammonium were used as sources of carbon and nitrogen, respectively. According to the PCR-DGGE profiles, the key strains of GF-20 were determined to be Bacillus licheniformis, Cellvibrio mixtus subsp. mixtus, Bacillus tequilensis, Clostridium populeti, and Clostridium xylanolyticum.
基金Supported by National Science&Technology Pillar Program during the Eleventh Five-year Plan Period(2009BADB91309-6)Construction of Massive Vegetable Industry(CARS-25-E-01)Special Fund of Beijing Academy of Agriculture and Forestry for Innovation of Sciences and Technology(KJCX201102004)~~
文摘[Objective] The aim was to study on effect of different temperatures on microbes and its quality of green pepper during circulation. [Method] Measurement was conducted on change of colibacillus, salmonella, Listeria number, and its quality of green pepper stored at 9 and 20 ℃ respectively. The green peppers stored at 9 ℃ for 16 d were under simulated sale. In addition, effects of microbe number of green peppers stored at 20 ℃ for 4 d by different washing methods were measured. [Result] Indices of green pepper were different when green peppers were stored for 16 d at 9 ℃ and sold at 20 ℃ after 16 d storage. Specifically, under the former condition, sensory quality, weight-loss rate, Vc content, chlorophyll content and soluble protein were 4.1, 1.79%, 95.6, 20.3, and 93.3 mg/100 g; under the latter condition, the corresponding indices were 3.3, 3.87%, 81.2, 16.5, 85.6 mg/100 g, respectively. Colibacillus numbers for green pepper stored 16 d at 9 ℃, sold for 1 d at 20 ℃ after 16 d storage and stored for 4 d at 20 ℃ were 46, 3.2×103 and 3.1×104 cfu/g; during the test, salmonella and Listeria were not found; colibacillus in green pepper could be eliminated by 1×10-3 ml/L of chloros and most colibacillus in green pepper could be cleared away by 1 drop/L of detergent and running water. [Conclusion] Stored at 9 ℃, quality of green pepper could be better preserved and colibacillus propagation could be controlled.
文摘It has been estimated that a typical gram of soilcontains around 90 100 million bacteria and about200 000 fungi, with the majority of these organismsbeing located around the roots of plants. This locali-zation reflects the fact that plant roots typically exudea large fraction of the carbon that they fix by photo-synthesis, and soil microbes utilize this exuded carbonas a food source.
基金Key Scientific Research Projects for Higher Education of Henan Province,Grant/Award Number:20A310012the College Student Innovation and Entrepreneurship Training Program of Henan Province,Grant/Award Number:202110472018 and S202110472046+1 种基金the Science and Technology Research Project of Henan Province,Grant/Award Number:192102310169 and 202102310270Doctoral Scientific Research Activation Foundation of the Xinxiang Medical University,Grant/Award Number:505287。
文摘Hypertension is an important global public health issue because of its high morbidity as well as the increased risk of other diseases.Recent studies have indicated that the development of hypertension is related to the dysbiosis of the gut microbiota in both animals and humans.In this review,we outline the interaction between gut microbiota and hypertension,including gut microbial changes in hypertension,the effect of microbial dysbiosis on blood pressure(BP),indicators of gut microbial dysbiosis in hypertension,and the microbial genera that affect BP at the taxonomic level.For example,increases in Lactobacillus,Roseburia,Coprococcus,Akkermansia,and Bifidobacterium are associated with reduced BP,while increases in Streptococcus,Blautia,and Prevotella are associated with elevated BP.Furthermore,we describe the potential mechanisms involved in the regulation between gut microbiota and hypertension.Finally,we summarize the commonly used treatments of hypertension that are based on gut microbes,including fecal microbiota transfer,probiotics and prebiotics,antibiotics,and dietary supplements.This review aims to find novel potential genera for improving hypertension and give a direction for future studies on gut microbiota in hypertension.
基金Funded by the National Natural Science Foundation of China(No.51072035),the Ph D Program’s Foundation of Ministry of Education of China(No.20090092110029)the Research Innovation Program for College Graduates of Jiangsu Province(No.CXZZ_0145)the Scientific Research Foundation of Graduate School of Southeast University(Nos.YBJJ1127 and YBPY1208)
文摘The bio-sandstone, which was cemented by microbe cement, was firstly prepared, and then the microstructure evolution process was studied by X-ray computed tomography (X-CT) technique. The experimental results indicate that the microstructure of bio-sandstone becomes dense with the development of age. The evolution of inner structure at different positions is different due to the different contents of microbial induced precipitation calcite. Besides, the increase rate of microbial induced precipitation calcite gradually decreases because of the reduction of microbe absorption content with the decreasing pore size in bio-sandstone.
文摘The thermochemical kinetics of the rare earth ternary complex Sm(Gly) 4Im(ClO 4) 3·2H 2O (Gly glycine, Im imidazole) reacting with microbes (escherichia coli, bacillus subilis, staphylococcus aureus) was studied by means of Calvet microcalorimeter. The rate constant k of microbe growth was calculated, and the inhibition effect of these complexes to microbes was compared.
基金supported by the University Malaysia Pahang, Malaysiafinancial support provided by university under Research Grant No.RDU190332Ministry of Education of Malaysia under the research Grant of RDU 190121.
文摘In an era of electronics,recovering the precious metal such as gold from ever increasing piles of electronic-wastes and metal-ion infested soil has become one of the prime concerns for researchers worldwide.Biological mining is an attractive,economical and nonhazardous to recover gold from the low-grade auriferous ore containing waste or soil.This review represents the recent major biological gold retrieval methods used to bio-mine gold.The biomining methods discussed in this review include,bioleaching,bio-oxidation,bio-precipitation,bio-flotation,bio-flocculation,bio-sorption,bio-reduction,bioelectrometallurgical technologies and bio accumulation.The mechanism of gold biorecovery by microbes is explained in detail to explore its intracellular mechanistic,which help it withstand high concentrations of gold without causing any fatal consequences.Major challenges and future opportunities associated with each method and how they will dictate the fate of gold bio-metallurgy from metal wastes or metal infested soil bioremediation in the coming future are also discussed.With the help of concurrent advancements in high-throughput technologies,the gold bio-exploratory methods will speed up our ways to ensure maximum gold retrieval out of such low-grade ores containing sources,while keeping the gold mining clean and more sustainable.
基金the National Natural Science Foundation of China(No.51072035)the Ph.D.Program's Foundation of Ministry of Education of China (No.20090092110029)+1 种基金the Research Innovation Program for College Graduates of Jiangsu Province (No.CXZZ 0145)the Scientific Research Foundation of Graduate School of Southeast University (No.YBJJ1127)
文摘Microbe cementitious material as a binder has been developed due to the ever increasing awareness of environmental protection.The new cementitious material relies on microbiologically induced precipitation of calcium carbonate to bind loose particles or repair surface defects and cracks of cement-based material.This paper elaborates the research on loose sand particles cemented by microbe cement from three aspects:compressive strength,pore structure and microstructure.In addition,the research on restoration surface defects and cracks of cement-based material by microbe cement is introduced from two parameters:surface water absorption and compressive strength recover coefficient.The results show that microbe cementitious material can bind loose particles and repair surface defects or cracks of cement-based material.
文摘A pot culture experiment was carried out in a glasshouse to compare the physiology and growth of sweet corn plants (Zea mays L. cv. Honey Bantam) grown under organic and chemical fertilizations with or without microbial inoculation (MI). The organic fertilizer used was fermented mainly using rice bran and oil mill sludge, and the MI was a liquid product containing many beneficial microbes such as lactic acid bacteria, yeast, photosynthetic bacteria and actinomycetes. The application amounts of the organic fertilizer and chemical fertilizers were based on the same rate of nitrogen, phosphorus and potassium. Sweet corn plants fertilized with organic materials inoculated with beneficial microbes grew better than those without inoculation. There were no significant differences in physiology and growth of the sweet corn plants between treatments of chemical fertilizers with and without MI. Among the organic fertilization treatments, only the sweet corn plants with organic fertilizer and MI applied 4 weeks before sowing had similar photosynthetic capacityj total dry matter yield and ear yield to those with chemical fertilizers. Sweet corn plants in other organic fertilization treatments were weaker in physiology and growth than those in chemical fertilization treatments. There was no significant variance among chemical fertilization treatments at different time. It is concluded from this research that this organic fertilizer would be more effective if it was inoculated with the beneficial microbes. Early application of the organic fertilizer with beneficial microbes before sowing was recommended to make the nutrients available before the rapid growth at the early stage and obtain a yield similar to or higher than that with chemical fertilizations.
文摘Some strains and culture of bacteria which are able to decolorize dyes and degrade polyvinyl alcohol(PVA) were isolated and selected. A pilot scale facultative anaerobic-aerobic biological process was applied for treatment of textile wastewater containing dyes and PVA. Activated carbon adsorption was used as a tertiary treatment stage, and residual sludge from clarifier returned to the anaerobic reactor again. The pilot test were carried out with two systems. One was inoculated by acclimated sludge, and the another was adding the mixed culture of dye-decoloring and PVA-degrading bacteria for forming biological films, the latter was observed to be more effective than the former. The test has run normally for ten months with a COD loading of 2.13 kg/m3/day, a BOD5 loading of 0.34 kg/m3/day in anaerobic reactor; a COD loading of 1.71 kg/m3/day, a BOD5 loading 0.44 kg/m3/day in aerobic reactor. The pollutants removal efficiency by adding microbes was about 20% higher than that by acclimated sludge. The average removal efficiency of COD stood about 92%, BOD5 97%, PVA 90% and decolorization 80%. The other parameters of effluent quality are also satisfactory.
基金financially supported by Natural Science Foundation from Guangdong Province (2021A1515010830,2021A1515012412)National Key R&D Project (2018YFD0500600,2021YFD300404)+3 种基金China Agriculture Research System of MOF and MARA (CARS-41)the Key Realm R&D Program of Guangdong Province (2020B0202090004)National Natural Science Foundation of China (31802104)the Science and Technology Program of Guangdong Academy of Agricultural Sciences (202106TD,R2019PY-QF008),P.R.China。
文摘Background Anthocyanins(AC)showed positive effects on improving the intestinal health and alleviating intestinal pathogen infections,therefore,an experiment was conducted to explore the protective effects of supplemented AC on Salmonella-infected chickens.Methods A total of 240 hatchling chickens were randomly allocated to 4 treatments,each with 6 replicates.Birds were fed a basal diet supplemented with 0(CON,and ST),100(ACL)and 400(ACH)mg/kg of AC for d 60,and orally challenged with PBS(CON)or 10^(9) CFU/bird(ST,ACL,ACH)Salmonella Typhimurium at d 14 and 16.Results(1)Compared with birds in ST,AC supplementation increased the body weight(BW)at d 18 and the average daily gain(ADG)from d 1 to 18 of the Salmonella-infected chickens(P<0.05);(2)AC decreased the number of Salmonella cells in the liver and spleen,the contents of NO in plasma and inflammatory cytokines in ileal mucosa of Salmonella-infected chickens(P<0.05);(3)Salmonella infection decreased the ileal villi height,villi height to crypt depth(V/C),and the expression of zonulaoccludins-1(ZO-1),claudin-1,occludin,and mucin 2(MUC2)in ileal mucosa.AC supplementation relieved these adverse effects,and decreased ileal crypt depth(P<0.05);(4)In cecal microbiota of Salmonella-infected chickens,AC increased(P<0.05)the alpha-diversity(Chao1,Pd,Shannon and Sobs indexes)and the relative abundance of Firmicutes,and decreased(P<0.05)the relative abundance of Proteobacteria and Bacteroidota and the enrichment of drug antimicrobial resistance,infectious bacterial disease,and immune disease pathways.Conclusions Dietary AC protected chicken against Salmonella infection via inhibiting the Salmonella colonization in liver and spleen,suppressing secretion of inflammatory cytokines,up-regulating the expression of ileal barrier-related genes,and ameliorating the composition and function of cecal microbes.Under conditions here used,100 mg/kg bilberry anthocyanin was recommended.
基金Supported by the nature scientific fund of Heilongjiang province(No.110210).
文摘Production and storage-transportation of crude oil can not only give rise to soil pollution but also destroy ecological environment. Degradation of microbes for oily soil was studied with the instnunent, Geofina Hydrocarbon Meter (GHM), by experimental analysis qualitatively and quantitatively in the paper. Analytical result showed that the crude oil could be considerably degraded by eating-oil microbes in oily soil and the number of eating-oil microbes increased while the working hours of oil-well risi...
基金the National Key Technology R&D Program of China (2006BAD05B06 and 2006BAD 02A14-13)
文摘The quantity of soil microbes and the structure of ammonium oxidizing bacterial (AOB) community were analyzed using the dilution plate counting and most probable number method (MPN), and denaturing gradient gel electrophoresis (DGGE), respectively. Fertilizer application tended to increase the number of soil microbes and alter the AOB community compared to the control with no fertilizer application (CK). Among the eight fertilizer treatments, soil samples from the treatments of mineral fertilizers (e.g., N, P, K) in combination with farmyard manure (M) had greater number.s of soil microbes and more complex structure of AOB community than those receiving mineral fertilizers alone. The principal component analyses (PCA) for ammonium oxidizing bacterial community structure showed that the eight fertilizer treatments could be divided into two PCA groups (PCA1 and PCA2). For the soil sampled after rice harvest, PCA1 included NP, NM, NPM and NPKM fertilizer treatments, while PCA2 was consisted of CK, N, M and NPK fertilizer treatments. For soil samples collected after wheat harvest, PCA1 was consisted of M, NM, NPM and NPKM fertilizer treatments, while PCA2 was composed of CK, N, NP and NPK fertilizer treatments. For a given rotation, the richness of AOB community in PCA1 was greater than that in PCA2. In addition, AOB community structure was more complex in the soil after rice harvest than that after wheat harvest. The results indicated that different fertilizer treatments resulted in substantial changes of soil microbe number and AOB community. Furthermore, mineral fertilizers (N, NP, NPK) combined with farmyard manure were effective for increasing the quantity of soil microbes, enriching AOB community, and improving the soil biofertility.