期刊文献+
共找到46,463篇文章
< 1 2 250 >
每页显示 20 50 100
Cutting performance of micro-textured PCBN tool 被引量:4
1
作者 Lin Fan Zilong Deng +1 位作者 Xingjun Gao Yan He 《Nanotechnology and Precision Engineering》 CAS CSCD 2021年第2期25-32,共8页
To study the efect of micro-texture on the cutting performance of polyrystalline cubic boron nitide(PCBN)tools,five types of micro-textures(circular pits,eliptical grooves,transverse grooves,composite grooves,and wavy... To study the efect of micro-texture on the cutting performance of polyrystalline cubic boron nitide(PCBN)tools,five types of micro-textures(circular pits,eliptical grooves,transverse grooves,composite grooves,and wavy grooves)were applied to the rake surface of PCBN tools by an optical fber laser marking machine.Through a combination of three dimensional cutting simulations and experiments,the influences of micro-texture on chip-tool contact area,cutting force,chip morphology,shear angle,and surface roughness during the cuting process were analyzed.The results indicated that the chip--tool contact area and cutting force of both non-textured and micro textured tools increased with increasing cutting speed,while the shear angle decreased with increasing cutting speed.The chip-tool contact area and cutting force of the five types of micro-textured tools were smaller than those of the non textured tool The chip-tool contact area and cutting force obtained by the wavy-groove micro textured tool were the smallest.The chip radius produced by the five types of micro-textured tools was smaller than that produced by the non-textured tool,and the chip morphology was more stable.The transverse-groove micro-textured tool had a better chip breaking efect.The chip rnadius generated by the lliptical groove micro textured tool was 0.96 cm,while that generated by the wavy-groove tool varied from 0.55 cm to 1.26 cm.The presence of a micro-texture reduced the surface roughness of the workpiece by 11.73%-56.7%.Under the same cutting conditions,the five types of micro-textured tools gave a smaller chip--tool contact area,cutting force,chip radius,and surface roughness and a larger shear angle than the non-textured tool.In addition,the elliptical groove and wavy-groove micro-textured tools had better cuting performance. 展开更多
关键词 micro-textured tool Chip tool contact area Cutting force Chip radius
在线阅读 下载PDF
Grain size and surface micro-texture characteristics and their paleoenvironmental significance of Holocene sediment in southern margin of the Gurbantunggut Desert,China
2
作者 MA Yunqiang LI Zhizhong +2 位作者 TAN Dianjia ZOU Xiaojun TAO Tonglian 《Journal of Arid Land》 SCIE CSCD 2024年第5期632-653,共22页
The southern margin of the Gurbantunggut Desert,China,is characterized by alternating layers of aeolian and alluvial deposits.Investigating the characteristics of arenaceous sediment in this area is of significant imp... The southern margin of the Gurbantunggut Desert,China,is characterized by alternating layers of aeolian and alluvial deposits.Investigating the characteristics of arenaceous sediment in this area is of significant importance for understanding the interactive processes of wind and water forces,as well as the provenance of sediment.However,there are relatively few investigations on the characteristics of such sediment at present.In this study,we researched three aeolian-alluvial interactive stratigraphic profiles and different types of surface sediment on the desert-oasis transitional zone of southern margin of the Gurbantunggut Desert.Based on the optically stimulated luminescence(OSL)dating of aeolian sand and analyses of quartz sand grain size and surface micro-texture,we explored the aeolian-alluvial environmental change at southern margin of the desert in Holocene,as well as the provenance of sediment.The results indicated that the grain size characteristics of different types of sediment in the stratigraphic profiles were similar to those of modern dune sand,interdune sand,muddy desert surface soil,and riverbed sand.Their frequency curves were unimodal or bimodal,and cumulative probability curves were two-segment or three-segment,mainly composed of suspension load and saltation load.The quartz sand in the sediment at southern margin of the desert had undergone alternating transformation of various exogenic forces,with short transportation distance and time,and sedimentary environment was relatively humid.In Holocene,southern margin of the desert primarily featured braided river deposits,and during intermittent period of river activity,there were also aeolian deposits such as sand sheet deposits,stabilized dune deposits,and mobile dune deposits.The provenance for Holocene alluvial deposits at southern margin of the desert remains relatively constant,with the debris of the Tianshan Mountains being the primary provenance.Aeolian sand is mainly near-source recharge,which is formed by in situ deposition of fluvial or lacustrine materials in southern margin of the desert transported by wind erosion,and its provenance was still the weathered debris of the Tianshan Mountains.In addition,the sand in interior of the desert may be transported by northwest wind in desert-scale,thus affecting the development of dunes in southern margin of the desert.The results of this study provide a reference for understanding the composition and provenance changes of desert sand in the context of global climate change. 展开更多
关键词 aeolian-alluvial deposition grain size surface micro-texture sedimentary environment HOLOCENE
在线阅读 下载PDF
A parameter-variant trochoidal-like tool path planning method for chatter-free and high-efficiency milling 被引量:1
3
作者 Zhaoliang LI Jinbo NIU +1 位作者 Shuoxue SUN Yuwen SUN 《Chinese Journal of Aeronautics》 2025年第2期559-576,共18页
Trochoidal milling is known for its advantages in machining difficult-to-machine materials as it facilitates chip removal and tool cooling.However,the conventional trochoidal tool path presents challenges such as lowe... Trochoidal milling is known for its advantages in machining difficult-to-machine materials as it facilitates chip removal and tool cooling.However,the conventional trochoidal tool path presents challenges such as lower machining efficiency and longer machining time due to its time-varying cutter-workpiece engagement angle and a high percentage of non-cutting tool paths.To address these issues,this paper introduces a parameter-variant trochoidal-like(PVTR)tool path planning method for chatter-free and high-efficiency milling.This method ensures a constant engagement angle for each tool path period by adjusting the trochoidal radius and step.Initially,the nonlinear equation for the PVTR toolpath is established.Then,a segmented recurrence method is proposed to plan tool paths based on the desired engagement angle.The impact of trochoidal tool path parameters on the engagement angle is analyzed and coupled this information with the milling stability model based on spindle speed and engagement angle to determine the desired engagement angle throughout the machining process.Finally,several experimental tests are carried out using the bull-nose end mill to validate the feasibility and effectiveness of the proposed method. 展开更多
关键词 Trochoidal milling Milling stability tool path planning Machining efficiency Bull-nose end mill
原文传递
An Expert Judgment-based Prediction Tool for Developmental and R eproductive Toxicity(DART)
4
作者 LI Kangning ZHENG Yuting +7 位作者 Jane ROSE WU Shengde LI Bin Vatsal MEHTA Ashley MUDD George DASTON YU Yang WANG Ying 《生态毒理学报》 北大核心 2025年第2期77-91,共15页
Developmental and reproductive toxicity(DART)endpoint entails a toxicological assessment of all developmental stages and reproductive cycles of an organism.In silico tools to predict DART will provide a method to asse... Developmental and reproductive toxicity(DART)endpoint entails a toxicological assessment of all developmental stages and reproductive cycles of an organism.In silico tools to predict DART will provide a method to assess this complex toxicity endpoint and will be valuable for screening emerging pollutants as well as for m anaging new chemicals in China.Currently,there are few published DART prediction models in China,but many related research and development projects are in progress.In 2013,WU et al.published an expert rule-based DART decision tree(DT).This DT relies on known chemical structures linked to DART to forecast DART potential of a given chemical.Within this procedure,an accurate DART data interpretation is the foundation of building and expanding the DT.This paper excerpted case studies demonstrating DART data curation and interpretation of four chemicals(including 8-hydroxyquinoline,3,5,6-trichloro-2-pyridinol,thiacloprid,and imidacloprid)to expand the existing DART DT.Chemicals were first selected from the database of Solid Waste and Chemicals Management Center,Ministry of Ecology and Environment(MEESCC)in China.The structures of these 4 chemicals were analyzed and preliminarily grouped by chemists based on core structural features,functional groups,receptor binding property,metabolism,and possible mode of actions.Then,the DART conclusion was derived by collecting chemical information,searching,integrating,and interpreting DART data by the toxicologists.Finally,these chemicals were classified into either an existing category or a new category via integrating their chemical features,DART conclusions,and biological properties.The results showed that 8-hydroxyquinoline impacted estrous cyclicity,s exual organ weights,and embryonal development,and 3,5,6-trichloro-2-pyridinol caused central nervous system(CNS)malformations,which were added to an existing subcategory 8e(aromatic compounds with multi-halogen and nitro groups)of the DT.Thiacloprid caused dystocia and fetal skeletal malformation,and imidacloprid disrupted the endocrine system and male fertility.They both contain 2-chloro-5-methylpyridine substituted imidazolidine c yclic ring,which were expected to create a new category of neonicotinoids.The current work delineates a t ransparent process of curating toxicological data for the purpose of DART data interpretation.In the presence of sufficient related structures and DART data,the DT can be expanded by iteratively adding chemicals within the a pplicable domain of each category or subcategory.This DT can potentially serve as a tool for screening emerging pollutants and assessing new chemicals in China. 展开更多
关键词 developmental and reproductive toxicity decision tree prediction tool expert judgment new chemical management
在线阅读 下载PDF
Breaking barriers: MS-BDF tools in the quality control of insect-derived traditional Chinese medicine 被引量:1
5
作者 Caixia Yuan Dandan Zhang +2 位作者 Hairong Zhang Jiyang Dong Caisheng Wu 《Journal of Pharmaceutical Analysis》 2025年第6期1403-1405,共3页
Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medi... Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medical prescriptions). 展开更多
关键词 traditional chinese medicine tcm constitutes chinese medical prescriptions prescriptions fifty two diseases ms bdf tools insect derived traditional chinese medicine quality control breaking barriers TCM
暂未订购
Utilization and Uptake of the UpToDate Clinical Decision Support Tool in Five Medical Schools in Uganda (August 2022-August 2023): A Partnership with the Better Evidence Program
6
作者 Alison Annet Kinengyere Glorias Asiimwe +4 位作者 Adrine Nyamwiza Wilson Adriko Emmanuel Twinamasiko Arthur Karemani Julie Rosenberg 《International Journal of Clinical Medicine》 2025年第2期171-198,共28页
Background: Clinical decision support tools provide suggestions to support healthcare providers and clinicians, as they attend to patients. Clinicians use these tools to rapidly consult the evidence at the point of ca... Background: Clinical decision support tools provide suggestions to support healthcare providers and clinicians, as they attend to patients. Clinicians use these tools to rapidly consult the evidence at the point of care, a practice which has been found to reduce the time patients spend in hospitals, promote the quality of care and improve healthcare outcomes. Such tools include Medscape, VisualDx, Clinical Key, DynaMed, BMJ Best Practice and UpToDate. However, use of such tools has not yet been fully embraced in low-resource settings such as Uganda. Objective: This paper intends to collate data on the use and uptake of one such tool, UpToDate, which was provided at no cost to five medical schools in Uganda. Methods: Free access to UpToDate was granted through the IP addresses of five medical schools in Uganda in collaboration with Better Evidence at The Global Health Delivery Project at Harvard and Brigham and Women’s Hospital and Wolters Kluwer Health. Following the donation, medical librarians in the respective institutions conducted training sessions and created awareness of the tool. Usage data was aggregated, based on logins and content views, presented and analyzed using Excel tables and graphs. Results: The data shows similar trends in increased usage over the period of August 2022 to August 2023 across the five medical schools. The most common topics viewed, mode of access (using either the computer or the mobile app), total usage by institution, ratio of uses to eligible users by institution and ratio of uses to students by institution are shared. Conclusion: The study revealed that the tool was used by various user categories across the institutions with similar steady improved usage over the year. These results can inform the librarians as they encourage their respective institutions to continue using the tool to support uptake of point-of-care tools in clinical practice. 展开更多
关键词 UpToDate Clinical Decision Support tool Medical Schools Uganda Digital Health Medical Education Evidence-Based Medicine
在线阅读 下载PDF
Physics-based modeling and mechanism of polycrystalline diamond tool wear in milling of 70 vol%Si/Al composite
7
作者 Lianjia Xin Guolong Zhao +3 位作者 Zhiwen Nian Haotian Yang Liang Li Ning He 《International Journal of Extreme Manufacturing》 2025年第5期336-356,共21页
High-volume fraction silicon particle-reinforced aluminium matrix composites(Si/Al)are increasingly applied in aerospace,radar communications,and large-scale integrated circuits because of their superior thermal condu... High-volume fraction silicon particle-reinforced aluminium matrix composites(Si/Al)are increasingly applied in aerospace,radar communications,and large-scale integrated circuits because of their superior thermal conductivity,wear resistance,and low thermal expansion coefficient.However,the abrasive and adhesive wear caused by the hard silicon reinforcement and the ductile aluminium matrix leads to significant tool wear,decreased machining efficiency,and compromised surface quality.This study combines theoretical analysis and cutting experiments to investigate polycrystalline diamond(PCD)tool wear during milling of 70 vol%Si/Al composite.A key contribution of this work is the development of a tool wear model that incorporates reinforcement particle characteristics,treating them as ellipsoidal structures,which enhances the accuracy of predicting abrasive and adhesive wear mechanisms.The model is based on abrasive and adhesive wear mechanisms,and can analyze the interaction between silicon particles,aluminium matrix,and tool components,thus providing deeper insights into PCD tool wear processes.Experimental validation of the model shows a good agreement with the results,with a mean deviation of approximately 10%.The findings on the tool wear mechanism reveal that,as tool wear progresses,the proportion of abrasive wear increases from 40%in the running-in stage to 75%in the rapid wear stage,while adhesive wear decreases.The optimal machining parameters of 120 m·min^(–1) cutting speed(v_(c))and 0.04 mm·z^(–1) feed rate(f_(z)),result in tool life of 33 min and surface roughness(S_(a))of 2.2μm.The study uncovers the variation patterns of abrasive and adhesive wear during the tool wear process,and the proposed model offers a robust framework for predicting tool wear during the machining of high-volume fraction Si/Al composites.The research findings also offer key insights for optimizing tool selection and machining parameters,advancing both the theoretical understanding and practical application of PCD tool wear. 展开更多
关键词 70 vol%Si/Al composite tool wear PCD tools theoretical model mesoscopic feature
在线阅读 下载PDF
Repurposing Ancient Viral Tools for Precision Gene Therapy
8
作者 YAN Fusheng 《Bulletin of the Chinese Academy of Sciences》 2025年第1期36-39,共4页
The 2024 development of a precision-engineered retrotransposon system marked a significant milestone in mammalian genome-editing research.As appeared in the July 8 issue of Cell,this methodological breakthrough establ... The 2024 development of a precision-engineered retrotransposon system marked a significant milestone in mammalian genome-editing research.As appeared in the July 8 issue of Cell,this methodological breakthrough established a novel framework for site-specific gene delivery through repurposing ancient viral tools. 展开更多
关键词 repurposing ancient viral tools site specific gene delivery ancient viral tools precision gene therapy retrotransposon system
在线阅读 下载PDF
Modelling and experimental investigation of micro-dimpled structures milling with spiral trajectory tool reciprocating motion
9
作者 Guangzhou WANG Linjie ZHAO +3 位作者 Qi LIU Xiguang LI Yazhou SUN Mingjun CHEN 《Chinese Journal of Aeronautics》 2025年第2期577-596,共20页
To mill fine and well-defined micro-dimpled structures,a machining manner of spiral trajectory tool reciprocating motion,where the tool repeats the process of‘feed milling–retract–cutting feed–feed milling again’... To mill fine and well-defined micro-dimpled structures,a machining manner of spiral trajectory tool reciprocating motion,where the tool repeats the process of‘feed milling–retract–cutting feed–feed milling again’along the spiral trajectory,was proposed.From the kinematics analysis,it is found that the machining quality of micro-dimpled structures is highly dependent on the machining trajectory using spiral trajectory tool reciprocating motion.To reveal this causation,simulation modelling and experimental studies were carried out.A simulation model was developed to quantitatively and qualitatively investigate the influence of the trajectory discretization strategies(constant-angle and constant-arc length)and parameters(discrete angle,discrete arc length,and pitch)on surface texture and residual height of micro-dimpled structures.Subsequently,micro-dimpled structures were milled under different trajectory discretization strategies and parameters with spiral trajectory tool reciprocating motion.A comprehensive comparison between the milled results and simulation analysis was made based on geometry accuracy,surface morphology and surface roughness of milled dimples.Meanwhile,the errors and factors affecting the above three aspects were analyzed.The results demonstrate both the feasibility of the established simulation model and the machining capability of this machining way in milling high-quality micro-dimpled structures.Spiral trajectory tool reciprocating motion provides a new machining way for milling micro-dimpled structures and micro-dimpled functional surfaces.And an appropriate machining trajectory can be generated based on the optimized trajectory parameters,thus contributing to the improvement of machining quality and efficiency. 展开更多
关键词 tool reciprocating motion Spiral trajectory Micro-dimpled structure MICROMACHINING Simulation modelling with diamond tool Surface texture
原文传递
Accuracy allocation method for five-axis machine tools based on geometric error cost sensitivity prioritizing tool direction deviation
10
作者 Xiaojian LIU Ao JIAO +7 位作者 Yang WANG Guodong YI Xiangyu GAO Xiaochen ZHANG Yiming ZHANG Yangjian JI Shuyou ZHANG Jianrong TAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第7期635-651,共17页
Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address th... Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies. 展开更多
关键词 Five-axis machine tool Accuracy allocation Geometric error modeling Error cost sensitivity tool direction deviation priority
原文传递
Planning Tools for Climate-Neutral and Livable Neighborhoods
11
作者 Oskar Mair am Tinkhof 《Journal of Civil Engineering and Architecture》 2025年第5期237-241,共5页
Today city planners are confronted with two global trends:on one hand,living space is getting less due to urbanization;on the other hand,demands on living space are constantly rising as for example through stricter cl... Today city planners are confronted with two global trends:on one hand,living space is getting less due to urbanization;on the other hand,demands on living space are constantly rising as for example through stricter climate and energy political objectives based on the Paris Agreement.Therefore,it will be necessary to take into account—near urban planning and social aspects—also the climate compatibility as one central aspect in the construction of buildings,settlements,districts or neighborhoods.To identify and to push successful concepts,Austria has developed a planning tool that allows planning,assessing and ensuring high quality standards of neighborhoods.As the tool has been highly successful,additional planning tools are being developed for specific topics such as“PED—Positive Energy Districts”,“NEB—New European Bauhaus”and“CND—Climate Neutral Districts”.Central quantitative and qualitative criteria—which have been elaborated in the recent years—will be presented in this paper. 展开更多
关键词 URBANIZATION Paris Agreement neighborhoods planning tools criteria.
在线阅读 下载PDF
Analysis and optimization of microchannel array precision grinding processes with micro-structured micro-grinding tool
12
作者 Jianfei JIA Qinghe ZHANG +7 位作者 Wei YANG Honghui YAO Guicheng WU Huan ZHAO Jianhui ZHU Kenan LI Bing GUO Jun QIN 《Chinese Journal of Aeronautics》 2025年第7期669-683,共15页
Micro-grinding has been widely used in aerospace and other industry.However,the small diameter of the micro-grinding tool has limited its machining performance and efficiency.In order to solve the above problems,micro... Micro-grinding has been widely used in aerospace and other industry.However,the small diameter of the micro-grinding tool has limited its machining performance and efficiency.In order to solve the above problems,micro-structure has been applied on the micro-grinding tool.A morphology modeling has been established in this study to characterize the surface of microstructured micro-grinding tool,and the grinding performance of micro-structured micro-grinding tool has been analyzed through undeformed chip thickness,abrasive edge width,and effective distance between abrasives.Then deviation analysis,path optimization and parameter optimization of microchannel array precision grinding have been finished to improve processing quality and efficiency,and the deflection angle has the most obvious effects on the rectangular slot depth,micro-structured micro-grinding tool could reduce 10%surface roughness and 20%grinding force compared to original micro-grinding tool.Finally,the microchannel array has been machined with a size deviation of 2μm and surface roughness of 0.2μm. 展开更多
关键词 GRINDING Precision grinding Microchannel array MICRO-STRUCTURE Micro-grinding tool
原文传递
A Causal-Transformer Based Meta-Learning Method for Few-Shot Fault Diagnosis in CNC Machine Tool Bearings
13
作者 Youlong Lyu Ying Chu +2 位作者 Qingpeng Qiu Jie Zhang Jutao Guo 《Computers, Materials & Continua》 2025年第11期3393-3418,共26页
In intelligentmanufacturing processes such as aerospace production,computer numerical control(CNC)machine tools require real-time optimization of process parameters to meet precision machining demands.These dynamic op... In intelligentmanufacturing processes such as aerospace production,computer numerical control(CNC)machine tools require real-time optimization of process parameters to meet precision machining demands.These dynamic operating conditions increase the risk of fatigue damage in CNC machine tool bearings,highlighting the urgent demand for rapid and accurate fault diagnosis methods that can maintain production efficiency and extend equipment uptime.However,varying conditions induce feature distribution shifts,and scarce fault samples limitmodel generalization.Therefore,this paper proposes a causal-Transformer-based meta-learning(CTML)method for bearing fault diagnosis in CNC machine tools,comprising three core modules:(1)the original bearing signal is transformed into a multi-scale time-frequency feature space using continuous wavelet transform;(2)a causal-Transformer architecture is designed to achieve feature extraction and fault classification based on the physical causal law of fault propagation;(3)the above mechanisms are integrated into a model-agnostic meta-learning(MAML)framework to achieve rapid cross-condition adaptation through an adaptive gradient pruning strategy.Experimental results using the multiple bearing dataset show that under few-shot cross-condition scenarios(3-way 1-shot and 3-way 5-shot),the proposed CTML outperforms benchmark models(e.g.,Transformer,domain adversarial neural networks(DANN),and MAML)in terms of classification accuracy and sensitivity to operating conditions,while maintaining a moderate level of model complexity. 展开更多
关键词 Fault diagnosis META-LEARNING CNC machine tools AEROSPACE
在线阅读 下载PDF
Increasing Yields and Partial Factor Productivity of Rice Grown in Tropical Alfisols Using a Decision Support Tool
14
作者 Tharindu Nuwan KULASINGHE Udaya W.A.VITHARANA +4 位作者 Darshani KUMARAGAMAGE Randombage Saman DHARMAKEERTHI Kaushik MAJUMDAR Dinaratne Nihal SIRISENA Upul Kumari RATHNAYAKE 《Rice science》 2025年第4期453-456,I0018-I0022,共9页
Decision Support Tool(DST)enables farmers to make site-specific crop management decisions;however,comprehensive calibration can be both costly and time-consuming.This study assessed the production and economic benefit... Decision Support Tool(DST)enables farmers to make site-specific crop management decisions;however,comprehensive calibration can be both costly and time-consuming.This study assessed the production and economic benefits of two calibrations of the Nutrient Expert(NE)tool for rice in Sri Lanka’s Alfisols:the basic calibration(Nutrient Expert Sri Lanka 1,NESL1)and the comprehensive calibration(Nutrient Expert Sri Lanka 2,NESL2).NESL1 was developed by adapting the South Indian version of NE to local conditions,while NESL2 was an updated version,using three years of data from 71 farmer fields. 展开更多
关键词 decision support tool tropical alfisols adapting south indian version ne nutrient expert yield decision support tool dst enables partial factor productivity RICE
在线阅读 下载PDF
Childbirth experience assessment tools based on COSMIN guidelines:A systematic review
15
作者 Yifan Cheng Ruxue Bai +2 位作者 Siyu Shan Xinmiao Zhao Chunling Xia 《International Journal of Nursing Sciences》 2025年第1期89-95,I0005,共8页
Objective:This study aimed to systematically evaluate the measurement characteristics and methodological quality of childbirth experience assessment tools,with a view to informing the selection of healthcare professio... Objective:This study aimed to systematically evaluate the measurement characteristics and methodological quality of childbirth experience assessment tools,with a view to informing the selection of healthcare professionals who can provide high-quality assessment tools.Method:A systematic search was performed on specific databases:PubMed,Web of Science,Embase,CINAHL,SinoMed,China National Knowledge Infrastructure(CNKI),and Wanfang,from inception to February 29,2024.The researchers retrieved studies on the measurement attributes of the childbirth experience assessment tool,and traced back the references of the included studies to supplement relevant literature.According to the inclusion and exclusion criteria,screening and data extraction were independently undertaken by two reviewers.Two researchers individually used the Consensus-based Standards for the Selection of Health Measurement Instruments(COSMIN)Risk of Bias Checklist to assess the methodological quality of the scale,applied the COSMIN criteria to evaluate the measurement properties of the scale,and used a modified Grading of Recommendations,Assessment,Development,and Evaluation(GRADE)system to assess the certainty of evidence.Result:A total of 15 studies were included to evaluate the psychometric properties of 11 childbirth experience assessment tools(including different language versions).Eight studies’methodological quality of content validity was doubtful,and the remaining studies did not report content validity.None of the tools reported measurement error,cross-cultural validity,or responsiveness.In light of the questionable or unreported content validity of the tools,the evidence quality was deemed moderate or below.Consequently,the 11 assessment tools were recommended as grade B.Conclusion:In contrast,the Questionnaire for Assessing the Childbirth Experience(QACE)is recommended for provisional use,given its relatively good methodological and measurement attributes and appropriate content for evaluation.However,further validation of other measurement properties is needed. 展开更多
关键词 Assessment tools COSMIN guidelines Childbirth experience Systematic review
暂未订购
Geometric Accuracy Design of High Performance CNC Machine Tools:Modeling,Analysis,and Optimization
16
作者 Liping Wang Jihui Han +3 位作者 Zihan Tang Yun Zhang Dong Wang Xuekun Li 《Chinese Journal of Mechanical Engineering》 2025年第3期29-60,共32页
The CNC machine tool is the fundamental equipment of the manufacturing industry,particularly in sectors where achieving high levels of accuracy is crucial.Geometric accuracy design is an important step in machine tool... The CNC machine tool is the fundamental equipment of the manufacturing industry,particularly in sectors where achieving high levels of accuracy is crucial.Geometric accuracy design is an important step in machine tool design and plays an essential role in determining the machining accuracy of the workpiece.Researchers have extensively studied methods to model,extract,optimize,and measure the geometric errors that affect the geometric accuracy of machine tools.This paper provides a comprehensive review of the state-of-the-art approaches and an overview of the latest research progress associated with geometric accuracy design in CNC machine tools.This paper explores the interrelated aspects of CNC machine tool accuracy design:modeling,analysis and optimization.Accuracy analysis,which includes geometric error modeling and sensitivity analysis,determines a machine tool’s output accuracy through its volumetric error model,given the known accuracy of its individual components.Conversely,accuracy allocation designs the accuracy of the machine tool components according to given output accuracy requirements to achieve optimization between the objectives of manufacturing cost,quality,reliability,and environmental impact.In addition to discussing design factors and evaluation methods,this paper outlines methods for verifying the accuracy of design results,aiming to provide a practical basis for ensuring that the designed accuracy is achieved.Finally,the challenges and future research directions in geometric accuracy design are highlighted. 展开更多
关键词 Accuracy design Geometric error Geometric accuracy Machine tool
在线阅读 下载PDF
The Role of Digital Tools in Enhancing Vocabulary Acquisition in Second Foreign Language Learning
17
作者 Chunhua Ren Lin Su 《Journal of Contemporary Educational Research》 2025年第7期376-381,共6页
The paper aims to examine the application of multimedia technology in expanding vocabulary in second language acquisition.Incorporating innovative technology such as mobile applications,gaming applications,websites,an... The paper aims to examine the application of multimedia technology in expanding vocabulary in second language acquisition.Incorporating innovative technology such as mobile applications,gaming applications,websites,and other related online tools has increased learners’vocabulary mastery,engagement,and motivation levels.Interactional processes like media-embedded objects,teach-learning capacity algorithms,and feedback help learners receive the course in a personalized way that considers individual learning patterns or abilities.However,there are the following challenges:accessibility issues,total reliance on technology,and issues related to privacy.The following challenges affecting learning that arise from using gadgets:the digital divide,limited device access,and environmental issues that may distract a learner in a technology-enabled environment.Moreover,the security issue for data and the ethical question of users’information remain important too.Hence,the paper provides arguments that although these technologies contribute significantly to vocabulary acquisition,the challenge that emerges should be addressed by integrating technology in teaching and learning alongside conventional methods for vocabulary acquisition,which is a practical language acquisition tool that should not be monopolized. 展开更多
关键词 Digital tools Vocabulary acquisition Second language learning GAMIFICATION
在线阅读 下载PDF
Surface Roughness Model and Process of Brazed Diamond Tool Milling and Grinding Sapphire Dome
18
作者 FENG Wei SUN Xiaokang +1 位作者 ZHANG Lingling ZHU Nannan 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第4期554-564,共11页
Sapphire hemispherical domes are machined through milling and shaping using brazed diamond tools.A mathematical model describing roughness for this processing method is established,and the relationship between roughne... Sapphire hemispherical domes are machined through milling and shaping using brazed diamond tools.A mathematical model describing roughness for this processing method is established,and the relationship between roughness and its influencing factors is analyzed.Experiments on the hemispherical dome shaping process are conducted to validate the model,analyzing the variation in roughness under different tool and workpiece rotational speeds.The results are consistent with the predictions of the established roughness model,suggesting that the model can be used to guide subsequent process experiments.Milling and shaping efficiency using brazed diamond tools typically can reach 14 g/min.The machined sapphire surfaces exhibit relatively few microcracks and minimal damage,with almost all exclusively visible grooves resulting from brittle fracture removal.The surface roughness after machining is below 2.5μm.Milling sapphire domes with brazed diamond tools represents a novel shaping technique characterized by high efficiency and high quality. 展开更多
关键词 diamond tools sapphire dome milling and grinding ROUGHNESS
在线阅读 下载PDF
Tool Wear Mechanism and Experimental Study on Deep Hole Gun Drilling of 304 Stainless Steel
19
作者 JIANG Jitao LI Liang +2 位作者 SHI Mengting ZHOU Zilong WANG Ye 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第3期337-353,共17页
Deep hole gun drilling is in a closed and semi-closed state,and the machining process is complex.The unstable drilling force,severe tool wear,and poor processing quality have always been difficulties in deep hole gun ... Deep hole gun drilling is in a closed and semi-closed state,and the machining process is complex.The unstable drilling force,severe tool wear,and poor processing quality have always been difficulties in deep hole gun drilling.304 stainless steel has good corrosion and heat resistance,and is widely used in various industries.However,high hardness,poor plasticity,and characteristics of sticking knives have always restricted its development in engineering applications.Therefore,this paper uses 304 stainless steel as the research object and performs process parameter optimization and tool wear experiments.Firstly,based on the optimization experiment of process parameters,the influence of cutting speed and feed rate on drlling force and hole wall roughness is analyzed.The process parameters of the subsequent experiment are optimized as follows:spindle speed is 1270r/mm,feed rate is 0.02 mm/r,and oil pressure is 3 MPa.Secondly,based on the tool wear experiment,the variation law of tool wear and tool wear form is studied.With the help of scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS),the tool wear mechanism of deep hole gun drilling 304 stainless steel is expounded.Finally,the influence of tool wearon the processing quality isrevealed,and the suggestion of tool regrinding is put forward. 展开更多
关键词 gun drill 304 stainless steel tool wear processing quality
在线阅读 下载PDF
Intelligent tool setting for vibration cutting process using machine vision and hearing
20
作者 Zhihao Ma Junhao Zhao +2 位作者 Jiahui Liu Peiyuan Ding Jianjian Wang 《Nanotechnology and Precision Engineering》 2025年第3期1-7,共7页
Vibration cutting has emerged as a promising method for creating surface functional microstructures.However,achieving precise tool setting is a time-consuming process that significantly impacts process efficiency.This... Vibration cutting has emerged as a promising method for creating surface functional microstructures.However,achieving precise tool setting is a time-consuming process that significantly impacts process efficiency.This study proposes an intelligent approach for tool setting in vibration cutting using machine vision and hearing,divided into two steps.In the first step,machine vision is employed to achieve rough precision in tool setting within tens of micrometers.Subsequently,in the second step,machine hearing utilizes sound pickup to capture vibration audio signals,enabling fine tool adjustment within 1μm precision.The relationship between the spectral intensity of vibration audio and cutting depth is analyzed to establish criteria for tool–workpiece contact.Finally,the efficacy of this approach is validated on an ultra-precision platform,demonstrating that the automated tool-setting process takes no more than 74 s.The total cost of the vision and hearing sensors is less than$1500. 展开更多
关键词 Vibration cutting Automatic tool setting Machine vision Machine hearing
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部