3D-printed Ti_(3)C_(2)T_(x) MXene-based interdigital micro-supercapacitors(MSCs)have great potential as energy supply devices in the field of microelectronics due to their short ion diffusion path,high conductivity,ex...3D-printed Ti_(3)C_(2)T_(x) MXene-based interdigital micro-supercapacitors(MSCs)have great potential as energy supply devices in the field of microelectronics due to their short ion diffusion path,high conductivity,excellent pseudocapacitance,and fast charging capabilities.However,searching for eco-friendly aqueous Ti_(3)C_(2)T_(x) MXene-based inks without additives and preventing severe restack of MXene nanosheets in high-concentration inks are significantly challenging.This study develops an additive-free,highly printable,viscosity adjustable,and environmentally friendly MXene/carbon nanotube(CNT)hybrid aqueous inks,in which the CNT can not only adjust the viscosity of Ti_(3)C_(2)T_(x) MXene inks but also widen the interlayer spacing of adjacent Ti_(3)C_(2)T_(x) MXene nanosheets effectively.The optimized MXene/CNT composite inks are successfully adopted to construct various configurations of MSCs with remarkable shape fidelity and geometric accuracy,together with enhanced surface area accessibility for electrons and ions diffusion.As a result,the constructed interdigital symmetrical MSCs demonstrate outstanding areal capacitance(1249.3 mF cm^(-2)),superior energy density(111μWh cm^(-2) at 0.4mWcm^(-2)),and high power density(8mWcm^(-2) at 47.1μWh cm^(-2)).Furthermore,a self-powered modular system of solar cells integrated with MXene/CNT-MSCs and pressure sensors is successfully tailored,simultaneously achieving efficient solar energy collection and real-time human activities monitoring.This work offers insight into the understanding of the role of CNTs in MXene/CNT ink.Moreover,it provides a new approach for preparing environmentally friendly MXene-based inks for the 3D printing of high-performance MSCs,contributing to the development of miniaturized,flexible,and self-powered printable electronic microsystems.展开更多
The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this is...The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.展开更多
Printed micro-supercapacitors(MSCs)have shown broad prospect in flexible and wearable electronics.Most of previous studies focused on printing the electrochemically active materials paying less attention to other key ...Printed micro-supercapacitors(MSCs)have shown broad prospect in flexible and wearable electronics.Most of previous studies focused on printing the electrochemically active materials paying less attention to other key components like current collectors and electrolytes.This study presents an allprinting strategy to fabricate in-plane flexible and substrate-free MSCs with hierarchical encapsulation.This new type of“all-in-one”MSC is constructed by encapsulating the in-plane interdigital current collectors and electrodes within the polyvinyl-alcohol-based hydrogel electrolyte via sequential printing.The bottom electrolyte layer of this fully printed MSCs helps protect the device from the limitation of conventional substrate,showing excellent flexibility.The MSCs maintain a high capacitance retention of 96.84%even in a completely folded state.An optimal electrochemical performance can be achieved by providing ample and shorter transport paths for ions.The MSCs using commercial activated carbon as the active material are endowed with a high specific areal capacitance of 1892.90 mF cm^(-2)at a current density of 0.3 mA cm^(-2),and an outstanding volumetric energy density of 9.20 mWh cm^(-3)at a volumetric power density of 6.89 mW cm^(-3).For demonstration,a thermo-hygrometer is stably powered by five MSCs which are connected in series and wrapped onto a glass rod.This low-cost and versatile all-printing strategy is believed to diversify the application fields of MSCs with high capacitance and excellent flexibility.展开更多
Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless...Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.展开更多
Two-dimensional(2D)mesoporous pseudocapacitive polymer/graphene heterostructures combine the advanced merits of 2D materials and mesoporous materials,possessing unique nanosheet structure,large specific surface area(S...Two-dimensional(2D)mesoporous pseudocapacitive polymer/graphene heterostructures combine the advanced merits of 2D materials and mesoporous materials,possessing unique nanosheet structure,large specific surface area(SSA),abundant oxygen/nitrogen-containing groups,desirable electrical conductivity and admirable electrochemical redox activity,and hold great potential for constructing high-performance planar micro-supercapacitors(MSCs).Herein,we demonstrate the interfacial assembly of 2D mesoporous polydopamine/graphene(mPDG)heterostructures with well-defined mesopore structure(12 nm)and adjustable thickness(7.5–14.1 nm)for planar high-energy pseudocapacitive MSCs.Attributed to medium thickness,exposed mesopore of 12 nm and large SSA of 108 m^(2)/g,the m PDG with 10.8 nm thickness reveals prominent mass capacitance of 419 F/g and impressive cycling stability with~96%capacitance retention after 5000 cycles.Furthermore,the symmetric mPDG-based MSCs with“water-in-salt”gel electrolyte present wide voltage window of 1.6 V,superior volumetric energy density of 11.5 mWh/cm^(3),outstanding flexibility and self-integration ability.Therefore,this work offers a new platform of controllably synthesizing 2D mesoporous heterostructures for high-performance MSCs.展开更多
By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%...By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%). A small amount of commercial pen ink was added to effectively reduce the agglomeration of theGO sheets during solvent evaporation and the following reduction processes in which the presence of graphite carbon nanoparticles served as nano-spacer to separate GO sheets. The printed device fabricated using the hybrid ink,combined with the binder-free microelectrodes and interdigital microelectrode configuration, exhibits nearly 780%enhancement in areal capacitance compared with that of pure GO ink. It also shows excellent flexibility and cycling stability with nearly 100% retention of the areal capacitance after 10,000 cycles. The all-solid-state device can be optionally connected in series or in parallel to meet the voltage and capacity requirements for a given application.This work demonstrates a promising future of the carbonbased hybrid ink for directly large-scale inkjet printing MSCs for disposable energy storage devices.展开更多
With the rapid development of integrated and miniaturized electronics,the planar energy storage devices with high capacitance and energy density are in enormous demand.Hence,the advanced manufacture and fast fabricati...With the rapid development of integrated and miniaturized electronics,the planar energy storage devices with high capacitance and energy density are in enormous demand.Hence,the advanced manufacture and fast fabrication of microscale planar energy units are of great significance.Herein,we develop aqueous planar micro-supercapacitors(MSCs) with ultrahigh areal capacitance and energy density via an efficient all-3 D-printing strategy,which can directly extrude the active material ink and gel electrolyte onto the substrate to prepare electrochemical energy storage devices.Both the printed active carbon/exfoliated graphene(AC/EG) electrode ink and electrolyte gel are highly processable with outstanding conductivity(~97 S cm^(-1) of electrode;-34.8 mS cm^(-1) of electrolyte),thus benefiting the corresponding shaping and electrochemical performances.Furthermore,the 3 D-printed symmetric MSCs can be operated stably at a high voltage up to 2.0 V in water-in-salt gel electrolyte,displaying ultrahigh areal capacitance of2381 mF cm^(-2) and exceptional energy density of 331 μWh cm^(-2),superior to previous printed micro energy units.In addition,we can further tailor the integrated 3 D-printed MSCs in parallel and series with various voltage and current outputs,enabling metal-free interconnection.Therefore,our all-3 D-printed MSCs place a great potential in developing high-power micro-electronics fabrication and integration.展开更多
Rational design and precise regulation over the morphology, structure, and pore size of functional conducting mesoporous polymers with enriched active sites and shorten electron–ion transport pathway are extremely im...Rational design and precise regulation over the morphology, structure, and pore size of functional conducting mesoporous polymers with enriched active sites and shorten electron–ion transport pathway are extremely important for developing high-performance micro-supercapacitors (MSCs), but still remain a great challenge. Herein, a general dual-colloid interface co-assembly strategy is proposed to fabricate hollow mesoporous polypyrrole nano-bowls (mPPy-nbs) for high-energy-density solid-state planar MSCs. By simply adjusting the size of block copolymer micelles, the diameter of polystyrene nanospheres and the amount of pyrrole monomer, mesopore size of the shell, void and shell thickness of mPPy-nbs can be simultaneously controlled. Importantly, this strategy can be further utilized to synthesize other hollow mesoporous polymers, including poly(tris(4-aminophenyl)amine), poly(1,3,5-triaminobenzene) and their copolymers, demonstrative of excellent universality. The structurally optimized mPPy-nb exhibits high specific surface area of 122 m^(2) g^(−1)and large capacitance of 225 F g^(−1) at 1 mV s^(−1). Furthermore, the MSCs assembled by mPPy-nbs deliver impressive volumetric capacitance of 90 F cm^(−3) and energy density of 2.0 mWh cm^(−3), superior to the most reported polymers-based MSCs. Also, the fabricated MSCs present excellent flexibility with almost no capacitance decay under varying bending states, and robust serial/parallel self-integration for boosting voltage and capacitance output. Therefore, this work will inspire the new design of mesoporous conducting polymer materials toward high-performance microscale supercapacitive devices.展开更多
Microscale electrochemical energy storage devices,e.g., micro-supercapacitors(MSCs),possessing tailored performance and diversified form factors of lightweight,miniaturization,flexibility and exceptional integration a...Microscale electrochemical energy storage devices,e.g., micro-supercapacitors(MSCs),possessing tailored performance and diversified form factors of lightweight,miniaturization,flexibility and exceptional integration are highly necessary for the smart power sources-unitized electronics.Despite the great progress,the fabrication of MSCs combining high integration with high volumetric performance remains largely unsolved.Herein,we develop a simple,fast and scalable strategy to fabricate graphene based highly integrated MSCs by a new effective continuous centrifugal coating technique.Notably,the resulting highly conductive graphene films can act as not only patterned microelectrodes but also metal-free current collectors and interconnects,endowing modular MSCs with high integrity,remarkable flexibility,tailored voltage and capacitance output,and outstanding performance uniformity.More importantly,the strong centrifugal force and shear force generated in continuous centrifugal coating process lead to graphene films with high alignment,compactness and packing density,contributing to excellent volumetric capacitance of ~31.8 F cm^(-3) and volumetric energy density of ~2.8 mWh cm^(-3),exceeding most reported integrated MSCs.Therefore,our work paves a novel way for simple and scalable fabrication of integrated MSCs and offers promising opportunities as standalone microscale power sources for new-generation electronics.展开更多
Harnessing energy from the environment promotes the rapid development of micro-power generators and relevant power management modules of alternating current (AC) line-filtering to obtain a stabilized direct current (D...Harnessing energy from the environment promotes the rapid development of micro-power generators and relevant power management modules of alternating current (AC) line-filtering to obtain a stabilized direct current (DC) output for storage and use. Micro-supercapacitors (MSCs) with miniaturized volume and high-frequency response are regarded as a critical component in filtering circuits for microscale power conversion. Here, we reported the fabrication of the wafer-sized planar MSCs (M-MSCs) based on 2D Ti_(2)C_(2)T_(6) MXene using a photolithography technique. The M-MSCs exhibited an areal capacitance of 153 μF cm^(-2) and a frequency characteristic (f_(0)) of 5.6 k Hz in aqueous electrolyte. Moreover, by employing suitable ionic liquid as electrolyte, the voltage window was expanded to 2 V and the f_(0) could be pushed to 6.6 k Hz relying on the electrical double-layer mechanism and lower adsorption energy while maintaining quasi-rectangular cyclic voltammogram curves at 5000 V s^(-1). Furthermore, the integrated MSCs pack was constructed and exhibited excellent rectifying ability by filtering various highfrequency 5000 Hz AC signals with different waveforms into stable DC outputs. Such ultrahigh-rate and high-voltage M-MSCs module for k Hz AC line-filtering would be potentially integrated with customizable electronics to realize on-chip rectifiers in high-density integrated circuit.展开更多
The popularization of portable,implantable and wearable microelectronics has greatly stimulated the rapid development of high-power planar micro-supercapacitors(PMSCs).Particularly,the introduction of new functionalit...The popularization of portable,implantable and wearable microelectronics has greatly stimulated the rapid development of high-power planar micro-supercapacitors(PMSCs).Particularly,the introduction of new functionalities(e.g.,high voltage,flexibility,stretchability,self-healing,electrochromism and photo/thermal response)to PMSCs is essential for building multifunctional PMSCs and their smart selfpowered integrated microsystems.In this review,we summarized the latest advances in PMSCs from various functional microdevices to their smart integrated microsystems.Primarily,the functionalities of PMSCs are characterized by three major factors to emphasize their electrochemical behavior and unique scope of application.These include but are not limited to high-voltage outputs(realized through asymmetric configuration,novel electrolyte and modular integration),mechanical resilience that includes various feats of flexibility or stretchability,and response to stimuli(self-healing,electrochromic,photo-responsive,or thermal-responsive properties).Furthermore,three representative integrated microsystems including energy harvester-PMSC,PMSC-energy consumption,and all-in-one selfpowered microsystems are elaborately overviewed to understand the emerging intelligent interaction models.Finally,the key perspectives,challenges and opportunities of PMSCs for powering smart microelectronics are proposed in brief.展开更多
Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes l...Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes lead to low energy density and limited environmental adaption.Herein,we report the construction of low-temperature and high-energy-density MSCs based on anti-freezing hybrid gel electrolytes(HGE)through introducing ethylene glycol(EG)additives into aqueous LiCl electrolyte.Since EG partially destroys hydrogen bond network among water molecules,the HGE exhibits maximum electrochemical stability window of 2.7 V and superior anti-freezing features with a glass transition temperature of-62.8℃.Further,the optimized MSCs using activated carbon microelectrodes possess impressive volumetric capacitance of 28.9 F cm^(-3)and energy density of 10.3 mWh cm^(-3)in the voltage of 1.6 V,2.6 times higher than MSCs tested in 1.2 V.Importantly,the MSCs display 68.3%capacitance retention even at-30℃ compared to the value at 25℃,and ultra-long cyclability with 85.7%of initial capacitance after 15,000 times,indicating extraordinary low-temperature performance.Besides,our devices offer favorable flexibility and modular integration.Therefore,this work provides a general strategy of realizing flexible,safe and anti-freezing microscale power sources,holding great potential towards subzero-temperature microelectronic applications.展开更多
Micro-supercapacitors with excellent electrochemical performance and aesthetic property are realized using the carbon nanotubes/manganese dioxide nanosheets(CNTs/δ-MnO2) composite as electrodes.This CNTs/d-MnO2 nan...Micro-supercapacitors with excellent electrochemical performance and aesthetic property are realized using the carbon nanotubes/manganese dioxide nanosheets(CNTs/δ-MnO2) composite as electrodes.This CNTs/d-MnO2 nanocomposite is excellently compatible with the slurry dispensing process for electrode fabrication, and thus is conducive for preparing thick electrode films, which exhibits a specific capacitance of 257 F/g with an electrode thickness of 13μm. By involving laser-scribing technique, the electrode film can be patterned with a high resolution and fabricated into a planar micro-supercapacitor,showing the maximum energy density of 6.83 mWh/cm^3 at the power density of 154.3 mW/cm^3, and maintained a value of 2.71 mWh/cm^3 at the maximum power density of 2557.5 mW/cm^3. Considering the versatility of the laser-scribing technical platform, the micro-supercapacitors fabricated in this way exhibit excellent aesthetic property and can cater to various miniaturized wearable electronic applications. This technology opens up opportunities for facile and scalable fabrication of high performance energy devices with shape diversity and a meaning of art.展开更多
Vanadium nitride (VN) was deposited by DC-sputtering on a vertically aligned carbon nanotube (CNTs) template for the purpose of nano-structuration. This led to the fabrication of hierarchically composite electrode...Vanadium nitride (VN) was deposited by DC-sputtering on a vertically aligned carbon nanotube (CNTs) template for the purpose of nano-structuration. This led to the fabrication of hierarchically composite electrodes consisting of porous and nanostructured VN grown on vertically aligned CNTs in a nano-treelike configuration for micro-supercapacitor application. The electrodes show excellent performance with an areal capacitance as high as 37.5 mF cm^-2 at a scan rate of 2 mV s^-1 in a 0.5 M K2504 mild electrolyte solution. Furthermore, the capacitance decay was only 15% after 20,000 consecutive cycles. Moreover, the capacitance was found to increase with VN deposit thickness. The X-ray photoelectron spectroscopy analyses of the electrodes before and after cycling suggest that the oxide layers that form at the VN surface is the responsible for the redox energy storage in this material. Such electrodes can compete with other transition metal nitride based electrodes for micro-supercapacitors.展开更多
We report a simple method for fabricating all-solid-state micro-supercapacitors, utilizing laser writing technology. Porous graphene films with three-dimensional networks induced by laser from commercial polymer was a...We report a simple method for fabricating all-solid-state micro-supercapacitors, utilizing laser writing technology. Porous graphene films with three-dimensional networks induced by laser from commercial polymer was acted as scaffold for loading MnO2, a typical pseudocapacitive materials. Using gel electrolyte, all-solid-state pseudocapacitive micro-supercapacitors were fabricated. Compare to traditional printing and lithography techniques produced micro-supercapacitors, the as-fabricated devices demonstrate high volumetric capacitances, good stability and low leakage current, indicating a scalable and facile approach for future energy storage devices in portable microelectronics.展开更多
All-solid-state micro-supercapacitors are acknowledged as a very promising class of microscale energy storage devices for directly integrating portable and wearable electronics. However, the improvement of electrochem...All-solid-state micro-supercapacitors are acknowledged as a very promising class of microscale energy storage devices for directly integrating portable and wearable electronics. However, the improvement of electrochemical performance from materials to devices still remains tremendous challenges. Here, we demonstrate a novel and universal mask-assisted filtration technology for the simplified fabrication of all-solid-state planar micro-supercapacitors(MSCs) based on interdigital patterns of 2D pseudocapacitive MnO2 nanosheets and electrochemically exfoliated graphene film as both electrode and current collector, and polyvinyl alcohol/Li Cl gel as electrolyte. Remarkably, the resulting MSCs exhibit outstanding areal capacitance of ~355 m F/cm^2, which is among the highest values reported in the state-of-the-art MSCs. Meanwhile, MSCs possess exceptionally mechanical flexibility as high as ~92% of initial capacitance even at a highly bending angle of 180°, excellent cyclability with a capacitance retention of 95% after 3000 cycles, and impressive serial or parallel integration for modulating the voltage or capacitance. Therefore, our proposed strategy of simplified construction of MSCs will pave the ways for utilizing graphene and analogous pseudocapactive nanosheets in high-performance MSCs.展开更多
Flexible micro-scale energy storage devices as the key component to power the flexible miniaturized electronic devices are attracting extensive attention. In this study, interdigitated asymmetric all-solidstate flexib...Flexible micro-scale energy storage devices as the key component to power the flexible miniaturized electronic devices are attracting extensive attention. In this study, interdigitated asymmetric all-solidstate flexible micro-supercapacitors(MSCs) were fabricated by a simple pencil drawing process followed by electrodepositing MnO_2 on one of the as-drawn graphite electrode as anode and the other as cathode.The as-prepared electrodes showed high areal specific capacitance of 220 μF/cm^2 at 2.5 μA/cm^2. The energy density and the corresponding power density of the resultant asymmetrical flexible MSCs were up to 110 μWh/cm^2 and 1.2 μW/cm^2, respectively. Furthermore, excellent cycling performance(91% retention of capacity after 1000 cycles) was achieved. The resultant devices also exhibited good electrochemical stability under bending conditions, demonstrating superior flexibility. This study provides a simple yet efficient methodology for designing and fabricating flexible supercapacitors applicable for portable and wearable electronics.展开更多
Biomass carbon and small redox biomolecules are attractive materials for green,sustainable energy storage devices owing to their environmentally friendly,low-cost,scalable,and novel sources.However,most devices manufa...Biomass carbon and small redox biomolecules are attractive materials for green,sustainable energy storage devices owing to their environmentally friendly,low-cost,scalable,and novel sources.However,most devices manufactured using these materials have low specific capacitance,poor cycle stability,short lifetime,complexity,and low precision of device fabrication.Herein,we report the directed self-assembly of mononuclear anthraquinone(MAQ)derivatives and porous lignin-based graphene oxide(PLGO)into a renewable colloidal gel through noncovalent interactions.These self-assembled gel electrode materials exhibited high capacitance(484.8 F g^(−1) at a current density of 1 A g^(−1))and could be further printed as flexible micro-supercapacitors(FMSCs)with arbitrary patterns and a relatively high resolution on specific substrates.The FMSCs exhibited excellent areal capacitance(43.6 mF cm^(−2)),energy and power densities(6.1μWh cm^(−2) and 50μW cm^(−2),respectively),and cycle stability(>10,000 cycles).Furthermore,the printed FMSCs and integrated FMSC arrays exhibited remarkable flexibility while maintaining a stable capacitance.The proposed approach can be applied to other quinone biomolecules and biomass-based carbon materials.This study provides a basis for fabricating green and sustainable energy storage device architectures with high capacitance,long-term cycling,high scalability,and high precision.展开更多
Graphene-based electrodes with rational structural design have shown extraordinary prospect for en-hanced electrical double-layer capacitance of micro-supercapacitors(MSCs).Herein,a facile fabrication method for flexi...Graphene-based electrodes with rational structural design have shown extraordinary prospect for en-hanced electrical double-layer capacitance of micro-supercapacitors(MSCs).Herein,a facile fabrication method for flexible planar MSCs based on hierarchical graphene was demonstrated by using a laser-treated membrane for electrode patterning,complemented with hierarchical electrode configuration tak-ing full advantages of size-determined functional graphene.The in-plane interdigital shape of MSCs was defined through vacuum filtration with the assistance of the functionalized polypropylene(PP)mem-brane.The hierarchical graphene films were built by macroscopic assembly based on size effect of differ-ent lateral sized graphene sheets(rGO-LSL).The sample of MSCs based on rGO-L SL(MSCs-LSL)exhibited excellent volumetric capacitance of 6.7 F cm^(−3) and high energy density of 0.37 mWh cm−3.The MSCs-LSL presented superb flexibility and cycling stability with no capacitance deteroriated after 2000 cycles.This newly developed fabrication strategy is of good scalability and designability to manufacture flexible elec-trode for MSCs with customized shapes,while the construction of hierarchical graphene can enlighten the structural design of analogous two-dimensional materials for potential advanced electronics.展开更多
Due to the rapid development of portable,wearable and implantable electronics in the fields of mobile communications,biomonitoring,and aerospace or defense,there is an increasing demand for miniaturized and lightweigh...Due to the rapid development of portable,wearable and implantable electronics in the fields of mobile communications,biomonitoring,and aerospace or defense,there is an increasing demand for miniaturized and lightweight energy storage devices.Micro-supercapacitors(MSCs)possessing long lifetime,high power density,environment friendliness and safety,have attracted great attention recently.Since the performance of the MSCs is mainly related to the structure of the active electrode,there is a great need to explore the efficient fabricating strategies to deterministically coordinate the structure and functionality of microdevices.Considering that laser technology possesses many superior features of facility,high-precision,low-cost,high-efficiency,shape-adaptability and maneuverability,herein we summarize the development of laser technologies in MSCs manufacturing,along with their strengths and weaknesses.The current achievements and challenges are also highlighted and discussed,aiming to provide a valuable reference for the rational design and manufacture of MSCs in the future.展开更多
基金supported by the National Natural Science Foundation of China(52174247,52477213,52401244 and 22302066)Science and Technology Innovation Program of Hunan Province(No.2022RC1088)+2 种基金Natural Science Foundation of Hunan Province(2023JJ40255)Zhejiang Provincial Natural Science Foundation of China(No.LQ24B020005)Scientific Research Foundation of Hunan Provincial Education Department(22B0599 and 23A0442).
文摘3D-printed Ti_(3)C_(2)T_(x) MXene-based interdigital micro-supercapacitors(MSCs)have great potential as energy supply devices in the field of microelectronics due to their short ion diffusion path,high conductivity,excellent pseudocapacitance,and fast charging capabilities.However,searching for eco-friendly aqueous Ti_(3)C_(2)T_(x) MXene-based inks without additives and preventing severe restack of MXene nanosheets in high-concentration inks are significantly challenging.This study develops an additive-free,highly printable,viscosity adjustable,and environmentally friendly MXene/carbon nanotube(CNT)hybrid aqueous inks,in which the CNT can not only adjust the viscosity of Ti_(3)C_(2)T_(x) MXene inks but also widen the interlayer spacing of adjacent Ti_(3)C_(2)T_(x) MXene nanosheets effectively.The optimized MXene/CNT composite inks are successfully adopted to construct various configurations of MSCs with remarkable shape fidelity and geometric accuracy,together with enhanced surface area accessibility for electrons and ions diffusion.As a result,the constructed interdigital symmetrical MSCs demonstrate outstanding areal capacitance(1249.3 mF cm^(-2)),superior energy density(111μWh cm^(-2) at 0.4mWcm^(-2)),and high power density(8mWcm^(-2) at 47.1μWh cm^(-2)).Furthermore,a self-powered modular system of solar cells integrated with MXene/CNT-MSCs and pressure sensors is successfully tailored,simultaneously achieving efficient solar energy collection and real-time human activities monitoring.This work offers insight into the understanding of the role of CNTs in MXene/CNT ink.Moreover,it provides a new approach for preparing environmentally friendly MXene-based inks for the 3D printing of high-performance MSCs,contributing to the development of miniaturized,flexible,and self-powered printable electronic microsystems.
基金supported by the Shanxi Province Central Guidance Fund for Local Science and Technology Development Project(YDZJSX2024D030)the National Natural Science Foundation of China(22075197,22278290)+2 种基金the Shanxi Province Key Research and Development Program Project(2021020660301013)the Shanxi Provincial Natural Science Foundation of China(202103021224079)the Research and Development Project of Key Core and Common Technology of Shanxi Province(20201102018).
文摘The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.
基金financially supported by National Natural Science Foundation of China(Nos.U22A20193 and 51975218)Fundamental Research Funds for the Central Universities(No.2022ZYGXZR101)
文摘Printed micro-supercapacitors(MSCs)have shown broad prospect in flexible and wearable electronics.Most of previous studies focused on printing the electrochemically active materials paying less attention to other key components like current collectors and electrolytes.This study presents an allprinting strategy to fabricate in-plane flexible and substrate-free MSCs with hierarchical encapsulation.This new type of“all-in-one”MSC is constructed by encapsulating the in-plane interdigital current collectors and electrodes within the polyvinyl-alcohol-based hydrogel electrolyte via sequential printing.The bottom electrolyte layer of this fully printed MSCs helps protect the device from the limitation of conventional substrate,showing excellent flexibility.The MSCs maintain a high capacitance retention of 96.84%even in a completely folded state.An optimal electrochemical performance can be achieved by providing ample and shorter transport paths for ions.The MSCs using commercial activated carbon as the active material are endowed with a high specific areal capacitance of 1892.90 mF cm^(-2)at a current density of 0.3 mA cm^(-2),and an outstanding volumetric energy density of 9.20 mWh cm^(-3)at a volumetric power density of 6.89 mW cm^(-3).For demonstration,a thermo-hygrometer is stably powered by five MSCs which are connected in series and wrapped onto a glass rod.This low-cost and versatile all-printing strategy is believed to diversify the application fields of MSCs with high capacitance and excellent flexibility.
基金financially supported by the National Natural Science Foundation of China (Grants. 22075279, 22279137, 22125903, 22109040)National Key R&D Program of China (Grant 2022YFA1504100)+2 种基金Dalian Innovation Support Plan for High Level Talents (2019RT09)Dalian National Labo- ratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL202016, DNL202019), DICP (DICP I2020032)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021002, YLU- DNL Fund 2021009)。
文摘Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.
基金supported by the National Natural Science Foundation of China(Nos.22109040,22125903,22279137)Top-Notch Talent Program of Henan Agricultural University(No.30500947)+5 种基金the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA21000000)DICP(No.DICP I202032)Dalian National Laboratory for Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(Nos.DNL202016,DNL202019)International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(No.YJ20210311)China Postdoctoral Science Foundation(No.2021M703145)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(Nos.YLU-DNL Fund 2021002,YLU-DNL Fund 2021009)。
文摘Two-dimensional(2D)mesoporous pseudocapacitive polymer/graphene heterostructures combine the advanced merits of 2D materials and mesoporous materials,possessing unique nanosheet structure,large specific surface area(SSA),abundant oxygen/nitrogen-containing groups,desirable electrical conductivity and admirable electrochemical redox activity,and hold great potential for constructing high-performance planar micro-supercapacitors(MSCs).Herein,we demonstrate the interfacial assembly of 2D mesoporous polydopamine/graphene(mPDG)heterostructures with well-defined mesopore structure(12 nm)and adjustable thickness(7.5–14.1 nm)for planar high-energy pseudocapacitive MSCs.Attributed to medium thickness,exposed mesopore of 12 nm and large SSA of 108 m^(2)/g,the m PDG with 10.8 nm thickness reveals prominent mass capacitance of 419 F/g and impressive cycling stability with~96%capacitance retention after 5000 cycles.Furthermore,the symmetric mPDG-based MSCs with“water-in-salt”gel electrolyte present wide voltage window of 1.6 V,superior volumetric energy density of 11.5 mWh/cm^(3),outstanding flexibility and self-integration ability.Therefore,this work offers a new platform of controllably synthesizing 2D mesoporous heterostructures for high-performance MSCs.
基金supported by National Natural Science Foundation of China(Grant Nos.11274308 and 21401202)
文摘By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%). A small amount of commercial pen ink was added to effectively reduce the agglomeration of theGO sheets during solvent evaporation and the following reduction processes in which the presence of graphite carbon nanoparticles served as nano-spacer to separate GO sheets. The printed device fabricated using the hybrid ink,combined with the binder-free microelectrodes and interdigital microelectrode configuration, exhibits nearly 780%enhancement in areal capacitance compared with that of pure GO ink. It also shows excellent flexibility and cycling stability with nearly 100% retention of the areal capacitance after 10,000 cycles. The all-solid-state device can be optionally connected in series or in parallel to meet the voltage and capacity requirements for a given application.This work demonstrates a promising future of the carbonbased hybrid ink for directly large-scale inkjet printing MSCs for disposable energy storage devices.
基金financially supported by the National Key R@D Program of China (2016YFB0100100, 2016YFA0200200)the National Natural Science Foundation of China (51872283,22075279, 21805273, 22005297, 22005298)+7 种基金the Liao Ning Revitalization Talents Program (XLYC1807153)the Central Government of Liaoning Province Guides The Funds for Local Science and Technology Development (2021JH6/10500112)the Dalian Innovation Support Plan for High Level Talents (2019RT09)the Dalian National Laboratory For Clean Energy (DNL),CASDNL Cooperation Fund,CAS (DNL201912, DNL201915, DNL202016, DNL202019)DICP (DICP ZZBS201708, DICP ZZBS201802, DICP I2020032)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021002)the China Postdoctoral Science Foundation (2019 M661141, 2020 M680995)。
文摘With the rapid development of integrated and miniaturized electronics,the planar energy storage devices with high capacitance and energy density are in enormous demand.Hence,the advanced manufacture and fast fabrication of microscale planar energy units are of great significance.Herein,we develop aqueous planar micro-supercapacitors(MSCs) with ultrahigh areal capacitance and energy density via an efficient all-3 D-printing strategy,which can directly extrude the active material ink and gel electrolyte onto the substrate to prepare electrochemical energy storage devices.Both the printed active carbon/exfoliated graphene(AC/EG) electrode ink and electrolyte gel are highly processable with outstanding conductivity(~97 S cm^(-1) of electrode;-34.8 mS cm^(-1) of electrolyte),thus benefiting the corresponding shaping and electrochemical performances.Furthermore,the 3 D-printed symmetric MSCs can be operated stably at a high voltage up to 2.0 V in water-in-salt gel electrolyte,displaying ultrahigh areal capacitance of2381 mF cm^(-2) and exceptional energy density of 331 μWh cm^(-2),superior to previous printed micro energy units.In addition,we can further tailor the integrated 3 D-printed MSCs in parallel and series with various voltage and current outputs,enabling metal-free interconnection.Therefore,our all-3 D-printed MSCs place a great potential in developing high-power micro-electronics fabrication and integration.
基金This work was financially supported by the Natural Science Foundation of China(Grant No.51773062,61831021,51872283,21805273,22075279,22005297,22005298)the China Postdoctoral Science Foundation(Project No.2019M661421)+9 种基金the National Key R@D Program of China(Grants 2016YBF0100100,2016YFA0200200)the Liaoning BaiQianWan Talents Program,Liaoning Revitalization Talents Program(Grant XLYC1807153)the Natural Science Foundation of Liaoning Province,Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science(Grant 20180510038)the Dalian Innovation Support Plan for High Level Talents(2019RT09)DICP(DICP ZZBS201708,DICP ZZBS201802,and DICP 1202032)the DICP&QIBEBT(Grant DICP&QjBEBT UN201702)the Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL180310,DNL180308,DNL201912,and DNL201915)We thank Yucen Li and Prof.Ming Hu(East China Normal University,China)for the kind help in nitrogen absorption-desorption isotherms measurementalso thank the Material structure analysis center and Multifunctional Platform for Innovation of East China Normal University(003,004,006)the Center for Advanced Electronic Materials and Devices(AEMD)of Shanghai Jiao Tong University.
文摘Rational design and precise regulation over the morphology, structure, and pore size of functional conducting mesoporous polymers with enriched active sites and shorten electron–ion transport pathway are extremely important for developing high-performance micro-supercapacitors (MSCs), but still remain a great challenge. Herein, a general dual-colloid interface co-assembly strategy is proposed to fabricate hollow mesoporous polypyrrole nano-bowls (mPPy-nbs) for high-energy-density solid-state planar MSCs. By simply adjusting the size of block copolymer micelles, the diameter of polystyrene nanospheres and the amount of pyrrole monomer, mesopore size of the shell, void and shell thickness of mPPy-nbs can be simultaneously controlled. Importantly, this strategy can be further utilized to synthesize other hollow mesoporous polymers, including poly(tris(4-aminophenyl)amine), poly(1,3,5-triaminobenzene) and their copolymers, demonstrative of excellent universality. The structurally optimized mPPy-nb exhibits high specific surface area of 122 m^(2) g^(−1)and large capacitance of 225 F g^(−1) at 1 mV s^(−1). Furthermore, the MSCs assembled by mPPy-nbs deliver impressive volumetric capacitance of 90 F cm^(−3) and energy density of 2.0 mWh cm^(−3), superior to the most reported polymers-based MSCs. Also, the fabricated MSCs present excellent flexibility with almost no capacitance decay under varying bending states, and robust serial/parallel self-integration for boosting voltage and capacitance output. Therefore, this work will inspire the new design of mesoporous conducting polymer materials toward high-performance microscale supercapacitive devices.
基金financially supported by the National Key R&D Program of China (Grants 2016YFB0100100, 2016YFA0200200)the National Natural Science Foundation of China (Grants 51702078, 51572259, and 51872283)+4 种基金Natural Science Foundation of Liaoning ProvinceJoint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (Grant 20180510038)Liao Ning Revitalization Talents Program (Grant XLYC1807153), DICP (DICP ZZBS201708, DICP ZZBS201802)DICP&QIBEBT (Grant DICP&QIBEBT UN201702)Dalian National Laboratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL180310, DNL180308, DNL201912, and DNL201915)。
文摘Microscale electrochemical energy storage devices,e.g., micro-supercapacitors(MSCs),possessing tailored performance and diversified form factors of lightweight,miniaturization,flexibility and exceptional integration are highly necessary for the smart power sources-unitized electronics.Despite the great progress,the fabrication of MSCs combining high integration with high volumetric performance remains largely unsolved.Herein,we develop a simple,fast and scalable strategy to fabricate graphene based highly integrated MSCs by a new effective continuous centrifugal coating technique.Notably,the resulting highly conductive graphene films can act as not only patterned microelectrodes but also metal-free current collectors and interconnects,endowing modular MSCs with high integrity,remarkable flexibility,tailored voltage and capacitance output,and outstanding performance uniformity.More importantly,the strong centrifugal force and shear force generated in continuous centrifugal coating process lead to graphene films with high alignment,compactness and packing density,contributing to excellent volumetric capacitance of ~31.8 F cm^(-3) and volumetric energy density of ~2.8 mWh cm^(-3),exceeding most reported integrated MSCs.Therefore,our work paves a novel way for simple and scalable fabrication of integrated MSCs and offers promising opportunities as standalone microscale power sources for new-generation electronics.
基金financially supported by the Natural Science Basic Research Plan in Shaanxi Province of China (2019ZDLGY1602)the Youth Science and Technology Nova Program of Shaanxi Province (2020KJXX-068)+8 种基金the Fundamental Research Funds for the Central Universities (JBF201101)the National Key R@D Program of China (2016YFA0200200)the National Natural Science Foundation of China (22125903, 51872283, 22075279, 21805273, 22109160)the Liao Ning Revitalization Talents Program (XLYC1807153)the Liaoning Bai Qian Wan Talents Program, Dalian Innovation Support Plan for High Level Talents (2019RT09)the Dalian National Laboratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL201912, DNL201915, DNL202016, DNL202019)DICP (DICP ZZBS201708, DICP ZZBS201802, DICP I2020032)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021002, 2021009)the China Postdoctoral Science Foundation (2021M693126, 2021M693127, 2019M661141, 2020M680995)。
文摘Harnessing energy from the environment promotes the rapid development of micro-power generators and relevant power management modules of alternating current (AC) line-filtering to obtain a stabilized direct current (DC) output for storage and use. Micro-supercapacitors (MSCs) with miniaturized volume and high-frequency response are regarded as a critical component in filtering circuits for microscale power conversion. Here, we reported the fabrication of the wafer-sized planar MSCs (M-MSCs) based on 2D Ti_(2)C_(2)T_(6) MXene using a photolithography technique. The M-MSCs exhibited an areal capacitance of 153 μF cm^(-2) and a frequency characteristic (f_(0)) of 5.6 k Hz in aqueous electrolyte. Moreover, by employing suitable ionic liquid as electrolyte, the voltage window was expanded to 2 V and the f_(0) could be pushed to 6.6 k Hz relying on the electrical double-layer mechanism and lower adsorption energy while maintaining quasi-rectangular cyclic voltammogram curves at 5000 V s^(-1). Furthermore, the integrated MSCs pack was constructed and exhibited excellent rectifying ability by filtering various highfrequency 5000 Hz AC signals with different waveforms into stable DC outputs. Such ultrahigh-rate and high-voltage M-MSCs module for k Hz AC line-filtering would be potentially integrated with customizable electronics to realize on-chip rectifiers in high-density integrated circuit.
基金the National Natural Science Foundation of China,China (Grant Nos.22125903,51872283,22109040)the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA21000000)+4 种基金the Dalian Innovation Support Plan for High Level Talents,China (2019RT09)DICP,China (DICP I202032)the Dalian National Laboratory For Clean Energy (DNL),CAS,DNL Cooperation Fund,CAS,China (DNL202016,DNL202019)the Top-Notch Talent Program of Henan Agricultural University,China (30500947)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy,China (YLU-DNL Fund 2021002,YLU-DNL Fund 2021009)。
文摘The popularization of portable,implantable and wearable microelectronics has greatly stimulated the rapid development of high-power planar micro-supercapacitors(PMSCs).Particularly,the introduction of new functionalities(e.g.,high voltage,flexibility,stretchability,self-healing,electrochromism and photo/thermal response)to PMSCs is essential for building multifunctional PMSCs and their smart selfpowered integrated microsystems.In this review,we summarized the latest advances in PMSCs from various functional microdevices to their smart integrated microsystems.Primarily,the functionalities of PMSCs are characterized by three major factors to emphasize their electrochemical behavior and unique scope of application.These include but are not limited to high-voltage outputs(realized through asymmetric configuration,novel electrolyte and modular integration),mechanical resilience that includes various feats of flexibility or stretchability,and response to stimuli(self-healing,electrochromic,photo-responsive,or thermal-responsive properties).Furthermore,three representative integrated microsystems including energy harvester-PMSC,PMSC-energy consumption,and all-in-one selfpowered microsystems are elaborately overviewed to understand the emerging intelligent interaction models.Finally,the key perspectives,challenges and opportunities of PMSCs for powering smart microelectronics are proposed in brief.
基金financially supported by the National Natural Science Foundation of China(22125903,51872283,22109160,22005297)the Dalian Innovation Support Plan for High Level Talents(2019RT09)+6 种基金the The Joint Fund of the Yulin University and the Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL201912,DNL201915,DNL202016,DNL202019),DICP(DICP ZZBS201802,DICP I2020032)The Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021002,YLU-DNL Fund 2021009)the China Postdoctoral Science Foundation(2021M693126,2020M680995,2021M703145,2021M693127)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(YJ20210311)the Plan for promoting innovative talents of Education Department of Liaoning Province(LCR2018015)the Shenyang Youth Science and Technology Project(RC200444)the Natural Science Foundation of Liaoning Province(2021-MS-234)。
文摘Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes lead to low energy density and limited environmental adaption.Herein,we report the construction of low-temperature and high-energy-density MSCs based on anti-freezing hybrid gel electrolytes(HGE)through introducing ethylene glycol(EG)additives into aqueous LiCl electrolyte.Since EG partially destroys hydrogen bond network among water molecules,the HGE exhibits maximum electrochemical stability window of 2.7 V and superior anti-freezing features with a glass transition temperature of-62.8℃.Further,the optimized MSCs using activated carbon microelectrodes possess impressive volumetric capacitance of 28.9 F cm^(-3)and energy density of 10.3 mWh cm^(-3)in the voltage of 1.6 V,2.6 times higher than MSCs tested in 1.2 V.Importantly,the MSCs display 68.3%capacitance retention even at-30℃ compared to the value at 25℃,and ultra-long cyclability with 85.7%of initial capacitance after 15,000 times,indicating extraordinary low-temperature performance.Besides,our devices offer favorable flexibility and modular integration.Therefore,this work provides a general strategy of realizing flexible,safe and anti-freezing microscale power sources,holding great potential towards subzero-temperature microelectronic applications.
基金financially supported by the National Key Basic Research Program of China(No.2014CB932400)the National Nature Science Foundation of China Nos.51607102,51578310)+2 种基金China Postdoctoral Science Foundation(No.2016M601017)Guangdong Province Science and Technology Department(Nos.2014B090915002,2014A010105002,2015A030306010)Natural Science Foundation of Guangdong Province(No.2017A030313279)
文摘Micro-supercapacitors with excellent electrochemical performance and aesthetic property are realized using the carbon nanotubes/manganese dioxide nanosheets(CNTs/δ-MnO2) composite as electrodes.This CNTs/d-MnO2 nanocomposite is excellently compatible with the slurry dispensing process for electrode fabrication, and thus is conducive for preparing thick electrode films, which exhibits a specific capacitance of 257 F/g with an electrode thickness of 13μm. By involving laser-scribing technique, the electrode film can be patterned with a high resolution and fabricated into a planar micro-supercapacitor,showing the maximum energy density of 6.83 mWh/cm^3 at the power density of 154.3 mW/cm^3, and maintained a value of 2.71 mWh/cm^3 at the maximum power density of 2557.5 mW/cm^3. Considering the versatility of the laser-scribing technical platform, the micro-supercapacitors fabricated in this way exhibit excellent aesthetic property and can cater to various miniaturized wearable electronic applications. This technology opens up opportunities for facile and scalable fabrication of high performance energy devices with shape diversity and a meaning of art.
基金the Deanship of Scientific Research at King Saud University KSA for its funding of this research through the Research Group(Project No.RGP-283)
文摘Vanadium nitride (VN) was deposited by DC-sputtering on a vertically aligned carbon nanotube (CNTs) template for the purpose of nano-structuration. This led to the fabrication of hierarchically composite electrodes consisting of porous and nanostructured VN grown on vertically aligned CNTs in a nano-treelike configuration for micro-supercapacitor application. The electrodes show excellent performance with an areal capacitance as high as 37.5 mF cm^-2 at a scan rate of 2 mV s^-1 in a 0.5 M K2504 mild electrolyte solution. Furthermore, the capacitance decay was only 15% after 20,000 consecutive cycles. Moreover, the capacitance was found to increase with VN deposit thickness. The X-ray photoelectron spectroscopy analyses of the electrodes before and after cycling suggest that the oxide layers that form at the VN surface is the responsible for the redox energy storage in this material. Such electrodes can compete with other transition metal nitride based electrodes for micro-supercapacitors.
基金financially supported by the National Natural Science Foundation of China(Nos.51706016,51506014)the China Postdoctoral Science Foundation(No.2017T100677)
文摘We report a simple method for fabricating all-solid-state micro-supercapacitors, utilizing laser writing technology. Porous graphene films with three-dimensional networks induced by laser from commercial polymer was acted as scaffold for loading MnO2, a typical pseudocapacitive materials. Using gel electrolyte, all-solid-state pseudocapacitive micro-supercapacitors were fabricated. Compare to traditional printing and lithography techniques produced micro-supercapacitors, the as-fabricated devices demonstrate high volumetric capacitances, good stability and low leakage current, indicating a scalable and facile approach for future energy storage devices in portable microelectronics.
基金the financial support from the National Natural Science Foundation of China(No.51572259)National Key R&D Program of China(Nos.2016YBF0100100 and2016YFA0200200)+2 种基金Thousand Youth Talents Plan of China,Natural Science Foundation of Liaoning Province(No.201602737)DICP(No.Y5610121T3)China Postdoctoral Science Foundation(Nos.2016M601348 and 2016M601349)
文摘All-solid-state micro-supercapacitors are acknowledged as a very promising class of microscale energy storage devices for directly integrating portable and wearable electronics. However, the improvement of electrochemical performance from materials to devices still remains tremendous challenges. Here, we demonstrate a novel and universal mask-assisted filtration technology for the simplified fabrication of all-solid-state planar micro-supercapacitors(MSCs) based on interdigital patterns of 2D pseudocapacitive MnO2 nanosheets and electrochemically exfoliated graphene film as both electrode and current collector, and polyvinyl alcohol/Li Cl gel as electrolyte. Remarkably, the resulting MSCs exhibit outstanding areal capacitance of ~355 m F/cm^2, which is among the highest values reported in the state-of-the-art MSCs. Meanwhile, MSCs possess exceptionally mechanical flexibility as high as ~92% of initial capacitance even at a highly bending angle of 180°, excellent cyclability with a capacitance retention of 95% after 3000 cycles, and impressive serial or parallel integration for modulating the voltage or capacitance. Therefore, our proposed strategy of simplified construction of MSCs will pave the ways for utilizing graphene and analogous pseudocapactive nanosheets in high-performance MSCs.
基金financial support from the National Key Basic Research Program of China(Nos.2014CB648300,2017YFB0404501)the National Natural Science Foundation of China(Nos.21422402,21674050)+7 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20140060,BK20140865,BM2012010)Program for Jiangsu Specially-Appointed Professors(No.RK030STP15001)the NUPT“1311 Project”and Scientific Foundation(Nos.NY213119,NY213169)the Leading Talent of Technological Innovation of National Ten-Thousands Talents Program of Chinathe Excellent Scientific and Technological Innovative Teams of Jiangsu Higher Education Institutions(No.TJ217038)the Synergetic Innovation Center for Organic Electronics and Information Displaysthe Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the 333 Project of Jiangsu Province(Nos.BRA2017402,BRA2015374)
文摘Flexible micro-scale energy storage devices as the key component to power the flexible miniaturized electronic devices are attracting extensive attention. In this study, interdigitated asymmetric all-solidstate flexible micro-supercapacitors(MSCs) were fabricated by a simple pencil drawing process followed by electrodepositing MnO_2 on one of the as-drawn graphite electrode as anode and the other as cathode.The as-prepared electrodes showed high areal specific capacitance of 220 μF/cm^2 at 2.5 μA/cm^2. The energy density and the corresponding power density of the resultant asymmetrical flexible MSCs were up to 110 μWh/cm^2 and 1.2 μW/cm^2, respectively. Furthermore, excellent cycling performance(91% retention of capacity after 1000 cycles) was achieved. The resultant devices also exhibited good electrochemical stability under bending conditions, demonstrating superior flexibility. This study provides a simple yet efficient methodology for designing and fabricating flexible supercapacitors applicable for portable and wearable electronics.
基金supported by the National Natural Science Foundation of China(Grant Nos.21905069 and U21A20307)the Shenzhen Science and Technology Innovation Committee(Grant Nos.ZDSYS20190902093220279,KQTD20170809110344233,GXWD20201230155427003-20200821181245001,GXWD20201230155427003-20200821181809001,and ZX20200151)+1 种基金the Department of Science and Technology of Guangdong Province(Grant No.2020A1515110879)University Stable Support Foundation of Shenzhen(Grant No.GXWD20201230155427003-20200821181809001).
文摘Biomass carbon and small redox biomolecules are attractive materials for green,sustainable energy storage devices owing to their environmentally friendly,low-cost,scalable,and novel sources.However,most devices manufactured using these materials have low specific capacitance,poor cycle stability,short lifetime,complexity,and low precision of device fabrication.Herein,we report the directed self-assembly of mononuclear anthraquinone(MAQ)derivatives and porous lignin-based graphene oxide(PLGO)into a renewable colloidal gel through noncovalent interactions.These self-assembled gel electrode materials exhibited high capacitance(484.8 F g^(−1) at a current density of 1 A g^(−1))and could be further printed as flexible micro-supercapacitors(FMSCs)with arbitrary patterns and a relatively high resolution on specific substrates.The FMSCs exhibited excellent areal capacitance(43.6 mF cm^(−2)),energy and power densities(6.1μWh cm^(−2) and 50μW cm^(−2),respectively),and cycle stability(>10,000 cycles).Furthermore,the printed FMSCs and integrated FMSC arrays exhibited remarkable flexibility while maintaining a stable capacitance.The proposed approach can be applied to other quinone biomolecules and biomass-based carbon materials.This study provides a basis for fabricating green and sustainable energy storage device architectures with high capacitance,long-term cycling,high scalability,and high precision.
基金financially supported by the National Natural Science Foundation of China (No.51975218 and U22A20193)the Natural Science Foundation of Guangdong Province (No.2021A1515010642)+2 种基金the Science and Technology Planning Project of Guangdong Province (No.2021A0505110002)the Fundamental Research Funds for the Central Universities (No.2022ZYGXZR101)the S&T Innovation Projects of Zhuhai City (No.ZH01110405180034PWC).
文摘Graphene-based electrodes with rational structural design have shown extraordinary prospect for en-hanced electrical double-layer capacitance of micro-supercapacitors(MSCs).Herein,a facile fabrication method for flexible planar MSCs based on hierarchical graphene was demonstrated by using a laser-treated membrane for electrode patterning,complemented with hierarchical electrode configuration tak-ing full advantages of size-determined functional graphene.The in-plane interdigital shape of MSCs was defined through vacuum filtration with the assistance of the functionalized polypropylene(PP)mem-brane.The hierarchical graphene films were built by macroscopic assembly based on size effect of differ-ent lateral sized graphene sheets(rGO-LSL).The sample of MSCs based on rGO-L SL(MSCs-LSL)exhibited excellent volumetric capacitance of 6.7 F cm^(−3) and high energy density of 0.37 mWh cm−3.The MSCs-LSL presented superb flexibility and cycling stability with no capacitance deteroriated after 2000 cycles.This newly developed fabrication strategy is of good scalability and designability to manufacture flexible elec-trode for MSCs with customized shapes,while the construction of hierarchical graphene can enlighten the structural design of analogous two-dimensional materials for potential advanced electronics.
基金supported by the National Key R&D Program of China(2017YFB1104300)NSFC(22075019,21604003)+1 种基金the Beijing Natural Science Foundation(2152028,2164070)the Beijing Municipal Science and Technology Commission(Z161100002116022)。
文摘Due to the rapid development of portable,wearable and implantable electronics in the fields of mobile communications,biomonitoring,and aerospace or defense,there is an increasing demand for miniaturized and lightweight energy storage devices.Micro-supercapacitors(MSCs)possessing long lifetime,high power density,environment friendliness and safety,have attracted great attention recently.Since the performance of the MSCs is mainly related to the structure of the active electrode,there is a great need to explore the efficient fabricating strategies to deterministically coordinate the structure and functionality of microdevices.Considering that laser technology possesses many superior features of facility,high-precision,low-cost,high-efficiency,shape-adaptability and maneuverability,herein we summarize the development of laser technologies in MSCs manufacturing,along with their strengths and weaknesses.The current achievements and challenges are also highlighted and discussed,aiming to provide a valuable reference for the rational design and manufacture of MSCs in the future.