Titanium-silicon(Ti-Si)alloy system shows significant potential for aerospace and automotive applications due to its superior specific strength,creep resistance,and oxidation resistance.For Si-containing Ti alloys,the...Titanium-silicon(Ti-Si)alloy system shows significant potential for aerospace and automotive applications due to its superior specific strength,creep resistance,and oxidation resistance.For Si-containing Ti alloys,the sufficient content of Si is critical for achieving these favorable performances,while excessive Si addition will result in mechanical brittleness.Herein,both physical experiments and finite element(FE)simulations are employed to investigate the micro-mechanisms of Si alloying in tailoring the mechanical properties of Ti alloys.Four typical states of Si-containing Ti alloys(solid solution state,hypoeutectoid state,near-eutectoid state,hypereutectoid state)with varying Si content(0.3-1.2 wt.%)were fabricated via in-situ alloying spark plasma sintering.Experimental results indicate that in-situ alloying of 0.6 wt.%Si enhances the alloy’s strength and ductility simultaneously due to the formation of fine and uniformly dispersed Ti_(5)Si_(3)particles,while higher content of Si(0.9 and 1.2 wt.%)results in coarser primary Ti_(5)Si_(3)agglomerations,deteriorating the ductility.FE simulations support these findings,highlighting the finer and more uniformly distributed Ti_(5)Si_(3)particles contribute to less stress concentration and promote uniform deformation across the matrix,while agglomerated Ti_(5)Si_(3)particles result in increased local stress concentrations,leading to higher chances of particle fracture and reduced ductility.This study not only elucidates the micro-mechanisms of in-situ Si alloying for tailoring the mechanical properties of Ti alloys but also aids in optimizing the design of high-performance Si-containing Ti alloys.展开更多
This study conducted the experimental investigation of aerodynamic heating of Micro-scale Rotational Shearing Flow with Axial Limited-Length(MRSFALL).The temperature riseof the stator is captured by the high response ...This study conducted the experimental investigation of aerodynamic heating of Micro-scale Rotational Shearing Flow with Axial Limited-Length(MRSFALL).The temperature riseof the stator is captured by the high response thermocouples.The eccentricity ratio and clearanceheight are guaranteed by means of instantaneous trajectory and torsion monitoring of the rotator.The result shows that the maximum temperature rise takes place upstream of the minimum clear-ance height along circumferential direction.The distribution of temperature rise presents asymmet-ric curve along axial direction,and peak value occurs near the dimensionless axial position of-0.18.The effect of aerodynamic heating becomes notable as the rotational speed is larger than3×10^(4)r/min.The effect of end leakage and the viscous dissipation have great impact on temper-ature rise of MRSFALL.More specially,the peak value of temperature rise at dimensionless clear-ance height of 0.0080 is larger than the case at dimensionless clearance height of 0.0044.Furthermore,when the eccentricity ratio is too large,the viscous dissipation is induced,and theadditional temperature rise is achieved.The heat flux identification of shear flow has been realizedby Sequential Function Specification Method(SFSM)and its estimation of thermal load has been given.The heat flux induced by the aerodynamic heating in this study varies from 950 W/m^(2)to1330 W/m^(2).展开更多
Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic...Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic chemicals.Sustainable stabilization technique such as microbially induced calcite precipitation(MICP)utilizes bacterial metabolic processes to precipitate cementitious calcium carbonate.The reactive transport of biochemical species in the soil mass initiates the precipitation of biocement during the MICP process.The precipitated biocement alters the hydro-mechanical performance of the soil mass.Usually,the flow,deformation,and transport phenomena regulate the biocementation technique via coupled bio-chemo-hydro-mechanical(BCHM)processes.Among all,one crucial phenomenon controlling the precipitation mechanism is the encapsulation of biomass by calcium carbonate.Biomass encapsulation can potentially reduce the biochemical reaction rate and decelerate biocementation.Laboratory examination of the encapsulation process demands a thorough analysis of associated coupled effects.Despite this,a numerical model can assist in capturing the coupled processes influencing encapsulation during the MICP treatment.However,most numerical models did not consider biochemical reaction rate kinetics accounting for the influence of bacterial encapsulation.Given this,the current study developed a coupled BCHM model to evaluate the effect of encapsulation on the precipitated calcite content using a micro-scale semiempirical relationship.Firstly,the developed BCHM model was verified and validated using numerical and experimental observations of soil column tests.Later,the encapsulation phenomenon was investigated in the soil columns of variable maximum calcite crystal sizes.The results depict altered reaction rates due to the encapsulation phenomenon and an observable change in the precipitated calcite content for each maximum crystal size.Furthermore,the permeability and deformation of the soil mass were affected by the simultaneous precipitation of calcium carbonate.Overall,the present study comprehended the influence of the encapsulation of bacteria on cement morphology-induced permeability,biocement-induced stresses and displacements.展开更多
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ...Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.展开更多
This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysi...This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysis,software design analysis,and simulation analysis,all supported by data fusion technology.Hopefully,this analysis can provide some reference for the rational application of data fusion technology to meet the actual design and application requirements of the system.展开更多
With the progress of urbanization,urban landscape design has garnered increasing attention.Urban landscape design can not only reflect the construction level of a city but also has the functions of beautifying the urb...With the progress of urbanization,urban landscape design has garnered increasing attention.Urban landscape design can not only reflect the construction level of a city but also has the functions of beautifying the urban environment and enhancing the city image.Modern art enriches the expression forms of urban landscape design,and its integration with urban landscape design can greatly improve the urban landscape.This article elaborated on the connotations of modern art and urban landscape design and analyzed the application of modern art in urban landscape design.The application of modern art can help to achieve the goal of urban landscape design to the maximum extent.展开更多
A high-temperature and high-pressure valve is the key equipment of a wind tunnel system;it controls the generation of high-temperature and high-pressure gas.To reduce the adverse impact of high-temperature and high-pr...A high-temperature and high-pressure valve is the key equipment of a wind tunnel system;it controls the generation of high-temperature and high-pressure gas.To reduce the adverse impact of high-temperature and high-pressure gas on the strength of the valve body,a cooling structure is set on the valve seat.This can significantly reduce the temperature of the valve body and valve seat.The effects of its structure on the cooling characteristics and stress of the valve seat are studied,and six main parameters that can completely describe the geometry of the cooling structure are proposed.The central composite design method is used to select sample points,and the multi-objective genetic algorithm(MOGA)method is used for optimal structural design.A modification method according to the main parameters for the valve seat is proposed.The results show that the cooling structure weakens the pressure-bearing capability of the valve seat.Among the six main parameters of the valve seat,the distance from the end face of the lower hole to the Z-axis and the distance from the axis of the lower hole to the origin of the coordinates have the most obvious effects on the average stress of the valve seat.An optimum design value is proposed.This work can provide a reference for the design of high-temperature and high-pressure valves.展开更多
The security of the seed industry is crucial for ensuring national food security.Currently,developed countries in Europe and America,along with international seed industry giants,have entered the Breeding 4.0 era.This...The security of the seed industry is crucial for ensuring national food security.Currently,developed countries in Europe and America,along with international seed industry giants,have entered the Breeding 4.0 era.This era integrates biotechnology,artificial intelligence(AI),and big data information technology.In contrast,China is still in a transition period between stages 2.0 and 3.0,which primarily relies on conventional selection and molecular breeding.In the context of increasingly complex international situations,accurately identifying core issues in China's seed industry innovation and seizing the frontier of international seed technology are strategically important.These efforts are essential for ensuring food security and revitalizing the seed industry.This paper systematically analyzes the characteristics of crop breeding data from artificial selection to intelligent design breeding.It explores the applications and development trends of AI and big data in modern crop breeding from several key perspectives.These include highthroughput phenotype acquisition and analysis,multiomics big data database and management system construction,AI-based multiomics integrated analysis,and the development of intelligent breeding software tools based on biological big data and AI technology.Based on an in-depth analysis of the current status and challenges of China's seed industry technology development,we propose strategic goals and key tasks for China's new generation of AI and big data-driven intelligent design breeding.These suggestions aim to accelerate the development of an intelligent-driven crop breeding engineering system that features large-scale gene mining,efficient gene manipulation,engineered variety design,and systematized biobreeding.This study provides a theoretical basis and practical guidance for the development of China's seed industry technology.展开更多
Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as...Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as massive by-product,contribute to greenhouse effects and pose environmental challenges.Thus,the pursuit of nitrogen fixation through carbon–neutral pathways under benign conditions is a frontier of scientific topics,with the harnessing of solar energy emerging as an enticing and viable option.This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation,fields ripe with potential for innovation.The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers.Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures,rational element selection,and functional planning,state-of-the-art experimental protocols for understanding photo-fixation processes,valid photocatalytic activity evaluation,and the rational design of catalysts.Furthermore,the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation.It scrutinizes the existing challenges and prospects within this burgeoning domain,aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems.展开更多
In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its as...In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its associated users on its own bandwidth.We aim at maximizing the overall common throughput in a finite time period.Such a problem is a typical mixed integer nonlinear problem,which involves both continuous-variable and combinatorial optimizations.To efficiently solve this problem,we propose a two-layer algorithm,which separately tackles continuous-variable and combinatorial optimization.Specifically,in the inner layer given one user association scheme,subproblems of bandwidth allocation,power allocation and trajectory design are solved based on alternating optimization.In the outer layer,a small number of candidate user association schemes are generated from an initial scheme and the best solution can be determined by comparing all the candidate schemes.In particular,a clustering algorithm based on K-means is applied to produce all candidate user association schemes,the successive convex optimization technique is adopted in the power allocation subproblem and a logistic function approximation approach is employed in the trajectory design subproblem.Simulation results show that the proposed NOMA scheme outperforms three baseline schemes in downlink common throughput,including one solution proposed in an existing literature.展开更多
As one of the lightest engineering materials,magnesium(Mg)alloy possesses excellent mechanical performance,meeting the needs of versatile engineering fields and holding the potential to address cutting-edge issues in ...As one of the lightest engineering materials,magnesium(Mg)alloy possesses excellent mechanical performance,meeting the needs of versatile engineering fields and holding the potential to address cutting-edge issues in aerospace,electronics,biomedicine.The design of superhydrophobic(SHB)surfaces with micro and nanostructures can endow Mg alloys with multiple functionalities,such as self-cleaning,self-healing,antibacterial,and corrosion resistance.Over the past decade,researchers have drawn inspiration from nature to implement biomimetic design principles,resulting in the rapid development of micro/nanostructured SHB surfaces on Mg alloys,which hold great promise for biomedical applications.This review comprehensively introduces the biomimetic design principles of micro/nanostructured SHB surfaces on Mg alloys,discusses the challenges along with advantages and disadvantages of current preparation methods,and explores the future perspectives for preparing these SHB surfaces,providing strategies to enhance their performance in biomedical applications.展开更多
The umbilical,a key component in offshore energy extraction,plays a vital role in ensuring the stable operation of the entire production system.The extensive variety of cross-sectional components creates highly comple...The umbilical,a key component in offshore energy extraction,plays a vital role in ensuring the stable operation of the entire production system.The extensive variety of cross-sectional components creates highly complex layout combinations.Furthermore,due to constraints in component quantity and geometry within the cross-sectional layout,filler bodies must be incorporated to maintain cross-section performance.Conventional design approaches based on manual experience suffer from inefficiency,high variability,and difficulties in quantification.This paper presents a multi-level automatic filling optimization design method for umbilical cross-sectional layouts to address these limitations.Initially,the research establishes a multi-objective optimization model that considers compactness,balance,and wear resistance of the cross-section,employing an enhanced genetic algorithm to achieve a near-optimal layout.Subsequently,the study implements an image processing-based vacancy detection technique to accurately identify cross-sectional gaps.To manage the variability and diversity of these vacant regions,the research introduces a multi-level filling method that strategically selects and places filler bodies of varying dimensions,overcoming the constraints of uniform-size fillers.Additionally,the method incorporates a hierarchical strategy that subdivides the complex cross-section into multiple layers,enabling layer-by-layer optimization and filling.This approach reduces manufac-turing equipment requirements while ensuring practical production process feasibility.The methodology is validated through a specific umbilical case study.The results demonstrate improvements in compactness,balance,and wear resistance compared with the initial cross-section,offering novel insights and valuable references for filler design in umbilical cross-sections.展开更多
In engineering,the demand for high energy absorption by structures subjected to impact loads is increasing.Balancing the limited space,manufacturing feasibility,and energy absorption capabilities is a key point in the...In engineering,the demand for high energy absorption by structures subjected to impact loads is increasing.Balancing the limited space,manufacturing feasibility,and energy absorption capabilities is a key point in the design of many enclosed structures with energy absorption requirements.To achieve a lightweight design and controllable energy absorption by the structures,within a limited space,this study proposes a bio-inspired double-layer impact-resistant structure that can be manufactured by an additive manufacturing method(powder bed fusion),inspired by the microstructure of a woodpecker’s head.The structure is composed of two basic structural units:a quasi-circular ring and an oblique cylinder.The controllable energy absorption capabilities of the structure were studied through a combination of theoretical analyses,numerical simulations,and physical experiments.The results showed that,for the quasi-circular ring structure,the specific energy absorption range of 13-72 J/g could be effectively regulated by adjusting the structural parameters.The specific energy absorption range of 11-137 J/g could be effectively regulated for oblique cylindrical structures.Finally,the structure was applied to the design of engineering impact-resistant devices,proving the effectiveness of the controllable energy absorption of the structure.Moreover,the design process of the structure was optimized,laying a foundation for the structure to better serve engineering design applications.展开更多
In the context of rural revitalization,the landscape design of public spaces in Enshi Xiaomaopoying Village presents both new opportunities and challenges.This study explores the significance of integrating regional c...In the context of rural revitalization,the landscape design of public spaces in Enshi Xiaomaopoying Village presents both new opportunities and challenges.This study explores the significance of integrating regional culture into rural public spaces.Field research has been conducted to assess the current utilization of regional culture in the public spaces of Xiaomaopoying Village.Subsequently,design optimization strategies are analyzed and proposed.Additionally,the practical application of regional cultural elements is examined,in order to offer guidance for the application of cultural creation of traditional characteristic villages in rural public spaces.展开更多
Finding materials with specific properties is a hot topic in materials science.Traditional materials design relies on empirical and trial-and-error methods,requiring extensive experiments and time,resulting in high co...Finding materials with specific properties is a hot topic in materials science.Traditional materials design relies on empirical and trial-and-error methods,requiring extensive experiments and time,resulting in high costs.With the development of physics,statistics,computer science,and other fields,machine learning offers opportunities for systematically discovering new materials.Especially through machine learning-based inverse design,machine learning algorithms analyze the mapping relationships between materials and their properties to find materials with desired properties.This paper first outlines the basic concepts of materials inverse design and the challenges faced by machine learning-based approaches to materials inverse design.Then,three main inverse design methods—exploration-based,model-based,and optimization-based—are analyzed in the context of different application scenarios.Finally,the applications of inverse design methods in alloys,optical materials,and acoustic materials are elaborated on,and the prospects for materials inverse design are discussed.The authors hope to accelerate the discovery of new materials and provide new possibilities for advancing materials science and innovative design methods.展开更多
基金supported by the Natural Science Foundation of Hunan Province(Grant No.2023JJ40353)the National Key Research and Development Program of China(No.2019YFE03120001).
文摘Titanium-silicon(Ti-Si)alloy system shows significant potential for aerospace and automotive applications due to its superior specific strength,creep resistance,and oxidation resistance.For Si-containing Ti alloys,the sufficient content of Si is critical for achieving these favorable performances,while excessive Si addition will result in mechanical brittleness.Herein,both physical experiments and finite element(FE)simulations are employed to investigate the micro-mechanisms of Si alloying in tailoring the mechanical properties of Ti alloys.Four typical states of Si-containing Ti alloys(solid solution state,hypoeutectoid state,near-eutectoid state,hypereutectoid state)with varying Si content(0.3-1.2 wt.%)were fabricated via in-situ alloying spark plasma sintering.Experimental results indicate that in-situ alloying of 0.6 wt.%Si enhances the alloy’s strength and ductility simultaneously due to the formation of fine and uniformly dispersed Ti_(5)Si_(3)particles,while higher content of Si(0.9 and 1.2 wt.%)results in coarser primary Ti_(5)Si_(3)agglomerations,deteriorating the ductility.FE simulations support these findings,highlighting the finer and more uniformly distributed Ti_(5)Si_(3)particles contribute to less stress concentration and promote uniform deformation across the matrix,while agglomerated Ti_(5)Si_(3)particles result in increased local stress concentrations,leading to higher chances of particle fracture and reduced ductility.This study not only elucidates the micro-mechanisms of in-situ Si alloying for tailoring the mechanical properties of Ti alloys but also aids in optimizing the design of high-performance Si-containing Ti alloys.
基金supports from the National Natural Science Foundation of China(No.52206091)the Aeronautical Science Foundation of China(No.201928052008)the Natural Science Foundation of Jiangsu Province,China(No.BK20210303)。
文摘This study conducted the experimental investigation of aerodynamic heating of Micro-scale Rotational Shearing Flow with Axial Limited-Length(MRSFALL).The temperature riseof the stator is captured by the high response thermocouples.The eccentricity ratio and clearanceheight are guaranteed by means of instantaneous trajectory and torsion monitoring of the rotator.The result shows that the maximum temperature rise takes place upstream of the minimum clear-ance height along circumferential direction.The distribution of temperature rise presents asymmet-ric curve along axial direction,and peak value occurs near the dimensionless axial position of-0.18.The effect of aerodynamic heating becomes notable as the rotational speed is larger than3×10^(4)r/min.The effect of end leakage and the viscous dissipation have great impact on temper-ature rise of MRSFALL.More specially,the peak value of temperature rise at dimensionless clear-ance height of 0.0080 is larger than the case at dimensionless clearance height of 0.0044.Furthermore,when the eccentricity ratio is too large,the viscous dissipation is induced,and theadditional temperature rise is achieved.The heat flux identification of shear flow has been realizedby Sequential Function Specification Method(SFSM)and its estimation of thermal load has been given.The heat flux induced by the aerodynamic heating in this study varies from 950 W/m^(2)to1330 W/m^(2).
基金the funding support from the Ministry of Education,Government of India,under the Prime Minister Research Fellowship programme(Grant Nos.SB21221901CEPMRF008347 and SB22230217CEPMRF008347).
文摘Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic chemicals.Sustainable stabilization technique such as microbially induced calcite precipitation(MICP)utilizes bacterial metabolic processes to precipitate cementitious calcium carbonate.The reactive transport of biochemical species in the soil mass initiates the precipitation of biocement during the MICP process.The precipitated biocement alters the hydro-mechanical performance of the soil mass.Usually,the flow,deformation,and transport phenomena regulate the biocementation technique via coupled bio-chemo-hydro-mechanical(BCHM)processes.Among all,one crucial phenomenon controlling the precipitation mechanism is the encapsulation of biomass by calcium carbonate.Biomass encapsulation can potentially reduce the biochemical reaction rate and decelerate biocementation.Laboratory examination of the encapsulation process demands a thorough analysis of associated coupled effects.Despite this,a numerical model can assist in capturing the coupled processes influencing encapsulation during the MICP treatment.However,most numerical models did not consider biochemical reaction rate kinetics accounting for the influence of bacterial encapsulation.Given this,the current study developed a coupled BCHM model to evaluate the effect of encapsulation on the precipitated calcite content using a micro-scale semiempirical relationship.Firstly,the developed BCHM model was verified and validated using numerical and experimental observations of soil column tests.Later,the encapsulation phenomenon was investigated in the soil columns of variable maximum calcite crystal sizes.The results depict altered reaction rates due to the encapsulation phenomenon and an observable change in the precipitated calcite content for each maximum crystal size.Furthermore,the permeability and deformation of the soil mass were affected by the simultaneous precipitation of calcium carbonate.Overall,the present study comprehended the influence of the encapsulation of bacteria on cement morphology-induced permeability,biocement-induced stresses and displacements.
基金National Natural Science Foundation of China(U22A20191)。
文摘Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.
基金Chongqing Engineering University Undergraduate Innovation and Entrepreneurship Training Program Project:Wireless Fire Automatic Alarm System(Project No.:CXCY2024017)Chongqing Municipal Education Commission Science and Technology Research Project:Development and Research of Chongqing Wireless Fire Automatic Alarm System(Project No.:KJQN202401906)。
文摘This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysis,software design analysis,and simulation analysis,all supported by data fusion technology.Hopefully,this analysis can provide some reference for the rational application of data fusion technology to meet the actual design and application requirements of the system.
文摘With the progress of urbanization,urban landscape design has garnered increasing attention.Urban landscape design can not only reflect the construction level of a city but also has the functions of beautifying the urban environment and enhancing the city image.Modern art enriches the expression forms of urban landscape design,and its integration with urban landscape design can greatly improve the urban landscape.This article elaborated on the connotations of modern art and urban landscape design and analyzed the application of modern art in urban landscape design.The application of modern art can help to achieve the goal of urban landscape design to the maximum extent.
基金supported by the National Natural Science Foundation of China(No.52175067)the Zhejiang Key Research&Development Project(No.2021C01021)+1 种基金the Natural Science Foundation of Zhejiang Province(No.LY20E050016)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(CPSF)(No.GZC20241478)。
文摘A high-temperature and high-pressure valve is the key equipment of a wind tunnel system;it controls the generation of high-temperature and high-pressure gas.To reduce the adverse impact of high-temperature and high-pressure gas on the strength of the valve body,a cooling structure is set on the valve seat.This can significantly reduce the temperature of the valve body and valve seat.The effects of its structure on the cooling characteristics and stress of the valve seat are studied,and six main parameters that can completely describe the geometry of the cooling structure are proposed.The central composite design method is used to select sample points,and the multi-objective genetic algorithm(MOGA)method is used for optimal structural design.A modification method according to the main parameters for the valve seat is proposed.The results show that the cooling structure weakens the pressure-bearing capability of the valve seat.Among the six main parameters of the valve seat,the distance from the end face of the lower hole to the Z-axis and the distance from the axis of the lower hole to the origin of the coordinates have the most obvious effects on the average stress of the valve seat.An optimum design value is proposed.This work can provide a reference for the design of high-temperature and high-pressure valves.
基金partially supported by the Construction of Collaborative Innovation Center of Beijing Academy of Agricultural and Forestry Sciences(KJCX20240406)the Beijing Natural Science Foundation(JQ24037)+1 种基金the National Natural Science Foundation of China(32330075)the Earmarked Fund for China Agriculture Research System(CARS-02 and CARS-54)。
文摘The security of the seed industry is crucial for ensuring national food security.Currently,developed countries in Europe and America,along with international seed industry giants,have entered the Breeding 4.0 era.This era integrates biotechnology,artificial intelligence(AI),and big data information technology.In contrast,China is still in a transition period between stages 2.0 and 3.0,which primarily relies on conventional selection and molecular breeding.In the context of increasingly complex international situations,accurately identifying core issues in China's seed industry innovation and seizing the frontier of international seed technology are strategically important.These efforts are essential for ensuring food security and revitalizing the seed industry.This paper systematically analyzes the characteristics of crop breeding data from artificial selection to intelligent design breeding.It explores the applications and development trends of AI and big data in modern crop breeding from several key perspectives.These include highthroughput phenotype acquisition and analysis,multiomics big data database and management system construction,AI-based multiomics integrated analysis,and the development of intelligent breeding software tools based on biological big data and AI technology.Based on an in-depth analysis of the current status and challenges of China's seed industry technology development,we propose strategic goals and key tasks for China's new generation of AI and big data-driven intelligent design breeding.These suggestions aim to accelerate the development of an intelligent-driven crop breeding engineering system that features large-scale gene mining,efficient gene manipulation,engineered variety design,and systematized biobreeding.This study provides a theoretical basis and practical guidance for the development of China's seed industry technology.
基金financially supported by the National Natural Science Foundation of China(No.21675131)the Volkswagen Foundation(Freigeist Fellowship No.89592)+1 种基金the Natural Science Foundation of Chongqing(No.2020jcyj-zdxmX0003,CSTB2023NSCQ-MSX0924)the National Research Foundation,Singapore,and A*STAR(Agency for Science Technology and Research)under its LCER Phase 2 Programme Hydrogen&Emerging Technologies FI,Directed Hydrogen Programme(Award No.U2305D4003).
文摘Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as massive by-product,contribute to greenhouse effects and pose environmental challenges.Thus,the pursuit of nitrogen fixation through carbon–neutral pathways under benign conditions is a frontier of scientific topics,with the harnessing of solar energy emerging as an enticing and viable option.This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation,fields ripe with potential for innovation.The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers.Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures,rational element selection,and functional planning,state-of-the-art experimental protocols for understanding photo-fixation processes,valid photocatalytic activity evaluation,and the rational design of catalysts.Furthermore,the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation.It scrutinizes the existing challenges and prospects within this burgeoning domain,aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems.
基金supported by Beijing Natural Science Fund–Haidian Original Innovation Joint Fund(L232040 and L232045).
文摘In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its associated users on its own bandwidth.We aim at maximizing the overall common throughput in a finite time period.Such a problem is a typical mixed integer nonlinear problem,which involves both continuous-variable and combinatorial optimizations.To efficiently solve this problem,we propose a two-layer algorithm,which separately tackles continuous-variable and combinatorial optimization.Specifically,in the inner layer given one user association scheme,subproblems of bandwidth allocation,power allocation and trajectory design are solved based on alternating optimization.In the outer layer,a small number of candidate user association schemes are generated from an initial scheme and the best solution can be determined by comparing all the candidate schemes.In particular,a clustering algorithm based on K-means is applied to produce all candidate user association schemes,the successive convex optimization technique is adopted in the power allocation subproblem and a logistic function approximation approach is employed in the trajectory design subproblem.Simulation results show that the proposed NOMA scheme outperforms three baseline schemes in downlink common throughput,including one solution proposed in an existing literature.
基金supported by the National Natural Science Found for Distinguished Young Scholars(52225101)the Fundamental Research Funds for the Central Universities(WUT:104972024RSCbs0018 and 2023CDJYXTD-002)+1 种基金the Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0527)the Chongqing Academician Special Fund(2022YSZXJCX0014CSTB).
文摘As one of the lightest engineering materials,magnesium(Mg)alloy possesses excellent mechanical performance,meeting the needs of versatile engineering fields and holding the potential to address cutting-edge issues in aerospace,electronics,biomedicine.The design of superhydrophobic(SHB)surfaces with micro and nanostructures can endow Mg alloys with multiple functionalities,such as self-cleaning,self-healing,antibacterial,and corrosion resistance.Over the past decade,researchers have drawn inspiration from nature to implement biomimetic design principles,resulting in the rapid development of micro/nanostructured SHB surfaces on Mg alloys,which hold great promise for biomedical applications.This review comprehensively introduces the biomimetic design principles of micro/nanostructured SHB surfaces on Mg alloys,discusses the challenges along with advantages and disadvantages of current preparation methods,and explores the future perspectives for preparing these SHB surfaces,providing strategies to enhance their performance in biomedical applications.
基金financially supported by Guangdong Province Basic and Applied Basic Research Fund Project(Grant No.2022B1515250009)Liaoning Provincial Natural Science Foundation-Doctoral Research Start-up Fund Project(Grant No.2024-BSBA-05)+1 种基金Major Science and Technology Innovation Project in Shandong Province(Grant No.2024CXGC010803)the National Natural Science Foundation of China(Grant Nos.52271269 and 12302147).
文摘The umbilical,a key component in offshore energy extraction,plays a vital role in ensuring the stable operation of the entire production system.The extensive variety of cross-sectional components creates highly complex layout combinations.Furthermore,due to constraints in component quantity and geometry within the cross-sectional layout,filler bodies must be incorporated to maintain cross-section performance.Conventional design approaches based on manual experience suffer from inefficiency,high variability,and difficulties in quantification.This paper presents a multi-level automatic filling optimization design method for umbilical cross-sectional layouts to address these limitations.Initially,the research establishes a multi-objective optimization model that considers compactness,balance,and wear resistance of the cross-section,employing an enhanced genetic algorithm to achieve a near-optimal layout.Subsequently,the study implements an image processing-based vacancy detection technique to accurately identify cross-sectional gaps.To manage the variability and diversity of these vacant regions,the research introduces a multi-level filling method that strategically selects and places filler bodies of varying dimensions,overcoming the constraints of uniform-size fillers.Additionally,the method incorporates a hierarchical strategy that subdivides the complex cross-section into multiple layers,enabling layer-by-layer optimization and filling.This approach reduces manufac-turing equipment requirements while ensuring practical production process feasibility.The methodology is validated through a specific umbilical case study.The results demonstrate improvements in compactness,balance,and wear resistance compared with the initial cross-section,offering novel insights and valuable references for filler design in umbilical cross-sections.
基金supported by National Key R&D Program of China(Grant No.2022YFB4600500)Fundamental Research Funds for the Central Universitiesthe Program for Innovation Team of Shaanxi Province of China(Grant No.2023-CX-TD-17).
文摘In engineering,the demand for high energy absorption by structures subjected to impact loads is increasing.Balancing the limited space,manufacturing feasibility,and energy absorption capabilities is a key point in the design of many enclosed structures with energy absorption requirements.To achieve a lightweight design and controllable energy absorption by the structures,within a limited space,this study proposes a bio-inspired double-layer impact-resistant structure that can be manufactured by an additive manufacturing method(powder bed fusion),inspired by the microstructure of a woodpecker’s head.The structure is composed of two basic structural units:a quasi-circular ring and an oblique cylinder.The controllable energy absorption capabilities of the structure were studied through a combination of theoretical analyses,numerical simulations,and physical experiments.The results showed that,for the quasi-circular ring structure,the specific energy absorption range of 13-72 J/g could be effectively regulated by adjusting the structural parameters.The specific energy absorption range of 11-137 J/g could be effectively regulated for oblique cylindrical structures.Finally,the structure was applied to the design of engineering impact-resistant devices,proving the effectiveness of the controllable energy absorption of the structure.Moreover,the design process of the structure was optimized,laying a foundation for the structure to better serve engineering design applications.
文摘In the context of rural revitalization,the landscape design of public spaces in Enshi Xiaomaopoying Village presents both new opportunities and challenges.This study explores the significance of integrating regional culture into rural public spaces.Field research has been conducted to assess the current utilization of regional culture in the public spaces of Xiaomaopoying Village.Subsequently,design optimization strategies are analyzed and proposed.Additionally,the practical application of regional cultural elements is examined,in order to offer guidance for the application of cultural creation of traditional characteristic villages in rural public spaces.
基金funded by theNationalNatural Science Foundation of China(52061020)Major Science and Technology Projects in Yunnan Province(202302AG050009)Yunnan Fundamental Research Projects(202301AV070003).
文摘Finding materials with specific properties is a hot topic in materials science.Traditional materials design relies on empirical and trial-and-error methods,requiring extensive experiments and time,resulting in high costs.With the development of physics,statistics,computer science,and other fields,machine learning offers opportunities for systematically discovering new materials.Especially through machine learning-based inverse design,machine learning algorithms analyze the mapping relationships between materials and their properties to find materials with desired properties.This paper first outlines the basic concepts of materials inverse design and the challenges faced by machine learning-based approaches to materials inverse design.Then,three main inverse design methods—exploration-based,model-based,and optimization-based—are analyzed in the context of different application scenarios.Finally,the applications of inverse design methods in alloys,optical materials,and acoustic materials are elaborated on,and the prospects for materials inverse design are discussed.The authors hope to accelerate the discovery of new materials and provide new possibilities for advancing materials science and innovative design methods.