This study conducted the experimental investigation of aerodynamic heating of Micro-scale Rotational Shearing Flow with Axial Limited-Length(MRSFALL).The temperature riseof the stator is captured by the high response ...This study conducted the experimental investigation of aerodynamic heating of Micro-scale Rotational Shearing Flow with Axial Limited-Length(MRSFALL).The temperature riseof the stator is captured by the high response thermocouples.The eccentricity ratio and clearanceheight are guaranteed by means of instantaneous trajectory and torsion monitoring of the rotator.The result shows that the maximum temperature rise takes place upstream of the minimum clear-ance height along circumferential direction.The distribution of temperature rise presents asymmet-ric curve along axial direction,and peak value occurs near the dimensionless axial position of-0.18.The effect of aerodynamic heating becomes notable as the rotational speed is larger than3×10^(4)r/min.The effect of end leakage and the viscous dissipation have great impact on temper-ature rise of MRSFALL.More specially,the peak value of temperature rise at dimensionless clear-ance height of 0.0080 is larger than the case at dimensionless clearance height of 0.0044.Furthermore,when the eccentricity ratio is too large,the viscous dissipation is induced,and theadditional temperature rise is achieved.The heat flux identification of shear flow has been realizedby Sequential Function Specification Method(SFSM)and its estimation of thermal load has been given.The heat flux induced by the aerodynamic heating in this study varies from 950 W/m^(2)to1330 W/m^(2).展开更多
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon...Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.展开更多
In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honey...In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.展开更多
Recent years have witnessed transformative changes brought about by artificial intelligence(AI)techniques with billions of parameters for the realization of high accuracy,proposing high demand for the advanced and AI ...Recent years have witnessed transformative changes brought about by artificial intelligence(AI)techniques with billions of parameters for the realization of high accuracy,proposing high demand for the advanced and AI chip to solve these AI tasks efficiently and powerfully.Rapid progress has been made in the field of advanced chips recently,such as the development of photonic computing,the advancement of the quantum processors,the boost of the biomimetic chips,and so on.Designs tactics of the advanced chips can be conducted with elaborated consideration of materials,algorithms,models,architectures,and so on.Though a few reviews present the development of the chips from their unique aspects,reviews in the view of the latest design for advanced and AI chips are few.Here,the newest development is systematically reviewed in the field of advanced chips.First,background and mechanisms are summarized,and subsequently most important considerations for co-design of the software and hardware are illustrated.Next,strategies are summed up to obtain advanced and AI chips with high excellent performance by taking the important information processing steps into consideration,after which the design thought for the advanced chips in the future is proposed.Finally,some perspectives are put forward.展开更多
To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capabl...To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capable of supplying power to critical loads and serving as backup sources during grid contingencies,offering advantages such as flexibility and high resilience through electricity delivery via transportation networks.This paper proposes a design method for a 400 V–10 kV Dual-Winding Induction Generator(DWIG)intended for MEG applications,employing an improved particle swarmoptimization(PSO)algorithmbased on a back-propagation neural network(BPNN).A parameterized finite element(FE)model of the DWIG is established to derive constraints on its dimensional parameters,thereby simplifying the optimization space.Through sensitivity analysis between temperature rise and electromagnetic loss of the DWIG,the main factors influencing the machine’s temperature are identified,and electromagnetic loss is determined as the optimization objective.To obtain an accurate fitting function between electromagnetic loss and dimensional parameters,the BPNN is employed to predict the nonlinear relationship between the optimization objective and the parameters.The Latin hypercube sampling(LHS)method is used for random sampling in the FE model analysis for training,testing,and validation,which is then applied to compute the cost function in the PSO.Based on the relationships obtained by the BPNN,the PSO algorithm evaluates the fitness and cost functions to determine the optimal design point.The proposed optimization method is validated by comparing simulation results between the initial design and the optimized design.展开更多
Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical si...Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.展开更多
Subcritical reactors(SCRs)or subcritical assemblies(SCAs)are the main infrastructure for designing power reactors.These reactors are widely used for training and research because of their high level of inherent safety...Subcritical reactors(SCRs)or subcritical assemblies(SCAs)are the main infrastructure for designing power reactors.These reactors are widely used for training and research because of their high level of inherent safety.The objective of this study is to design a subcritical reactor using a pressurized water reactor(PWR)conventional fuel following two safety points.In the first approach,deeply placed SCR cores with an infinite multiplication factor(k_(∞))of less than unity were identified using the DRAGON lattice code.In the second approach,subcritical reactor cores with an effective multiplication factor(k_(eff))of less than unity were determined by coupling the cell calculations of the DRAGON lattice code and core calculations of the DONJON code.For the deeply subcritical reactor design,it was found that the reactor would remain inherently subcritical while using fuel rods with ^(235)U enrichment of up to 0.9%,regardless of the pitch of the fuel rods.In the second approach,the optimal pitches(1.3 to 2.3 cm)were determined for different fuel enrichment values from 1 to 5%.Subsequently,the k_(eff) was obtained for a fuel rod arrangement of 8×8 to 80×80,and the states in which the reactor would be subcritical were determined for different fuel enrichments at the corresponding optimal pitch.To validate the models used in the DRAGON and DONJON codes,the k_(eff) of the Isfahan Light Water Subcritical Reactor(LWSCR)was experimentally measured and compared with the results of the calculations.Finally,the effects of fuel and moderator temperature changes were investigated to ensure that the designed assemblies remained in the subcritical state at all operational temperatures.展开更多
A dry-gas seal system is a non-contact seal technology that is widely used in different industrial applications.Spiral-groove dry-gas seal utilizes fluid dynamic pressure effects to realize the seal and lubrication pr...A dry-gas seal system is a non-contact seal technology that is widely used in different industrial applications.Spiral-groove dry-gas seal utilizes fluid dynamic pressure effects to realize the seal and lubrication processes,while forming a high pressure gas film between two sealing faces due to the deceleration of the gas pumped in or out.There is little research into the effects and the influence on seal performance,if the grooves and the gas film are at the micro-scale.This paper investigates the micro-scale effects on spiral-groove dry-gas seal performance in a numerical solution of a corrected Reynolds equation.The Reynolds equation is discretized by means of the finite difference method with the second order scheme and solved by the successive-over-relaxation(SOR) iterative method.The Knudsen number of the flow in the sealing gas film is changed from 0.005 to 0.120 with a variation of film depth and sealing pressure.The numerical results show that the average pressure in the gas film and the sealed gas leakage increase due to micro-scale effects.The open force is enlarged,while the gas film stiffness is significantly decreased due to micro-scale effects.The friction torque and power consumption remain constant,even in low sealing pressure and spin speed conditions.In this paper,the seal performance at different rotor face spin speeds is also described.The proposed research clarifies the micro-scale effects in a spiral-groove dry-gas seal and their influence on seal performance,which is expected to be useful for the improvement of the design of dry-gas seal systems operating in the slip flow regime.展开更多
To understand the discharge characteristics under a gap of micrometers,the breakdown voltage and current–voltage curve are measured experimentally in a needle-to-plate electrode at a microscale gap of 3–50 μm in ai...To understand the discharge characteristics under a gap of micrometers,the breakdown voltage and current–voltage curve are measured experimentally in a needle-to-plate electrode at a microscale gap of 3–50 μm in air.The effect of the needle radius and the gas pressure on the discharge characteristics are tested.The results show that when the gap is larger than 10 μm,the relation between the breakdown voltage and the gap looks like the Paschen curve;while below 10 μm,the breakdown voltage is nearly constant in the range of the tested gap.However,at the same gap distance,the breakdown voltage is still affected by the pressure and shows a trend similar to Paschen's law.The current–voltage characteristic in all the gaps is similar and follows the trend of a typical Townsend-to-glow discharge.A simple model is used to explain the non-normality of breakdown in the micro-gaps.The Townsend mechanism is suggested to control the breakdown process in this configuration before the gap reduces much smaller in air.展开更多
Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant r...Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant role in studying and simulating transport phenomena involving fluid flow and heat and mass transfers, in recent years, other numerical methods for the simulations at meso- and micro-scales have also been actively applied to solve the physics of complex flow and fluid-interface interactions. This paper presents a review of recent advances in multi-scale computational simulation of biomimetics related fluid flow problems. The state-of-the-art numerical techniques, such as lattice Boltzmann method (LBM), molecular dynamics (MD), and conventional CFD, applied to different problems such as fish flow, electro-osmosis effect of earthworm motion, and self-cleaning hydrophobic surface, and the numerical approaches are introduced. The new challenging of modelling biomimetics problems in developing the physical conditions of self-clean hydrophobic surfaces is discussed.展开更多
Micro-scale Al-Zn-Mg/Fe composite powders (MAF) with high reactivity and good storage properties were prepared by reducing iron onto the surface of Al-Zn-Mg alloy powders. Experimental results show that MAF as advance...Micro-scale Al-Zn-Mg/Fe composite powders (MAF) with high reactivity and good storage properties were prepared by reducing iron onto the surface of Al-Zn-Mg alloy powders. Experimental results show that MAF as advanced zero-valent iron are highly effective for degradation of chlorinated organic compounds. The efficiency of degradation for carbon tetrachloride and perchloroethylene is higher than 99% within a period of 2 h. The efficiency of degradation for trichloroethylene by MAF after storing for one month is equivalent to that by freshly prepared nano-size zero-valent iron particles.展开更多
Micro-scale functionally graded material(FGM)pipes conveying fluid have many significant applications in engineering fields.In this work,the thermoelastic vibration of FGM fluid-conveying tubes in elastic medium is st...Micro-scale functionally graded material(FGM)pipes conveying fluid have many significant applications in engineering fields.In this work,the thermoelastic vibration of FGM fluid-conveying tubes in elastic medium is studied.Based on modified couple stress theory and Hamilton’s principle,the governing equation and boundary conditions are obtained.The differential quadrature method(DQM)is applied to investigating the thermoelastic vibration of the FGM pipes.The effect of temperature variation,scale effect of the microtubule,micro-fluid effect,material properties,elastic coefficient of elastic medium and outer radius on thermoelastic vibration of the FGM pipes conveying fluid are studied.The results show that in the condition of considering the scale effect and micro-fluid of the microtubule,the critical dimensionless velocity of the system is higher than that of the system which calculated using classical macroscopic model.The results also show that the variations of temperature,material properties,elastic coefficient and outer radius have significant influences on the first-order dimensionless natural frequency.展开更多
Fabrication of micro gratings using a femtosecond laser exposure system is experimentally investigated for the electron moire method. Micro holes and lines are firstly etched for parameter study. Grating profile is th...Fabrication of micro gratings using a femtosecond laser exposure system is experimentally investigated for the electron moire method. Micro holes and lines are firstly etched for parameter study. Grating profile is theoretically optimized to form high quality moire patterns. For a demonstration, a parallel grating is fabricated on a specimen of quartz glass. The minimum line width and the distance between two adjacent lines are both set to be 1 μm, and the frequency of grating is 500 lines/ram. The experimental results indicate that the quality of gratings is good and the relative error of the gratings pitch is about 1.5%. Based on molte method, scanning electron microscope (SEM) moire patterns are observed clearly, which manifests that gratings fabricated with the femtosecond laser exposure is suitable for micro scale deformation measurement.展开更多
A micro-scale finite element method(FEM) was proposed to precisely calculate the heat conduction between mortar and aggregate, and thus to accurately predict the non-uniformity of concrete pouring temperature. The con...A micro-scale finite element method(FEM) was proposed to precisely calculate the heat conduction between mortar and aggregate, and thus to accurately predict the non-uniformity of concrete pouring temperature. The concrete temperature field during vibration was also precisely calculated by accurate description of heat absorption characteristics of different parts of concrete when vibration. Based on the above method, the prediction model was used to predict the pouring temperature of a practical engineering. The comparison between actual results and simulated values shows that this method can be adopted to accurately predict the non-uniformity of concrete pouring temperature and the influence of mechanized vibration on concrete pouring temperature, and thus accurately predict pouring temperature. The control of casting temperature is crucial for preventing concrete fracture. The study provides a new method for predicting the pouring temperature of concrete structures, which has great practical value in engineering application.展开更多
Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic...Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic chemicals.Sustainable stabilization technique such as microbially induced calcite precipitation(MICP)utilizes bacterial metabolic processes to precipitate cementitious calcium carbonate.The reactive transport of biochemical species in the soil mass initiates the precipitation of biocement during the MICP process.The precipitated biocement alters the hydro-mechanical performance of the soil mass.Usually,the flow,deformation,and transport phenomena regulate the biocementation technique via coupled bio-chemo-hydro-mechanical(BCHM)processes.Among all,one crucial phenomenon controlling the precipitation mechanism is the encapsulation of biomass by calcium carbonate.Biomass encapsulation can potentially reduce the biochemical reaction rate and decelerate biocementation.Laboratory examination of the encapsulation process demands a thorough analysis of associated coupled effects.Despite this,a numerical model can assist in capturing the coupled processes influencing encapsulation during the MICP treatment.However,most numerical models did not consider biochemical reaction rate kinetics accounting for the influence of bacterial encapsulation.Given this,the current study developed a coupled BCHM model to evaluate the effect of encapsulation on the precipitated calcite content using a micro-scale semiempirical relationship.Firstly,the developed BCHM model was verified and validated using numerical and experimental observations of soil column tests.Later,the encapsulation phenomenon was investigated in the soil columns of variable maximum calcite crystal sizes.The results depict altered reaction rates due to the encapsulation phenomenon and an observable change in the precipitated calcite content for each maximum crystal size.Furthermore,the permeability and deformation of the soil mass were affected by the simultaneous precipitation of calcium carbonate.Overall,the present study comprehended the influence of the encapsulation of bacteria on cement morphology-induced permeability,biocement-induced stresses and displacements.展开更多
The dispersion is mainly governed by wind field and depends on the planetary boundary layer (PBL) dynamics. Accurate representation of the meteorological weather fields would improve the dispersion assessments. In urb...The dispersion is mainly governed by wind field and depends on the planetary boundary layer (PBL) dynamics. Accurate representation of the meteorological weather fields would improve the dispersion assessments. In urban areas representation of wind around the obstacles is not possible for the pollution dispersion studies using Gaussian based modeling studies. It is widely accepted that computational fluid dynamics (CFD) tools would provide reasonably good solution to produce the wind fields around the complex structures and other land scale elements. By keeping in view of the requirement for the micro-scale dispersion, a commercial CFD model PANACHE with PANEPR developed by Fluidyn is implemented to study the micro-scale dispersion of air pollution over an urban setup at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam a coastal station in the east coast of India under stable atmospheric conditions. Meso-scale module of the PANACHE model is integrated with the data generated at the site by IGCAR under RRE (Round Robin Exercise) program to develop the flow fields. Using this flow fields, CFD model is integrated to study the micro-scale dispersion. Various pollution dispersion scenarios are developed using hypothetical emission inventory during stably stratified conditions to understand the micro-scale dispersion over different locations of coastal urban set up in the IGCAR region of Kalpakkam.展开更多
基金supports from the National Natural Science Foundation of China(No.52206091)the Aeronautical Science Foundation of China(No.201928052008)the Natural Science Foundation of Jiangsu Province,China(No.BK20210303)。
文摘This study conducted the experimental investigation of aerodynamic heating of Micro-scale Rotational Shearing Flow with Axial Limited-Length(MRSFALL).The temperature riseof the stator is captured by the high response thermocouples.The eccentricity ratio and clearanceheight are guaranteed by means of instantaneous trajectory and torsion monitoring of the rotator.The result shows that the maximum temperature rise takes place upstream of the minimum clear-ance height along circumferential direction.The distribution of temperature rise presents asymmet-ric curve along axial direction,and peak value occurs near the dimensionless axial position of-0.18.The effect of aerodynamic heating becomes notable as the rotational speed is larger than3×10^(4)r/min.The effect of end leakage and the viscous dissipation have great impact on temper-ature rise of MRSFALL.More specially,the peak value of temperature rise at dimensionless clear-ance height of 0.0080 is larger than the case at dimensionless clearance height of 0.0044.Furthermore,when the eccentricity ratio is too large,the viscous dissipation is induced,and theadditional temperature rise is achieved.The heat flux identification of shear flow has been realizedby Sequential Function Specification Method(SFSM)and its estimation of thermal load has been given.The heat flux induced by the aerodynamic heating in this study varies from 950 W/m^(2)to1330 W/m^(2).
基金Supported by the National Key Research and Development Program of China(2023YFB4104500,2023YFB4104502)the National Natural Science Foundation of China(22138013)the Taishan Scholar Project(ts201712020).
文摘Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.
基金the financial supports from National Key R&D Program for Young Scientists of China(Grant No.2022YFC3080900)National Natural Science Foundation of China(Grant No.52374181)+1 种基金BIT Research and Innovation Promoting Project(Grant No.2024YCXZ017)supported by Science and Technology Innovation Program of Beijing institute of technology under Grant No.2022CX01025。
文摘In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.
基金supported by the Hong Kong Polytechnic University(1-WZ1Y,1-W34U,4-YWER).
文摘Recent years have witnessed transformative changes brought about by artificial intelligence(AI)techniques with billions of parameters for the realization of high accuracy,proposing high demand for the advanced and AI chip to solve these AI tasks efficiently and powerfully.Rapid progress has been made in the field of advanced chips recently,such as the development of photonic computing,the advancement of the quantum processors,the boost of the biomimetic chips,and so on.Designs tactics of the advanced chips can be conducted with elaborated consideration of materials,algorithms,models,architectures,and so on.Though a few reviews present the development of the chips from their unique aspects,reviews in the view of the latest design for advanced and AI chips are few.Here,the newest development is systematically reviewed in the field of advanced chips.First,background and mechanisms are summarized,and subsequently most important considerations for co-design of the software and hardware are illustrated.Next,strategies are summed up to obtain advanced and AI chips with high excellent performance by taking the important information processing steps into consideration,after which the design thought for the advanced chips in the future is proposed.Finally,some perspectives are put forward.
基金funded by the Science and Technology Projects of State Grid Corporation of China(Project No.J2024136).
文摘To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capable of supplying power to critical loads and serving as backup sources during grid contingencies,offering advantages such as flexibility and high resilience through electricity delivery via transportation networks.This paper proposes a design method for a 400 V–10 kV Dual-Winding Induction Generator(DWIG)intended for MEG applications,employing an improved particle swarmoptimization(PSO)algorithmbased on a back-propagation neural network(BPNN).A parameterized finite element(FE)model of the DWIG is established to derive constraints on its dimensional parameters,thereby simplifying the optimization space.Through sensitivity analysis between temperature rise and electromagnetic loss of the DWIG,the main factors influencing the machine’s temperature are identified,and electromagnetic loss is determined as the optimization objective.To obtain an accurate fitting function between electromagnetic loss and dimensional parameters,the BPNN is employed to predict the nonlinear relationship between the optimization objective and the parameters.The Latin hypercube sampling(LHS)method is used for random sampling in the FE model analysis for training,testing,and validation,which is then applied to compute the cost function in the PSO.Based on the relationships obtained by the BPNN,the PSO algorithm evaluates the fitness and cost functions to determine the optimal design point.The proposed optimization method is validated by comparing simulation results between the initial design and the optimized design.
基金financially supported by the National Key Research and Development Program of China (2022YFB3706802)。
文摘Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.
文摘Subcritical reactors(SCRs)or subcritical assemblies(SCAs)are the main infrastructure for designing power reactors.These reactors are widely used for training and research because of their high level of inherent safety.The objective of this study is to design a subcritical reactor using a pressurized water reactor(PWR)conventional fuel following two safety points.In the first approach,deeply placed SCR cores with an infinite multiplication factor(k_(∞))of less than unity were identified using the DRAGON lattice code.In the second approach,subcritical reactor cores with an effective multiplication factor(k_(eff))of less than unity were determined by coupling the cell calculations of the DRAGON lattice code and core calculations of the DONJON code.For the deeply subcritical reactor design,it was found that the reactor would remain inherently subcritical while using fuel rods with ^(235)U enrichment of up to 0.9%,regardless of the pitch of the fuel rods.In the second approach,the optimal pitches(1.3 to 2.3 cm)were determined for different fuel enrichment values from 1 to 5%.Subsequently,the k_(eff) was obtained for a fuel rod arrangement of 8×8 to 80×80,and the states in which the reactor would be subcritical were determined for different fuel enrichments at the corresponding optimal pitch.To validate the models used in the DRAGON and DONJON codes,the k_(eff) of the Isfahan Light Water Subcritical Reactor(LWSCR)was experimentally measured and compared with the results of the calculations.Finally,the effects of fuel and moderator temperature changes were investigated to ensure that the designed assemblies remained in the subcritical state at all operational temperatures.
基金supported by Scientific Research Foundation for Returned Scholars of Ministry of Education of China
文摘A dry-gas seal system is a non-contact seal technology that is widely used in different industrial applications.Spiral-groove dry-gas seal utilizes fluid dynamic pressure effects to realize the seal and lubrication processes,while forming a high pressure gas film between two sealing faces due to the deceleration of the gas pumped in or out.There is little research into the effects and the influence on seal performance,if the grooves and the gas film are at the micro-scale.This paper investigates the micro-scale effects on spiral-groove dry-gas seal performance in a numerical solution of a corrected Reynolds equation.The Reynolds equation is discretized by means of the finite difference method with the second order scheme and solved by the successive-over-relaxation(SOR) iterative method.The Knudsen number of the flow in the sealing gas film is changed from 0.005 to 0.120 with a variation of film depth and sealing pressure.The numerical results show that the average pressure in the gas film and the sealed gas leakage increase due to micro-scale effects.The open force is enlarged,while the gas film stiffness is significantly decreased due to micro-scale effects.The friction torque and power consumption remain constant,even in low sealing pressure and spin speed conditions.In this paper,the seal performance at different rotor face spin speeds is also described.The proposed research clarifies the micro-scale effects in a spiral-groove dry-gas seal and their influence on seal performance,which is expected to be useful for the improvement of the design of dry-gas seal systems operating in the slip flow regime.
基金supported by National Natural Science Foundation of China(11475019)the Electrostatic Research Foundation of Liu Shanghe Academicians and Experts Workstation,Beijing Orient Institute of Measurement and Test(BOIMTLSHJD20161002)
文摘To understand the discharge characteristics under a gap of micrometers,the breakdown voltage and current–voltage curve are measured experimentally in a needle-to-plate electrode at a microscale gap of 3–50 μm in air.The effect of the needle radius and the gas pressure on the discharge characteristics are tested.The results show that when the gap is larger than 10 μm,the relation between the breakdown voltage and the gap looks like the Paschen curve;while below 10 μm,the breakdown voltage is nearly constant in the range of the tested gap.However,at the same gap distance,the breakdown voltage is still affected by the pressure and shows a trend similar to Paschen's law.The current–voltage characteristic in all the gaps is similar and follows the trend of a typical Townsend-to-glow discharge.A simple model is used to explain the non-normality of breakdown in the micro-gaps.The Townsend mechanism is suggested to control the breakdown process in this configuration before the gap reduces much smaller in air.
文摘Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant role in studying and simulating transport phenomena involving fluid flow and heat and mass transfers, in recent years, other numerical methods for the simulations at meso- and micro-scales have also been actively applied to solve the physics of complex flow and fluid-interface interactions. This paper presents a review of recent advances in multi-scale computational simulation of biomimetics related fluid flow problems. The state-of-the-art numerical techniques, such as lattice Boltzmann method (LBM), molecular dynamics (MD), and conventional CFD, applied to different problems such as fish flow, electro-osmosis effect of earthworm motion, and self-cleaning hydrophobic surface, and the numerical approaches are introduced. The new challenging of modelling biomimetics problems in developing the physical conditions of self-clean hydrophobic surfaces is discussed.
文摘Micro-scale Al-Zn-Mg/Fe composite powders (MAF) with high reactivity and good storage properties were prepared by reducing iron onto the surface of Al-Zn-Mg alloy powders. Experimental results show that MAF as advanced zero-valent iron are highly effective for degradation of chlorinated organic compounds. The efficiency of degradation for carbon tetrachloride and perchloroethylene is higher than 99% within a period of 2 h. The efficiency of degradation for trichloroethylene by MAF after storing for one month is equivalent to that by freshly prepared nano-size zero-valent iron particles.
文摘Micro-scale functionally graded material(FGM)pipes conveying fluid have many significant applications in engineering fields.In this work,the thermoelastic vibration of FGM fluid-conveying tubes in elastic medium is studied.Based on modified couple stress theory and Hamilton’s principle,the governing equation and boundary conditions are obtained.The differential quadrature method(DQM)is applied to investigating the thermoelastic vibration of the FGM pipes.The effect of temperature variation,scale effect of the microtubule,micro-fluid effect,material properties,elastic coefficient of elastic medium and outer radius on thermoelastic vibration of the FGM pipes conveying fluid are studied.The results show that in the condition of considering the scale effect and micro-fluid of the microtubule,the critical dimensionless velocity of the system is higher than that of the system which calculated using classical macroscopic model.The results also show that the variations of temperature,material properties,elastic coefficient and outer radius have significant influences on the first-order dimensionless natural frequency.
基金support from the National Natural Science Foundation of China (11372118 and 11302082)
文摘Fabrication of micro gratings using a femtosecond laser exposure system is experimentally investigated for the electron moire method. Micro holes and lines are firstly etched for parameter study. Grating profile is theoretically optimized to form high quality moire patterns. For a demonstration, a parallel grating is fabricated on a specimen of quartz glass. The minimum line width and the distance between two adjacent lines are both set to be 1 μm, and the frequency of grating is 500 lines/ram. The experimental results indicate that the quality of gratings is good and the relative error of the gratings pitch is about 1.5%. Based on molte method, scanning electron microscope (SEM) moire patterns are observed clearly, which manifests that gratings fabricated with the femtosecond laser exposure is suitable for micro scale deformation measurement.
基金Supported by the National Key Research and Development Project of China(No.2018YFC0406703)the National Natural Science Foundation of China(Nos.51779277,51579252,51439005)+2 种基金the Special Scientific Research Project of the State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins(No.2016ZY10)a Special Scientific Research Project of the China Institute of Water Resources and Hydropower Research(Nos.SS0145B392016,SS0145B612017)the Special Scientific Research Project of the China Institute of Water Resources and Hydropower Research(No.KY1799).
文摘A micro-scale finite element method(FEM) was proposed to precisely calculate the heat conduction between mortar and aggregate, and thus to accurately predict the non-uniformity of concrete pouring temperature. The concrete temperature field during vibration was also precisely calculated by accurate description of heat absorption characteristics of different parts of concrete when vibration. Based on the above method, the prediction model was used to predict the pouring temperature of a practical engineering. The comparison between actual results and simulated values shows that this method can be adopted to accurately predict the non-uniformity of concrete pouring temperature and the influence of mechanized vibration on concrete pouring temperature, and thus accurately predict pouring temperature. The control of casting temperature is crucial for preventing concrete fracture. The study provides a new method for predicting the pouring temperature of concrete structures, which has great practical value in engineering application.
基金the funding support from the Ministry of Education,Government of India,under the Prime Minister Research Fellowship programme(Grant Nos.SB21221901CEPMRF008347 and SB22230217CEPMRF008347).
文摘Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic chemicals.Sustainable stabilization technique such as microbially induced calcite precipitation(MICP)utilizes bacterial metabolic processes to precipitate cementitious calcium carbonate.The reactive transport of biochemical species in the soil mass initiates the precipitation of biocement during the MICP process.The precipitated biocement alters the hydro-mechanical performance of the soil mass.Usually,the flow,deformation,and transport phenomena regulate the biocementation technique via coupled bio-chemo-hydro-mechanical(BCHM)processes.Among all,one crucial phenomenon controlling the precipitation mechanism is the encapsulation of biomass by calcium carbonate.Biomass encapsulation can potentially reduce the biochemical reaction rate and decelerate biocementation.Laboratory examination of the encapsulation process demands a thorough analysis of associated coupled effects.Despite this,a numerical model can assist in capturing the coupled processes influencing encapsulation during the MICP treatment.However,most numerical models did not consider biochemical reaction rate kinetics accounting for the influence of bacterial encapsulation.Given this,the current study developed a coupled BCHM model to evaluate the effect of encapsulation on the precipitated calcite content using a micro-scale semiempirical relationship.Firstly,the developed BCHM model was verified and validated using numerical and experimental observations of soil column tests.Later,the encapsulation phenomenon was investigated in the soil columns of variable maximum calcite crystal sizes.The results depict altered reaction rates due to the encapsulation phenomenon and an observable change in the precipitated calcite content for each maximum crystal size.Furthermore,the permeability and deformation of the soil mass were affected by the simultaneous precipitation of calcium carbonate.Overall,the present study comprehended the influence of the encapsulation of bacteria on cement morphology-induced permeability,biocement-induced stresses and displacements.
文摘The dispersion is mainly governed by wind field and depends on the planetary boundary layer (PBL) dynamics. Accurate representation of the meteorological weather fields would improve the dispersion assessments. In urban areas representation of wind around the obstacles is not possible for the pollution dispersion studies using Gaussian based modeling studies. It is widely accepted that computational fluid dynamics (CFD) tools would provide reasonably good solution to produce the wind fields around the complex structures and other land scale elements. By keeping in view of the requirement for the micro-scale dispersion, a commercial CFD model PANACHE with PANEPR developed by Fluidyn is implemented to study the micro-scale dispersion of air pollution over an urban setup at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam a coastal station in the east coast of India under stable atmospheric conditions. Meso-scale module of the PANACHE model is integrated with the data generated at the site by IGCAR under RRE (Round Robin Exercise) program to develop the flow fields. Using this flow fields, CFD model is integrated to study the micro-scale dispersion. Various pollution dispersion scenarios are developed using hypothetical emission inventory during stably stratified conditions to understand the micro-scale dispersion over different locations of coastal urban set up in the IGCAR region of Kalpakkam.