期刊文献+
共找到561,688篇文章
< 1 2 250 >
每页显示 20 50 100
Osteogenic and antibacterial ability of micro-nano structures coated with ZnO on Ti-6Al-4V implant fabricated by two-step laser processing 被引量:4
1
作者 Yi Wan Zihe Zhao +5 位作者 Mingzhi Yu Zhenbing Ji Teng Wang Yukui Cai Chao Liu Zhanqiang Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第36期240-252,共13页
The biological performance of Ti-6Al-4V implant is primarily determined by their surface properties.However,traditional surface modification methods,such as acid etching,hardly make improvement in their osseointegrati... The biological performance of Ti-6Al-4V implant is primarily determined by their surface properties.However,traditional surface modification methods,such as acid etching,hardly make improvement in their osseointegration ability and antibacterial capacity.In this study,we prepared a multi-scale composite structure coated with zinc oxide(ZnO)on Ti-6Al-4V implant by an innovative technology of two-step laser processing combined with solution-assistant.Compared with the acid etching method,the physicochemical properties of surface significantly improved.The in vitro results showed that the particular dimension of micro-nano structure and the multifaceted nature of ZnO synergistically affected MC3T3-E1 osteogenesis and bacterial activities:(1)The surface morphology showed a‘contact guidance'effect on cell arrangement,which was conducive to the adhesion of filopodia and cell spreading,and the osteogenesis level of MC3T3-E1 was enhanced due to the release of zinc ions(Zn^(2+));(2)the characterization of bacterial response revealed that periodic nanostructures and Zn^(2+)released could cause damage to the cell wall of E.coli and reduce the adhesion and aggregation of S.aureus.In conclusion,the modified surface showed a synergistic effect of physical topography and chemical composition,making this a promising method and providing new insight into bone defect repairment. 展开更多
关键词 Ti-6Al-4V implant Laser processing micro-nano structure Zinc oxide Osseointegration ability Antibacterial capacity
原文传递
Micro-nano structured VNb_(9)O_(25)anode with superior electronic conductivity for high-rate and long-life lithium storage 被引量:2
2
作者 Mingxing Liang Yongcong Huang +7 位作者 Yuda Lin Guisheng Liang Cihui Huang Lan Chen Jiaxin Li Qian Feng Chunfu Lin Zhigao Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第24期66-74,共9页
The oxygen vacancies and micro-nano structure can optimize the electron/Li+migration kinetics in anode materials for lithium batteries(LIBs).Here,porous micro-nano structured VNb_(9)O_(25)composites with rich oxygen v... The oxygen vacancies and micro-nano structure can optimize the electron/Li+migration kinetics in anode materials for lithium batteries(LIBs).Here,porous micro-nano structured VNb_(9)O_(25)composites with rich oxygen vacancies were reasonably prepared via a facile solvothermal method combined with annealing treatment at 800℃for 30 h(VNb_(9)O_(25)-30 h).This micro-nano structure can enhance the contact of active material/electrolyte,and shorten the Li+diffusion distance.The introduction of oxygen vacancies can further boosts the intrinsic conductivity of VNb_(9)O_(25)-30 h for achieving excellent LIB performance.The as-prepared VNb_(9)O_(25)-30 h anode showed advanced rate capability with reversible capacity of 122.2 m A h g^(-1)at 4 A g^(-1),and delivered excellent capacity retention of~100%after 2000 cycles.Meanwhile,VNb_(9)O_(25)-30 h provides unexpected long-cycle life(i.e.,reversible capacity of 165.7 m A h g^(-1)at 1 A g^(-1)with a high capacity retention of 85.6%even after 8000 cycles).Additionally,coupled with the Li Fe PO4 cathode,the Li Fe PO4//VNb_(9)O_(25)-30 h full cell delivers superior LIB properties with high reversible capacities of 91.6 m A h g^(-1)at 5 C for 1000 cycles.Thus,such reasonable construction method can assist in other high-performance niobium-based oxides in LIBs. 展开更多
关键词 Lithium-ion batteries VNb_(9)O_(25)anode micro-nano structure Oxygen vacancies Electrochemical performance
原文传递
Investigation on Surface Plasmon Polaritons and Localized Surface Plasmon Production Mechanism in Micro-Nano Structures 被引量:1
3
作者 Ling-Xi Hu Min Hu Sheng-Gang Liu 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第1期20-29,共10页
The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons gr... The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons grating(Au substrate grating),and pure electric conductor(PEC)substrate with Au ribbons grating(Au ribbons grating).And the characteristics of the Smith-Purcell radiation in these structures were presented.Simulation results show that SPPs are excited on the bottom surface of Au substrate grating grooves and LSP is stimulated on the upper surface both of Au ribbons grating grooves and Au grating grooves.Owing to the irreconcilable contradiction between optimizing the grating diffraction radiation efficiency and optimizing the SPPs excitation efficiency in the Au substrate grating,only 40-times enhancement of the radiation intensity was obtained by excited SPPs.However,the LSP enhanced structure overcomes the above problem and gains much better radiation enhancement ability,with about 200-times enhancement obtained in the Au ribbons grating and more than 500-times enhancement obtained in the Au grating.The results presented here provide a way of developing miniature,integratable,tunable,high-power-density radiation sources from visible light to ultraviolet rays at room temperature. 展开更多
关键词 Coherent radiation high-power radiation localized surface plasmon(LSP) micro-nano structure Smith-Purcell radiation surface plasmon polaritons(SPPs)
在线阅读 下载PDF
Synthesis and electrochemical performance of micro-nano structured Li Fe1-xMnxPO4/C(0≤x≤0.05)cathode for lithium-ion batteries 被引量:1
4
作者 Chunyang Li Guojun Li Xiaomei Guan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期923-929,共7页
Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0... Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0μm are composed of lots of nanoparticles of 20 to 30 nm,and have the well-developed interconnected pore structure.In contrast,when Mn doping content is 3 mol%(x=0.03),the Li Fe(0.97)Mn(0.03)PO4/C demonstrates maximum specific surface area of 31.30 m^2/g,more uniform pore size and relatively better electrochemical performance.The initial discharge capacities are 161.59,157.04 and 153.13 m Ah/g at a discharge rate of 0.2,0.5 and 1 C,respectively.Meanwhile,the discharge capacity retentions are~100%after 120 cycles.The improved electrochemical performance should be attributed to higher specific surface,smaller polarization voltage,and a high Li~+diffusion rate due to the micro-nano porous structure and lattice expansion produced by Mn doping. 展开更多
关键词 Li Fe1-xMnxPO4/C Spray drying Electrochemical property micro-nano structure
在线阅读 下载PDF
Recent progress on fabrication, spectroscopy properties, and device applications in Sn-doped CdS micro-nano structures
5
作者 Bo Cao Ye Tian +8 位作者 Huan Fei Wen Hao Guo Xiaoyu Wu Liangjie Li Zhenrong Zhang Lai Liu Qiang Zhu Jun Tang Jun Liu 《Journal of Semiconductors》 EI CAS CSCD 2024年第9期7-27,共21页
One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including ... One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development. 展开更多
关键词 Sn-doped CdS micro-nano structure SUPERLATTICES optical microcavity
在线阅读 下载PDF
Potential application of functional micro-nano structures in petroleum
6
作者 LIU He JIN Xu +2 位作者 ZHOU Dekai YANG Qinghai LI Longqiu 《Petroleum Exploration and Development》 2018年第4期745-753,共9页
This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure d... This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure design and manufacturing technology in the petroleum industry. The functional micro-nano structure is the structure and device with special functions prepared to achieve a specific goal. New functional micro-nano structures are classified into mobile type(e.g. micro-nano motors) and fixed type(e.g. metamaterials), and 3 D printing technology is a developed method of manufacturing. Combining the demand for exploration and development in oil and gas fields and the research status of intelligent micro-nano structures, we believe that there are 3 potential application directions:(1) The intelligent micro-nano structures represented by metamaterials and smart coatings can be applied to the oil recovery engineering technology and equipment to improve the stability and reliability of petroleum equipment.(2) The smart micro-nano robots represented by micro-motors and smart microspheres can be applied to the development of new materials for enhanced oil recovery, effectively improving the development efficiency of heavy oil, shale oil and other resources.(3) The intelligent structure manufacturing technology represented by 3 D printing technology can be applied to the field of microfluidics in reservoir fluids to guide the selection of mine flooding agents and improve the efficiency of mining. 展开更多
关键词 PETROLEUM industry micro-nano structures micro-nano motor METAMATERIALS 3D PRINTING application direction OIL production engineering OIL equipment enhanced OIL recovery
在线阅读 下载PDF
Mechanical Simulation of Hierarchical Micro-Nano Structure of Butterfly Wings
7
作者 SHI Shunjie GE Dengteng +2 位作者 JIN Junhong LI Guang YANG Shenglin 《Journal of Donghua University(English Edition)》 EI CAS 2020年第1期10-16,共7页
The ridge-cross rib microstructures of Carystoides escalantei butterfly wing scales have been reproduced by 2D and 3D models via the ANSYS software,and the structural analyses under tensile and bending deformation,as ... The ridge-cross rib microstructures of Carystoides escalantei butterfly wing scales have been reproduced by 2D and 3D models via the ANSYS software,and the structural analyses under tensile and bending deformation,as well as the relative failure analyses are performed for those models.It has been found that the curved model in which the ridges acted as triangular prisms while the cross-ribs acted as bend cuboids could simulate the real scale configuration more accurately.Besides,it also shows much more even stress distribution under deformation and better mechanical properties than the rectangular one,in which both ridges and cross-ribs are modeled as regular cuboids. 展开更多
关键词 BUTTERFLY scales MULTILEVEL structure BIONIC model MECHANICAL simulation
在线阅读 下载PDF
Enhanced Flow Boiling Heat Transfer of HFE-7100 in Open Microchannels Using Micro-Nano Composite Structures
8
作者 Liaofei Yin Kexin Zhang +3 位作者 Tianjun Qin Wenhao Ma YiDing Yawei Xu 《Frontiers in Heat and Mass Transfer》 2025年第3期751-764,共14页
Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.Ho... Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.However,the continuous rise in power density of electronic components imposesmore stringent requirements on the heat transfer capability of microchannel flow boiling.HFE-7100,a dielectric coolant with favorable thermophysical properties,has become a focal point of research for enhancing flow boiling performance in open microchannels.The flow boiling heat transfer performance ofHFE-7100 was investigated in this study by fabricating micro-nano composite structures on the bottom surface of open microchannels using laser ablation technology.Based on visualization results,a comparative analysis was conducted on the bubble dynamics and flow pattern characteristics of HFE-7100 flow boiling in micronano structured open microchannels(MNSOMC)and smooth-surface open microchannels(SSOMC),to elucidate the enhancement mechanism of micro-nano structures on flow boiling heat transfer in open microchannels.The results indicate that the surface structures and strong wettability of MNSOMC accelerated bubble nucleation and departure.Moreover,bubbles in the channel tended to coalesce along the flow direction,forming elongated slug bubbles with high aspect ratios,which enabled efficient thin film evaporation in conjunction with intense nucleate boiling,thereby significantly enhancing flow boiling heat transfer.Under the experimental conditions of this study,the maximum enhancements in the heat transfer coefficient(HTC)and critical heat flux(CHF)of HFE-7100 inMNSOMC were 33.4%and 133.1%,respectively,with the CHF reaching up to 1542.3 kW⋅m^(−2).Furthermore,due to the superior wettability and capillary wicking capability of the micro-nano composite structures,the significant enhancement in flow boiling heat transfer was achieved without incurring a noticeable pressure drop penalty. 展开更多
关键词 Open microchannel laser ablation micro-nano composite structures flow boiling heat transfer enhancement
在线阅读 下载PDF
Electric-Field-Driven Generative Nanoimprinting for Tilted Metasurface Nanostructures
9
作者 Yu Fan Chunhui Wang +6 位作者 Hongmiao Tian Xiaoming Chen Ben QLi Zhaomin Wang Xiangming Li Xiaoliang Chen Jinyou Shao 《Nano-Micro Letters》 2026年第1期290-305,共16页
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p... Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality. 展开更多
关键词 Generative nanoimprinting Electric field assistance Tilted metasurface structures Large-area fabrication
在线阅读 下载PDF
Coupled Effects of Single-Vacancy Defect Positions on the Mechanical Properties and Electronic Structure of Aluminum Crystals
10
作者 Binchang Ma Xinhai Yu Gang Huang 《Computers, Materials & Continua》 2026年第1期332-352,共21页
Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled t... Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design. 展开更多
关键词 Aluminum crystal vacancy defect microstructural characterization stress response electronic structure thermomechanical coupling
在线阅读 下载PDF
Evolution of the 3D pore structure of organic-rich shale with temperature based on micro-nano CT
11
作者 Chao-Fan Zhu Tian-Le Zhang +5 位作者 Jun-Fan Pan Yan-Wei Li James J.Sheng Dong Ge Rui Jia Wei Guo 《Petroleum Science》 2025年第6期2339-2352,共14页
Organic-rich shale is a significant potential source of oil and gas that requires development through in situ conversion technology.However,the evolution patterns of the internal three-dimensional(3D)pore structure an... Organic-rich shale is a significant potential source of oil and gas that requires development through in situ conversion technology.However,the evolution patterns of the internal three-dimensional(3D)pore structure and kerogen distribution at high temperatures are not well understood,making it difficult to microscopically explain the evolution of the flow conductivity in organic-rich shale at high temperatures.This study utilizes high-resolution X-ray computed tomography(micro-nano CT)to obtain the distribution of pores,kerogen,and inorganic matter at different temperatures.Combined with the pyrolysis results for the rock,the evolution of the pore structure at various temperatures is quantitatively analyzed.Based on three-phase segmentation technology,a model of kerogen distribution in organicrich shale is established by dividing the kerogen into clustered kerogen and dispersed kerogen stored in the inorganic matter and the pores into inorganic pores and organic pores within the kerogen skeleton.The results show that the inorganic pores in organic-rich shale evolve through three stages as the temperature increases:kerogen pyrolysis(200-400℃),clay mineral decomposition(400-600℃),and carbonate mineral decomposition(600-800℃).The inorganic pores porosity sequentially increases from 3%to 11.4%,13.1%,and 15.4%,and the roughness and connectivity of the inorganic pores gradually increase during this process.When the pyrolysis temperature reaches 400℃,the volume of clustered kerogen decreases from 25%to 12.5%.During this process,the relative density of kerogen decreases from9.5 g/cm^(3) in its original state to 5.4 g/cm^(3),while the kerogen skeleton density increases from 1.15 g/cm^(3) in its original state to 1.54 g/cm^(3).Correspondingly,7%-8%of organic pores develop within the clustered kerogen,accounting for approximately 50%of the volume of clustered kerogen.In addition,approximately 30%of the kerogen in organic-rich shale exists in the form of dispersed kerogen within inorganic matter,and its variation trend is similar to that of clustered kerogen,rapidly decreasing from 200 to 400℃ and stabilizing above 400℃.The results of this study provide an essential microscopic theoretical basis for the industrial development of organic-rich shale resources. 展开更多
关键词 Organic-rich shale micro-nano CT Kerogen Pores Pyrolysis
原文传递
Regulating the micro-nano structure of cellulose nanofibers reinforced polyvinyl alcohol composites for enhanced mechanical and barrier properties via one-pot wet milling
12
作者 Zhaoming Wu Ye Feng +5 位作者 Pengcheng Deng Dawei Xu Peng Li Zhenming Chen Canhui Lu Zehang Zhou 《Frontiers of Chemical Science and Engineering》 2025年第8期57-68,共12页
Herein,a one-pot method is proposed to manufacture recyclable polyvinyl alcohol/cellulose nanofibers composites with excellent mechanical and barrier performance through wet co-milling of the 2,2,6,6-tetramethylpiperi... Herein,a one-pot method is proposed to manufacture recyclable polyvinyl alcohol/cellulose nanofibers composites with excellent mechanical and barrier performance through wet co-milling of the 2,2,6,6-tetramethylpiperidine-1-oxyl oxidized bamboo pulp in the polyvinyl alcohol aqueous solution.This strategy achieves ultrafine nano-fibrillation of cellulose pulp into nanofibers and their simultaneous homogenous distribution in the polyvinyl alcohol matrix,as evidenced by the homogenized structural morphology and enhanced interfacial interactions.With increased grinding degree,the cellulose fibers are gradually exfoliated and uniformly distributed in the polyvinyl alcohol matrix.The structure evolution of polyvinyl alcohol/cellulose composites during exfoliation and the structure-properties relationship are systematically analyzed.Consequently,the resultant polyvinyl alcohol/cellulose nanofibers composite films exhibit a‘reinforced concrete’structure with improved grain boundary strengthening effect,stress transfer capability and barrier properties.The elastic modulus,tensile strength and toughness of the polyvinyl alcohol/cellulose nanofibers composite films are significantly enhanced by 195.1%,33.8%and 56.2%compared to those of pure polyvinyl alcohol film,respectively.The greatly reduced oxygen permeability coefficient demonstrates their great potential in food packaging.This research proposes a practical one-pot method for the fabrication and structure regulation of polyvinyl alcohol/cellulose nanofibers composites and provides valuable insights into their structure-property relationships. 展开更多
关键词 one-pot milling composite film structure regulation mechanical properties oxygen barrier
原文传递
Micro-nano structured functional coatings deposited by liquid plasma spraying 被引量:8
13
作者 Yuchun HUAN Kaidi WU +3 位作者 Changjiu LI Hanlin LIAO Marc DEBLIQUY Chao ZHANG 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2020年第5期517-534,共18页
Inspired by the micro-nano structure on the surface of biological materials or living organisms,micro-nano structure has been widely investigated in the field of functional coatings.Due to its large specific surface a... Inspired by the micro-nano structure on the surface of biological materials or living organisms,micro-nano structure has been widely investigated in the field of functional coatings.Due to its large specific surface area,porosity,and dual-scale structure,it has recently attracted special attention.The typical fabrication processes of micro-nano structured coatings include sol-gel,hydrothermal synthesis,chemical vapor deposition,etc.This paper presents the main features of a recent deposition and synthesis technique,liquid plasma spraying(LPS).LPS is an important technical improvement of atmospheric plasma spraying.Compared with atmospheric plasma spraying,LPS is more suitable for preparing functional coatings with micro-nano structure.Micro-nano structured coatings are mainly classified into hierarchical-structure and binary-structure.The present study reviews the preparation technology,structural characteristics,functional properties,and potential applications of LPS coatings with a micro-nano structure.The micro-nano structured coatings obtained through tailoring the structure will present excellent performances. 展开更多
关键词 liquid plasma spraying(LPS) composite spraying micro-nano structure functional coatings
原文传递
Advanced Functional Electromagnetic Shielding Materials:A Review Based on Micro‑Nano Structure Interface Control of Biomass Cell Walls
14
作者 Yang Shi Mingjun Wu +14 位作者 Shengbo Ge Jianzhang Li Anoud Saud Alshammari Jing Luo Mohammed A.Amin Hua Qiu Jinxuan Jiang Yazeed M.Asiri Runzhou Huang Hua Hou Zeinhom M.El‑Bahy Zhanhu Guo Chong Jia Kaimeng Xu Xiangmeng Chen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期98-134,共37页
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and... Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field. 展开更多
关键词 Biomass materials Electromagnetic interference shielding micro-nano structure interface control CONDUCTIVITY
在线阅读 下载PDF
Structure induced wide range wettability:Controlled surface of micro-nano/nano structured copper films for enhanced interface 被引量:1
15
作者 Lili Cao Bingwei Luo +3 位作者 Hongli Gao Min Miao Tao Wang Yuan Deng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第25期147-158,共12页
The wettability of materials used in the production of devices employed in various technological domains have attracted significant attentions.Therefore,it is important to design the surfaces of these materials such t... The wettability of materials used in the production of devices employed in various technological domains have attracted significant attentions.Therefore,it is important to design the surfaces of these materials such that they can provide the required surface free energy and simplify the interfacial structure.Herein,various Cu films with a highly controllable surface wettability and a wide range of contact angles ranging from 6°to 152°were fabricated,and the corresponding mechanism was discussed.A wide range of wettability was realized by controlling the surface structure of the Cu film.The nanogap structure of the vertical nanowire-array film led to a high surface free energy.Similarly,the oblique nanowirearray film increased the surface free energy;however,the surface free energy was dependent on the size of the nanowires rather than on the nanogaps owing to the crystallinity of the film.Additionally,cluster-nanowire-array films were designed to realize a wettability transition from hydrophilicity to hydrophobicity with a constant surface free energy.The Cu foam possessed a superhydrophilic surface owing to its high porosity,whereas the cluster-nanoparticle structure possessed a superhydrophobic surface.In addition,we noted that the structure-induced wettability played an important role in tuning the semiconductor and metal interfacial stress and simplifying the interfacial structure.Furthermore,the outstanding electrical conductivity of the Cu films indicates its promising potential as an electrode.The structure-induced wettability proposed in this study can be applied for a wide range of materials,particularly for films used for advanced applications. 展开更多
关键词 WETTABILITY COPPER FILM micro-nano structure INTERFACE
原文传递
Surface Micro-Nano Structures on GaN Thin Films Induced by 355 nm Nanosecond Laser Irradiation
16
作者 Gu Yonggang Niu Jian +2 位作者 Yang Jian Dong Fang Xu Hongxing 《激光与光电子学进展》 CSCD 北大核心 2023年第7期196-202,共7页
Gallium nitride(GaN)has widespread applications in the semiconductor industry because of its desirable optoelectronic properties.The fabrication of surface structures on GaN thin films can effectively modify their opt... Gallium nitride(GaN)has widespread applications in the semiconductor industry because of its desirable optoelectronic properties.The fabrication of surface structures on GaN thin films can effectively modify their optical and electrical properties,providing additional degrees of freedom for controlling GaN-based devices.Compared with lithography-based techniques,laser processing is maskless and much more efficient.This paper shows how surface micronano structures can be produced on GaN thin films using 355 nm nanosecond laser irradiation.The effects of the laser pulse energy,number of pulses,and polarization direction were studied.It was found that distinct micro-nano structures were formed under different irradiation conditions,and their geometries and elemental compositions were analyzed.The results indicate that different types of surface micro-nano structures can be produced on GaN thin films in a controllable manner using 355 nm nanosecond laser irradiation.The results of our study provide valuable guidance for the surface modification of GaN-based optoelectronic devices. 展开更多
关键词 gallium nitride thin films nanosecond laser micro-nano structures laser-induced periodic surface structures
原文传递
Directionally tailoring micro-nano hierarchical tower structured Mn_(0.6)Ni_(1.4)Co_(2)O_(y) toward solar interfacial evaporation 被引量:2
17
作者 Yi Zhang Shujuan Tan +2 位作者 Tong Xu Zhuoting Zhou Guanbgin Ji 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第27期21-30,共10页
Solar interfacial evaporation has been considered as a promising method to alleviate fresh water re-sources shortage.The shortage of freshwater resources requires advanced materials that can accelerate the evaporation... Solar interfacial evaporation has been considered as a promising method to alleviate fresh water re-sources shortage.The shortage of freshwater resources requires advanced materials that can accelerate the evaporation of water by the sun.However,the simple structure of photothermal materials are vitally restricted by finite light absorption.Herein,this work presents a strategy for the synthesis of a spinel-type micro-nano hierarchical tower structure solar absorbent(Mn_(0.6)Ni_(1.4)Co_(2)O_(y))with the low forbidden band(=1.56 eV)and high absorption(97.88%).The products show great potential in solar-thermal energy conversion by creating a trapping effect.The prepared solar absorbent and epoxy resin are evenly mixed and then fully immersed in polyurethane(PU)sponge for water evaporation.The hydrophilic and porous Mn_(0.6)Ni_(1.4)Co_(2)O_(y)@PU sponge can quickly deliver water upwards,suppress the heat loss,and concentrate the absorbed heat on the evaporation of water.The products exhibited an excellent evaporation rate of 2.261 kg m^(-2) h^(-1) and an impressive evaporation efficiency of 156%under a single sun exposure.Besides,the samples also can maintain the stability and recycling performance for a long time.These findings show that Mn_(0.6)Ni_(1.4)Co_(2)O_(y) have great application prospects in the solar interfacial evaporation. 展开更多
关键词 Solar interfacial evaporation Photothermal conversion SPINEL micro-nano hierarchical structure
原文传递
Viscosity and structure relationship with equimolar substitution of CaO with MgO in the CaO–MgO–Al_(2)O_(3)–SiO_(2)slag melts 被引量:1
18
作者 Yong Hou Shuo Zhang +3 位作者 Jie Dang Jia Guo Hanghang Zhou Xuewei Lü 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期70-79,共10页
Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on... Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO. 展开更多
关键词 ALUMINOSILICATE VISCOSITY structure spectroscopy
在线阅读 下载PDF
Superamphiphobic, light-trapping FeSe2 particles with a micro-nano hierarchical structure obtained by an improved solvothermal method 被引量:1
19
作者 郁菁 王会杰 +1 位作者 邵伟佳 许小亮 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第1期336-340,共5页
Wettability and the light-trapping effect of FeSe2 particles with a micro-nano hierarchical structure have been inves- tigated. Particles are synthesized by an improved solvothermal method, wherein hexadecyl trimetbyl... Wettability and the light-trapping effect of FeSe2 particles with a micro-nano hierarchical structure have been inves- tigated. Particles are synthesized by an improved solvothermal method, wherein hexadecyl trimetbyl ammonium bromide (CTAB) is employed as a surfactant. After modifying the particles with heptadecafluorodecyltrimethoxy-silane (HTMS), we find that the water contact angle (WCA) of the FeSe2 particles increases by 6.1~ and the water sliding angle (WSA) decreases by 2.5~ respectively, and the diffuse reflectivity decreases 29.4% compared with similar FeSe2 particles synthe- sized by the conventional method. The growth process of the particles is analyzed and a growth scenario is given. Upon altering the PH values of the water, we observe that the superhydrophobic property is maintained quite consistently across a wide PH range of 1-14. Moreover, the modified particles were also found to be superoleophobic. To the best of our knowledge, there is no systematic research on the wettability of FeSe2 particles, so our research provides a reference for other researchers. 展开更多
关键词 FeSe2 SUPERHYDROPHOBIC micro-nano hierarchical structure light-trapping
原文传递
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption 被引量:1
20
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部