期刊文献+
共找到11,674篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of Micro-electrolysis and Micro-nano Bubbles Coupled with Peroxymonosulfate Treatment of Rural Domestic Sewage
1
作者 Peng ZHOU Yixin XU +3 位作者 Dongmei CHEN Cheng WU Xiaosi LEI Li FENG 《Meteorological and Environmental Research》 2024年第4期54-57,共4页
With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combine... With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combined process of micro-electrolysis+micro-nano bubbles coupled with peroxymonosulfate was constructed in this study,and the treatment effect and application value of this technology were explored with the actual rural domestic sewage as the treatment object.The experimental results showed that under the conditions of HRT of 120 min,PMS dosage of 0.15 mmol/L,pH=7,MBs air intake of 15 ml/min,current intensity of 15 A,and Fe/C mass ratio of 1:1,the removal rates of COD,ammonia nitrogen and total phosphorus can reach 88.55%,77.18%and 74.67%,respectively.Under the condition that the pH value of sewage was not adjusted,the non-biochemical simultaneous decarbonization,denitrification and phosphorus removal of rural domestic sewage can be achieved by micro-electrolysis and micro-nano bubbles coupled with peroxymonosulfate.The concentrations of effluent COD,ammonia nitrogen and total phosphorus met the requirements of the first level standard of the Discharge Standard of Water Pollutants for Rural Domestic Sewage Treatment Facilities(DB45T2413-2021).And the comprehensive operating cost was about 1.15 yuan/m 3. 展开更多
关键词 Integrated equipment Rural domestic sewage micro-nano bubbles PEROXYMONOSULFATE MICRO-ELECTROLYSIS
在线阅读 下载PDF
Micro-nano bubbles enhanced degradation of emerging contaminants by ferrous-oxalate complexes:synergistic interaction between oxidation and coagulation
2
作者 Ping Li Xiaojiang Huang +5 位作者 Qing Yang Haozhe Xia Chunbo Li Zhiqiang Zhang Xuan Wang Jinsuo Lu 《Frontiers of Environmental Science & Engineering》 2025年第5期127-140,共14页
The activation of oxygen by ferrous(Fe^(2+))to generate·OH for contaminants degradation was inhibited due to the low utilization of oxygen,thus limiting its application in the practical environment.In this study,... The activation of oxygen by ferrous(Fe^(2+))to generate·OH for contaminants degradation was inhibited due to the low utilization of oxygen,thus limiting its application in the practical environment.In this study,with the superior oxygenation capacity of micro-nano bubbles(MNBs)and the stronger O_(2) activation capacity of Fe^(2+)-oxalate complexes,the MNBs/Fe^(2+)/oxalate(Ox)system was constructed with 4,4′-sulfonyldiphenol(BPS)as the main target emerging contaminants(ECs),and to investigate the enhancement contribution and reinforcement mechanism of the involvement of MNBs to the removal efficiency of ECs in the Fe^(2+)/Ox system.It was shown that the MNBs/Fe^(2+)/Ox system could effectively degrade four structurally diverse ECs.In this case,with BPS as the main target contaminant,adding MNBs could increase the BPS removal efficiency by about 35%.In the MNBs/Fe^(2+)/Ox system,the degradation rate of BPS depended on the concentration of Fe^(Ⅱ)(Ox)_(2)^(2-),while the extent of degradation was mainly governed by Fe^(Ⅱ)(Ox)_(2)^(2-)and Fe^(Ⅱ)(Ox)^(0).EPR and probe experiments showed that the reactive oxygen species(ROS)produced by the system and the iron hydroxide complexes produced by Fe^(3+)hydrolysis contributed to the degradation of BPS by oxidation and coagulation,respectively.In particular,·OH and O_(2)^(·-)were the main reactive oxygen species produced by this system.Moreover,the involvement of MNBs significantly increased the formation of ROS and iron hydroxide complexes in the Fe^(2+)/Ox system.The oxygenation process of MNBs used in this study enhanced the contaminants degradation performance of the Fe^(2+)/O_(x) system and has broadened the application scope of MNBs. 展开更多
关键词 micro-nano bubbles FERROUS Molecular oxygen activation Enhanced oxidation Synergistic interaction
原文传递
Environment-friendly surface cleaning using micro-nano bubbles 被引量:11
3
作者 Nuo Jin Fenghua Zhang +4 位作者 Yan Cui Le Sun Haoxiang Gao Ziang Pu Weimin Yang 《Particuology》 SCIE EI CAS CSCD 2022年第7期1-9,共9页
Cleaning a surface using a solution containing a large number of micro to nano scale bubbles has significant advantage regarding environmental protection.This review first briefly introduces the cleaning mechanism of ... Cleaning a surface using a solution containing a large number of micro to nano scale bubbles has significant advantage regarding environmental protection.This review first briefly introduces the cleaning mechanism of micro-nano bubbles(MNBs),including physical and chemical effects.Then the applications of MNBs in cleaning of metal parts,precision parts,cultural relics or food are introduced.After that,coupled cleaning method of ultrasound and bubbles is introduced.Finally,the characterization methods for the cleaning effect are introduced,which mainly focuses on the changes of physico-chemical properties(mass or cleaning area,infiltration,colony number and light scattering intensity)of the cleaned parts or that(like conductivity)of the solvent.It is believed that MNBs technology will be applied in a broader range of surface cleaning applications. 展开更多
关键词 micro-nano bubbles Surface cleaning Green cleaning Environmental protection
原文传递
Chemically-induced active micro-nano bubbles assisting chemical mechanical polishing:Modeling and experiments 被引量:2
4
作者 Lei XU Kihong PARK +5 位作者 Hong LEI Pengzhan LIU Eungchul KIM Yeongkwang CHO Taesung KIM Chuandong CHEN 《Friction》 SCIE EI CAS CSCD 2023年第9期1624-1640,共17页
The material loss caused by bubble collapse during the micro-nano bubbles auxiliary chemical mechanical polishing(CMP)process cannot be ignored.In this study,the material removal mechanism of cavitation in the polishi... The material loss caused by bubble collapse during the micro-nano bubbles auxiliary chemical mechanical polishing(CMP)process cannot be ignored.In this study,the material removal mechanism of cavitation in the polishing process was investigated in detail.Based on the mixed lubrication or thin film lubrication,bubble-wafer plastic deformation,spherical indentation theory,Johnson-Cook(J-C)constitutive model,and the assumption of periodic distribution of pad asperities,a new model suitable for micro-nano bubble auxiliary material removal in CMP was developed.The model integrates many parameters,including the reactant concentration,wafer hardness,polishing pad roughness,strain hardening,strain rate,micro-jet radius,and bubble radius.The model reflects the influence of active bubbles on material removal.A new and simple chemical reaction method was used to form a controllable number of micro-nano bubbles during the polishing process to assist in polishing silicon oxide wafers.The experimental results show that micro-nano bubbles can greatly increase the material removal rate(MRR)by about 400%and result in a lower surface roughness of 0.17 nm.The experimental results are consistent with the established model.In the process of verifying the model,a better understanding of the material removal mechanism involved in micro-nano bubbles in CMP was obtained. 展开更多
关键词 micro-nano bubbles mixed lubrication material removal mechanism chemical mechanical polishing(CMP) MODELING
原文传递
Impact of Bubbles on Mechanical Performances in a Borosilicate Glass
5
作者 LI Chengxing LI Dongfeng +2 位作者 MA Shilong QIAO Ang ZHENG Qingshuang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期25-29,共5页
To analyze the impact of bubbles on the mechanical behavior of glasses,by controlling the refining time,we prepared three borosilicate glasses with the same composition and different porosity.By the analysis software ... To analyze the impact of bubbles on the mechanical behavior of glasses,by controlling the refining time,we prepared three borosilicate glasses with the same composition and different porosity.By the analysis software integrated within the optical microscope,the diameter and number of the bubbles on the surface of three borosilicate glasses were quantified.From the hardness and crack initiation resistance(CR),we built the relationship between the porosity and the mechanical performance of these borosilicate glasses. 展开更多
关键词 bubbles oxide glass HARDNESS creak initiation resistance
原文传递
Investigation of bubbles escape behavior from low basicity mold flux for high-Mn high-Al steels using 3D X-ray microscope
6
作者 Qiang Liu Xiang Li +3 位作者 Shen Du Ming Gao Yanbin Yin Jiongming Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期102-110,共9页
During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest... During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels. 展开更多
关键词 mold flux low basicity bubbles three-dimensional X-ray microscope VISCOSITY
在线阅读 下载PDF
Deformation and migration characteristics of bubbles moving in gas-liquid countercurrent flow in annulus
7
作者 YIN Bangtang DING Tianbao +4 位作者 WANG Shulong WANG Zhiyuan SUN Baojiang ZHANG Wei ZHANG Xuliang 《Petroleum Exploration and Development》 2025年第2期471-484,共14页
The gas-liquid countercurrent flow pattern is complex and the bubble migration velocity is difficult to predict in the process of bullheading well killing.The experiment on bubble migration in gas-liquid countercurren... The gas-liquid countercurrent flow pattern is complex and the bubble migration velocity is difficult to predict in the process of bullheading well killing.The experiment on bubble migration in gas-liquid countercurrent flow in annulus is carried out under different working conditions to reveal how the wellbore inclination angle,liquid phase property and countercurrent liquid velocity affect the bubble deformation and bubble migration trajectory/velocity,and to establish a bubble migration velocity prediction model.The bubbles in the countercurrent flow mainly migrate in two modes:free rising of isolated bubbles,and interactive rising of multiple bubbles.The bubbles migrate by an S-shaped trajectory in the countercurrent flow.With the increase of countercurrent liquid velocity,the lateral oscillation of bubbles is intensified.The increases of wellbore inclination angle,liquid density and liquid viscosity make the bubble migration trajectory gradually to be linear.The bubble is generally ellipsoidal during its rising.The wellbore inclination angle has little effect on the degree of bubble deformation.The bubbles are ellipsoidal during rising,with little influence of wellbore inclination angle on bubble deformation.With the increase of liquid viscosity and density,the aspect ratio of the bubble decreases.As the wellbore inclination angle increases,the bubble migration velocity gradually decreases.As the liquid viscosity increases,the bubble migration velocity decreases.As the liquid density increases,the bubble migration velocity increases slightly.The established bubble migration velocity prediction model yields errors within±15%,and demonstrates broad applicability across a wide range of operating conditions. 展开更多
关键词 bullheading well killing method gas-liquid countercurrent flow bubble aspect ratio bubble migration trajectory bubble migration velocity
在线阅读 下载PDF
Mechanical Constitutive Model for Equivalent Solid of Fission Gas Bubbles in Irradiated U-10Mo Fuels
8
作者 Li Yong Yan Feng +2 位作者 Zhang Jing Zang Liye Ding Shurong 《稀有金属材料与工程》 北大核心 2025年第7期1653-1660,共8页
The internal pressure within fission gas bubbles(FGBs)in irradiated nuclear fuels drives mechanical interactions with the surrounding fuel skeleton.To investigate the micromechanical stress fields in irradiated nuclea... The internal pressure within fission gas bubbles(FGBs)in irradiated nuclear fuels drives mechanical interactions with the surrounding fuel skeleton.To investigate the micromechanical stress fields in irradiated nuclear fuels containing pressurized FGBs,a mechanical constitutive model for the equivalent solid of FGBs was developed and validated.This model was based on the modified Van der Waals equation,incorporating the effects of surface tension.Using this model,the micromechanical fields in irradiated U-10Mo fuels with randomly distributed FGBs were calculated during uniaxial tensile testing via the finite element(FE)method.The macroscopic elastic constants of the irradiated U-10Mo fuels were then derived using homogenization theory,and the influences of bubble pressure,bubble size,and porosity on these constants were examined.Results show that adjacent FGBs exhibit mechanical interactions,which leads to distinct stress concentrations in the surrounding fuel skeleton.The macroscopic elastic constants of irradiated U-10Mo fuels decrease with increasing the macroscopic porosity,which can be quantitatively described by the Mori-Tanaka model.In contrast,bubble pressure and size have negligible effects on these constants. 展开更多
关键词 effective mechanical constitutive model fission gas bubbles FE method U-10Mo nuclear fuels macroscopic elastic constants
原文传递
Effects of operating parameters on size and distribution of bubbles in coarse-particle flotation column
9
作者 Ying-sheng JIN Wei SUN +6 位作者 Jian PENG Zheng-chang SHEN Hai-sheng HAN Lei SUN Yao XIAO Yuan-jia LUO Yi CHEN 《Transactions of Nonferrous Metals Society of China》 2025年第9期3120-3133,共14页
The size and distribution patterns of bubbles within a laboratory-scale coarse-particle flotation column were examined using a high-speed camera-based dynamic measurement system.The effects of operational parameters s... The size and distribution patterns of bubbles within a laboratory-scale coarse-particle flotation column were examined using a high-speed camera-based dynamic measurement system.The effects of operational parameters such as superficial water velocity,air-flow rate,and frother dosage on bubble-size and distribution characteristics were investigated.This study aims to provide theoretical support for enabling fluidized-bed flotation within coarse-particle flotation columns.The results show that negative pressure for air inspiratory and bubble formation is generated by passing a high-speed jet through a throat,and the greatest number of bubbles are observed under natural inspiratory state at an air-liquid ratio of 1:3-1:2.5.Increasing the air-flow rate transforms the bubble diameter distribution from a peaked distribution to a more uniform distribution.Furthermore,the frother narrows the range of bubble-size distribution.A positive correlation exists between the bubble Sauter diameter and air-flow rate,with the bubble Sauter diameter bearing a negative correlation with the superficial water velocity and frother concentration. 展开更多
关键词 coarse-particle flotation fluidized-bed flotation bubble size superficial water velocity
在线阅读 下载PDF
Investigation on propagation mechanism of leakage acoustic waves in horizontal liquid pipelines containing gas bubbles
10
作者 Cui-Wei Liu Lin-Jing Yue +2 位作者 Yuan Xue Shu-Fang Zhu Yu-Xing Li 《Petroleum Science》 2025年第4期1757-1770,共14页
Sound speed is essential for leakage detection in liquid pipelines when using acoustic methods,which can be significantly influenced by gas bubbles generated from leakage.The propagation characteristics and mechanism ... Sound speed is essential for leakage detection in liquid pipelines when using acoustic methods,which can be significantly influenced by gas bubbles generated from leakage.The propagation characteristics and mechanism of acoustic waves in horizontal liquid pipelines containing gas bubbles are studied in detail in the present paper.The effect of sound wave frequency,bubble size and bubble distribution pattern on sound speed is studied through numerical simulations.The results show that the acoustic wave generated by leakage of liquid pipelines containing gas bubbles is a multi-frequency signal,and the energy of the signal is mainly concentrated within 200 Hz.In the low-frequency range,the propagation of sound waves has almost no dispersion in bubbly liquid.Sound speed at a certain void fraction is not constant,which is related to the bubble size and distribution pattern.The bubble size affects the gasliquid heat transfer equilibrium,during which sound speed is affected.For this reason,a thermodynamic correction factor is proposed,which enables the accuracy of the sound speed calculation to reach98.2%.What's more,sound speed increases non-linearly with the reduction of the bubble distribution space in the pipeline axial direction.This paper establishes a theoretical calculation model of sound speed based on the bubble distribution pattern in the pipeline axial direction,which is in good agreement with the numerical calculation results.The results of this paper provide the basis for applying acoustic leak detection technology in liquid pipelines containing gas bubbles. 展开更多
关键词 Liquid pipelines Gas bubbles Sound speed Leak detection Computational fluid dynamics
原文传递
Distributions of crystals and gas bubbles in reservoir ice during growth period 被引量:7
11
作者 Zhi-jun LI Wen-feng HUANG +1 位作者 Qing JIA Matti LEPPARANTA 《Water Science and Engineering》 EI CAS 2011年第2期204-211,共8页
In order to understand the dominant factors of the physical properties of ice in ice thermodynamics and mechanics, in-situ observations of ice growth and decay processes were carried out. Two samplings were conducted ... In order to understand the dominant factors of the physical properties of ice in ice thermodynamics and mechanics, in-situ observations of ice growth and decay processes were carried out. Two samplings were conducted in the fast and steady ice growth stages. Ice pieces were used to observe ice crystals and gas bubbles in ice, and to measure the ice density. Vertical profiles of the type and size of ice crystals, shape and size of gas bubbles, and gas bubble content, as well as the ice density, were obtained. The results show that the upper layer of the ice pieces is granular ice and the lower layer is columnar ice; the average crystal size increases with the ice depth and remains steady in the fast and steady ice growth stages; the shape of gas bubbles in the upper layer of ice pieces is spherical with higher total content, and the shape in the middle and lower layers is cylinder with lower total content; the gas bubble size and content vary with the ice growth stage; and the ice density decreases with the increase of the gas bubble content. 展开更多
关键词 ice crystal gas bubble crystal structure POROSITY ice density
在线阅读 下载PDF
Simulation study on factors influencing the entrainment behavior of liquid steel as bubbles pass through the steel/slag interface 被引量:4
12
作者 Xiang Li Yan-ping Bao +1 位作者 Min Wang Lu Lin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第5期511-519,共9页
In this study, a water/silicone oil interface was used to simulate the steel/slag interface in a converter. A high-speed camera was used to record the entrainment process of droplets when air bubbles were passed throu... In this study, a water/silicone oil interface was used to simulate the steel/slag interface in a converter. A high-speed camera was used to record the entrainment process of droplets when air bubbles were passed through the water/silicone oil interface. Motion parameters of the bubbles and droplets were obtained using particle kinematic analysis software, and the entrainment rate of the droplets was calculated. It was found that the entrainment rate decreased from 29.5% to 0 when the viscosity of the silicone oil was increased from 60 mPa.s to 820 mPa.s in the case of bubbles with a 5 mm equivalent diameter passing through the water/silicone oil interface. The results indicate that in- creasing the viscosity of the silicone oil is conducive to reducing the entrainment rate. The entrainment rate increased from 0 to 136.3% in the case of silicone oil with a viscosity of 60 mPa.s when the equivalent diameter of the bubbles was increased from 3 mm to 7 ram. We there- fore conclude that small bubbles are also conductive to reducing the entrainment rate. The force analysis results for the water colmnn indicate that the entrainment rate of droplets is affected by the velocity of the bubble passing through the water/silicone oil interface and that the en- trainment rate decreases with the bubble velocity. 展开更多
关键词 STEELMAKING bubbles INTERFACES ENTRAINMENT influencing factors simulation studies
在线阅读 下载PDF
On the interaction between bubbles and the free surface with high density ratio 3D lattice Boltzmann method 被引量:6
13
作者 Guo-Qing Chen A-Man Zhang Xiao Huang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第4期252-256,299,共6页
The bubbles rise up and burst at the free surface is a complex two-phase process.A free energy lattice Boltzmann method(LBM)model is adopted in this paper to study this phenomenon.The interface capturing technique[Zhe... The bubbles rise up and burst at the free surface is a complex two-phase process.A free energy lattice Boltzmann method(LBM)model is adopted in this paper to study this phenomenon.The interface capturing technique[Zheng et al.,2006]is used to deal with the high density ratio problem.The Laplace law and the air-water interface capturing ability are validated for the multiphase model.The interaction between the single bubble or multiple bubbles and the free surface are studied by the multiphase model.The force acting on the bubble and the evolution of the free surface is studied.Meanwhile,effect of the initial distance between two adjacent bubbles on interaction effects of multiple bubbles is investigated as well. 展开更多
关键词 LATTICE BOLTZMANN method Free energy model High density RATIO Multiple bubbles
在线阅读 下载PDF
Breakup of Cavitation Bubbles within the Diesel Droplet 被引量:4
14
作者 L Ming NING Zhi +3 位作者 YAN Kai FU Juan SONG Yunchao SUN Chunhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期198-204,共7页
Supercavitation in the diesel nozzle increases the instability of droplets in part due to the two-phase mixture, while the effect of cavitation bubbles on the instability of drops is still unclear. In order to investi... Supercavitation in the diesel nozzle increases the instability of droplets in part due to the two-phase mixture, while the effect of cavitation bubbles on the instability of drops is still unclear. In order to investigate the breakup of cavitation bubbles within the diesel droplet, a new mathematical model describing the disturbance growth rate of the diesel bubble instability is developed. The new mathematical model is applied to predict the effects of fluids viscosity on the stability of cavitation bubbles. The predicted values reveal that the comprehensive effect of fluids viscosity makes cavitation bubbles more stable. Compared with the viscosities of air and cavitation bubble, the diesel droplet's viscosity plays a dominant role on the stability of cavitation bubbles. Furthermore, based on the modified bubble breakup criterion, the effects of bubble growth speed, sound speed, droplet viscosity, droplet density, and bubble-droplet radius ratio on the breakup time and the breakup radius of cavitation bubbles are studied respectively. It is found that a bubble with large bubble-droplet radius ratio has the initial condition for breaking easily. For a given bubble-droplet radius ratio (0.2), as the bubble growth speed increases (from 2 m/s to 60 m/s), the bubble breakup time decreases(from 3.59 gs to 0.17 ps) rapidly. Both the greater diesel droplet viscosity and the greater diesel droplet density result in the increase of the breakup time. With increasing initial bubble-droplet radius ratio (from 0.2 to 0.8), the bubble breakup radius decreases (from 8.86 trn to 6.23 tm). There is a limited breakup radius for a bubble with a certain initial bubble-droplet radius ratio. The mathematical model and the modified bubble breakup criterion are helpful to improve the study on the breakup mechanism of the secondary diesel droplet under the condition of supercavitation. 展开更多
关键词 SUPERCAVITATION INSTABILITY diesel droplet cavitation bubbles secondary breakup
在线阅读 下载PDF
Analysis of deformation and internal flow patterns for rising single bubbles in different liquids 被引量:4
15
作者 Xin Li Pan Zhang +2 位作者 Jianlong Li Weiwen Wang Guanghui Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第4期745-758,共14页
Gas–liquid multiphase flow is a significant phenomenon in chemical processes. The rising behaviors of single bubbles in the quiescent liquids have been investigated but the internal flow patterns and deformation rule... Gas–liquid multiphase flow is a significant phenomenon in chemical processes. The rising behaviors of single bubbles in the quiescent liquids have been investigated but the internal flow patterns and deformation rules of bubbles, which influence the mass transfer efficiency to a large extent, have received much less attention. In this paper, the volume of fluid method was used to calculate the bubble shapes, pressure, velocity distributions,and the flow patterns inside the bubbles. The rising behavior of the bubbles with four different initial diameters,i.e., 3 mm, 5 mm, 7 mm and 9 mm was investigated in four various liquids including water, 61.23% glycerol,86.73% glycerol and 100% glycerol. The results show that the liquid properties and bubble initial diameters have great impacts on bubble shapes. Moreover, flow patterns inside the bubbles with different initial diameters were analyzed and classified into three types under the condition of different bubble shapes. Three correlations for predicting the maximum internal circulation inside the bubbles in 86.73% glycerol were presented and the R-square values were all bigger than 0.98. Through analyzing the pressure and velocity distributions around the bubbles, four rules of bubble deformation were also obtained to explain and predict the shapes. 展开更多
关键词 MULTIPHASE FLOW bubble Interface DEFORMATION ANALYSIS INTERNAL FLOW pattern RISING behavior
在线阅读 下载PDF
Propagation of acoustic wave in viscoelastic medium permeated with air bubbles 被引量:3
16
作者 梁彬 朱哲民 程建春 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第2期412-421,共10页
Based on the modification of the radial pulsation equation of an individual bubble, an effective medium method (EMM) is presented for studying propagation of linear and nonlinear longitudinal acoustic waves in visco... Based on the modification of the radial pulsation equation of an individual bubble, an effective medium method (EMM) is presented for studying propagation of linear and nonlinear longitudinal acoustic waves in viscoelastic medium permeated with air bubbles. A classical theory developed previously by Gaunaurd (Gaunaurd GC and UEberall H, J. Acoust, Soc, Am., 1978; 63: 1699-1711) is employed to verify the EMM under linear approximation by comparing the dynamic (i.e. frequency-dependent) effective parameters, and an excellent agreement is obtained. The propagation of longitudinal waves is hereby studied in detail, The results illustrate that the nonlinear pulsation of bubbles serves as the source of second harmonic wave and the sound energy has the tendency to be transferred to second harmonic wave, Therefore the sound attenuation and acoustic nonlinearity of the viscoelastic matrix are remarkably enhanced due to the system's resonance induced by the existence of bubbles. 展开更多
关键词 acoustic wave viscoelastic medium bubblE NONLINEARITY
原文传递
Behaviors of fine bubbles in the shroud nozzle of ladle and tundish 被引量:8
17
作者 Yanping Boo, Jianhua Liu, and Baomei XuMetallurgical Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2003年第4期20-23,共4页
Fine bubbles will create when the inert gas is introduced to the high rapidsteel stream within the shroud nozzle between ladle and tundish. The collision and attachment amongthe bubbles and fine inclusions will promot... Fine bubbles will create when the inert gas is introduced to the high rapidsteel stream within the shroud nozzle between ladle and tundish. The collision and attachment amongthe bubbles and fine inclusions will promote the floatation efficiency of inclusions in the tundish.The behaviors of the bubbles, such as the dispersion in shroud, coalescence and floatation intundish, are studied. The results show that the maximum sizes of the bubbles in the water and steelflow within the shroud in the length of 1.2 m are 0.70-1.44 mm and 1.53-3.16 mm respectively whenthe flow rates are 0.006-0.016 m^3/s; the terminal velocities of fine bubbles in the water andmolten steel within the tundish are 0.02-0.2 and 0.05-0.6 m/s. 展开更多
关键词 fine bubbles shroud nozzle of the ladle flotation
在线阅读 下载PDF
Optimization of cavitation venturi tube design for pico and nano bubbles generation 被引量:17
18
作者 Xiong Yu Peng Felicia 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第4期523-529,共7页
Hydrodynamic cavitaion venturi tube technique is used for pico and nano bubble generations in coal column flotation. In order to determine the optimal design of hydrodynamic cavitation venture tube for pico and nano b... Hydrodynamic cavitaion venturi tube technique is used for pico and nano bubble generations in coal column flotation. In order to determine the optimal design of hydrodynamic cavitation venture tube for pico and nano bubble generation, a four-factor three-level Central Composite Design of Experimental was conducted for investigating four important design parameters of cavitation venturi tube governing the median size and the volume of pico and nano bubbles. The test results showed that maximum volume of pico and nano bubbles, 65–75%, and minimum mean pico and nano bubble size,150–240 nm, were achieved at the medium ratio of the diameter of outlet of the venturi-tube and diameter of throat(3–4), medium outlet angle(11–13°), high inlet angle(26–27°) and high ratio of the length of the throat and the diameter of throat(2.3–3). Study the effects of the producing pico and nano bubbles on fine coal flotation was performed in a 5 cm diameter 260 cm height flotation column. The optimal percentage of pico and nano bubbles was about 70%, which produced maximum combustible material recovery of 86% with clean coal ash content of 11.7%. 展开更多
关键词 Hydrodynamic cavitation venture tub edesign Pico and nano bubbles bubble volume and mean size distributions Coal Column Froth flotation
在线阅读 下载PDF
Surface Tension and Temperature Effect on Entrapment of Bubbles and Particles in Continuous Casting of Steel 被引量:3
19
作者 Sang-Min Lee Sang-Joon Kim Hae-Geon Lee 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S2期220-226,共7页
The entrapment behavior of Ar bubbles onto the solidifying front of molten steel in the continuous casting mold was investigated. The dynamic model of bubble and particle entrapment was developed in order to consider ... The entrapment behavior of Ar bubbles onto the solidifying front of molten steel in the continuous casting mold was investigated. The dynamic model of bubble and particle entrapment was developed in order to consider the effect of surface tension gradient induced forces(Marangoni force) due to the gradient of sulfur concentration and temperature. The numerical analysis and water model experiment were performed to apply the present model for various conditions. The calculation result is compared with experimental results and plant data in continuous casting mold as well. It shows that the thermal Marangoni force could play an important role and this model predicts the bubble behavior in the vicinity of solid/liquid interface more precisely. 展开更多
关键词 bubblE continuous casting surface tension gradient marangoni force
原文传递
Interaction of two in-line bubbles of equal size rising in viscous liquid 被引量:1
20
作者 Zhen Tian Xi Li +1 位作者 Youwei Cheng Lijun Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第1期54-62,共9页
The interaction of bubbles is the key to understand gas–liquid bubbling flow. Two-dimensional axis-symmetry computational fluid dynamics simulations on the interactive bubbles were performed with VOF method,which was... The interaction of bubbles is the key to understand gas–liquid bubbling flow. Two-dimensional axis-symmetry computational fluid dynamics simulations on the interactive bubbles were performed with VOF method,which was validated by experimental work. It is testified that several different bubble interactive behaviors could be acquired under different conditions. Firstly, for large bubbles(d: 4, 6, 8, 10 mm), the trailing bubble rising velocity and aspect ratio have negative correlations with liquid viscosity and surface tension. The influences of viscosity and surface tension on leading bubble are negligible. Secondly, for smaller bubbles(d: 1, 2 mm), the results are complicated. The two bubbles tend to move together due to the attractive force by the wake and the potential repulsive force. Especially for high viscous or high surface tension liquid, the bubble pairs undergo several times acceleration and deceleration. In addition, bubble deformation plays an important role during bubble interaction which cannot be neglected. 展开更多
关键词 bubblE column reactor Computational fluid dynamics bubblE INTERACTION bubblE rise velocity VOLUME-OF-FLUID method bubblE ASPECT ratio
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部