期刊文献+
共找到325,104篇文章
< 1 2 250 >
每页显示 20 50 100
Synergistic promotion of charge dynamics,H_(2)O activation,and dehydrogenation for enhanced visible-light H_(2)production on modified TiO_(2)
1
作者 Hao Gao Xiaoxiao He +8 位作者 Shuting Zhi Songjie Sun Yang Yang Wenwen Zhan Haobo Zhang Lei Yang Xiguang Han Jianwei Zhao Liming Sun 《Nano Research》 2026年第1期387-398,共12页
To simultaneously improve the critical factors in photocatalytic H_(2)production,the population of active photogenerated electrons,the adsorption and activation of H_(2)O molecules,and the surface dehydrogenation effi... To simultaneously improve the critical factors in photocatalytic H_(2)production,the population of active photogenerated electrons,the adsorption and activation of H_(2)O molecules,and the surface dehydrogenation efficiency,we propose a synergistic strategy for TiO_(2)modification by combining transition metal(TM)doping and N-doped carbon(N-C)coating.The targeted Cr-TiO_(2)@N-C heterojunction exhibits dramatically enhanced H_(2)production under blue light irradiation,contrasting sharply with a negligible production by pristine TiO_(2).Comprehensive structural characterization and theoretical calculations confirm the uniform substitution of Cr into the TiO_(2)lattice,promoting the formation of adjacent oxygen vacancies(VO).The synergistic effect of Cr doping and VO extends the light absorption range into the visible region.The coated N-C layer facilitates the efficient separation of photogenerated charge carriers,boosting the population of active electrons.Critically,the combined action of VO and N-C layer enhances the adsorption and activation of H_(2)O molecules while effectively improving the subsequent surface dehydrogenation efficiency.Significantly,this strategy demonstrates broad universality:Analogous TM-TiO_(2)@N-C heterojunctions(TM=Mn,Co,Ni,Cu,and Zn)synthesized via the same approach all show substantially improved H_(2)production performance over pristine TiO_(2). 展开更多
关键词 visible-light photocatalysis TiO_(2) substitutional doping charge separation hydrogen production
原文传递
Rational Design of Photoanodes in Portable Devices to Enhance H_(2)O_(2) Production for Microenvironment Control
2
作者 Haisu Wu Hanliang Fan +4 位作者 Hong Chen Dongxue Jiao Yuanxing Fang Xiaochun Zheng Maokai Xu 《Carbon Energy》 2026年第1期48-59,共12页
Hydrogen peroxide(H_(2)O_(2))is a versatile oxidant with significant applications,particularly in regulating the microenvironment for healthcare purposes.Herein,a rational design of the photoanode is implemented to en... Hydrogen peroxide(H_(2)O_(2))is a versatile oxidant with significant applications,particularly in regulating the microenvironment for healthcare purposes.Herein,a rational design of the photoanode is implemented to enhance H_(2)O_(2) production by oxidizing H_(2)O in a portable photoelectrocatalysis(PEC)device.The obtained solution from this system is demonstrated for effective bactericidal activity against Staphylococcus aureus and Escherichia coli,while maintaining low toxicity toward hippocampal neuronal cells.The photoanode is achieved by Mo-doped BiVO4 films,which are subsequently loaded with cobalt-porphyrin(Co-py)molecules as a co-catalyst.As a result,the optimal performance for H_(2)O_(2) production rate was achieved at 8.4μmol h^(−1) cm^(−2),which is 1.8 times that of the pristine BiVO4 photoanode.Density functional theory(DFT)simulations reveal that the improved performance results from a 1.1 eV reduction in the energy of the rate-determining step of·OH adsorption by the optimal photoanode.This study demonstrates a PEC approach for promoting H_(2)O_(2) production by converting H_(2)O for antibacterial purposes,offering potential applications in conventionally controlling microenvironments for healthcare applications. 展开更多
关键词 antibacterial BIVO4 co-catalysts H_(2)O_(2)production microenvironment PHOTOELECTROCATALYSIS
在线阅读 下载PDF
Production of ^(287,288)Mc isotopes in the ^(48)Ca+^(243)Am reaction at China Accelerator Facility for Superheavy Elements
3
作者 X.Y.Huang Z.Y.Zhang +38 位作者 J.G.Wang L.Ma C.L.Yang M.H.Huang X.L.Wu Z.G.Gan H.B.Yang M.M.Zhang Y.L.Tian Y.S.Wang J.Y.Wang Y.H.Qiang G.Xie S.Y.Xu Z.Zhao Z.C.Li L.C.Sun L.Zhu X.Zhang H.Zhou F.Guan Z.H.Li W.X.Huang Z.Qin Y.Wang X.J.Yin Y.F.Cui Z.W.Lu Y.He L.T.Sun Z.Z.Ren S.G.Zhou V.K.Utyonkov A.A.Voinov Yu.S.Tsyganov A.N.Polyakov D.I.Solovyev N.D.Kovrizhnykh M.V.Shumeiko 《Chinese Physics Letters》 2026年第1期9-16,共8页
We report the results of the experiment on synthesizing ^(287,288)Mc isotopes (Z=115) using the fusionevaporation reaction ^(243)Am(^(48)Ca,4n,3n)^(287,288)Mc at the Spectrometer for Heavy Atoms and Nuclear Structure-... We report the results of the experiment on synthesizing ^(287,288)Mc isotopes (Z=115) using the fusionevaporation reaction ^(243)Am(^(48)Ca,4n,3n)^(287,288)Mc at the Spectrometer for Heavy Atoms and Nuclear Structure-2(SHANS2),a gas-filled recoil separator located at the China Accelerator Facility for Superheavy Elements(CAFE2).In total,20 decay chains are attributed to ^(288)Mc and 1 decay chain is assigned to ^(287)Mc.The measured oa-decay properties of ^(287,288)Mc as well as its descendants are consistent with the known data.No additional decay chains originating from the 2n or 5n reaction channels were detected.The excitation function of the ^(243)Am(^(48)Ca,3n)^(288)Mc reaction was measured at the cross-section level of picobarn,which indicates the promising capability for the study of heavy and superheavy nuclei at the facility. 展开更多
关键词 spectrometer heavy atoms fusionevaporation reaction China Accelerator Facility Superheavy Elements production decay chains ISOTOPES ca am reaction mc
原文传递
Fe single-atom-modified g-C_(3)N_(4)via a facile oxygen-tolerant synthesis strategy for improved photocatalytic H_(2)production
4
作者 Wentao Xu Yuting Tang +3 位作者 Tao Ding Qichen Liu Xusheng Zheng Qing Yang 《Nano Research》 2026年第1期418-428,共11页
Single-atom catalysts based on graphitic carbon nitride(g-C_(3)N_(4))show high potential for hydrogen production photocatalytically.However,it is still a challenge to develop single-atom-based g-C_(3)N_(4)due to the c... Single-atom catalysts based on graphitic carbon nitride(g-C_(3)N_(4))show high potential for hydrogen production photocatalytically.However,it is still a challenge to develop single-atom-based g-C_(3)N_(4)due to the complex synthesis procedures,limited active sites,and insufficient mechanistic understanding.Herein,a facile oxygen-tolerant synthesis strategy was developed,which utilizes the nitrogen-rich structure of g-C_(3)N_(4)to capture Fe single atoms from ammonium iron citrate,successfully constructing an efficient photocatalytic composite.The resulting Fe single-atom-modified g-C_(3)N_(4)catalyst exhibited highly improved light absorption,charge carrier separation,and a substantially enhanced rate of H_(2)production photocatalytically under visible light irradiation.Experimental results demonstrated that the optimal sample achieves a H_(2)production rate of 683μmol·h-1·g^(-1),representing a 425% enhancement compared to pristine g-C_(3)N_(4).This study presents a facile oxygen-tolerant approach for metal immobilization using metal-organic precursors,where the nitrogen-rich framework of g-C_(3)N_(4)effectively captures Fe atoms as singular site within the composite.The developed synthesis strategy provides new insights for designing high-performance single-atom photocatalytic materials,potentially advancing the application and development of photocatalysis. 展开更多
关键词 graphitic carbon nitride(g-C_(3)N_(4)) Fe single atoms ammonium iron citrate oxygen-tolerant photocatalytic hydrogen production
原文传递
Dual alkali metal modulation of g-C_(3)N_(4)for enhanced inter-/intralayer charge transfer and O_(2)activation toward efficient photocatalytic H_(2)O_(2)production
5
作者 Baofei Hao Tianhao Zhang +3 位作者 Xinshuang Fan Haobin Zhang Lan Zhang Huizhong Ma 《Nano Research》 2026年第1期429-442,共14页
Photocatalytic oxygen reduction provides a sustainable method for on-site hydrogen peroxide(H_(2)O_(2))synthesis.However,most photocatalysts suffer from moderate kinetics due to sluggish electron transfer and ineffici... Photocatalytic oxygen reduction provides a sustainable method for on-site hydrogen peroxide(H_(2)O_(2))synthesis.However,most photocatalysts suffer from moderate kinetics due to sluggish electron transfer and inefficient oxygen adsorption and activation.Herein,sodium(Na)and potassium(K)are co-incorporated into graphitic carbon nitride(g-C_(3)N_(4))via a stepwise co-doping strategy combining sodium chloride-induced and molten salt-assisted polymerization.Experimental results and density functional theory calculations demonstrate that the synergistic interaction between intralayer Na+ions and interlayer K^(+)ions facilitates charge carrier separation and migration both within and between g-C_(3)N_(4)layers.Additionally,multiple heteroatom sites enhance surface charge polarization and introduce cyano groups,which synergistically promote oxygen molecule(O_(2))adsorption and elevate local proton coverage.Simultaneously,the energy barrier for H_(2)O_(2)desorption on the optimal photocatalyst(5Na/3.3K-CN)is lowered,thus improving H_(2)O_(2)production efficiency.Eventually,5Na/3.3K-CN exhibits an impressive H_(2)O_(2)yield of 2541.6μmol·g^(-1)·h^(-1) in an artificial reactor,which is 10.6 times higher than that of pure g-C_(3)N_(4)(240.2μmol·g^(-1)·h^(-1)).Under natural sunlight outdoors,5Na/3.3K-CN still maintains ultrahigh H_(2)O_(2)photosynthesis efficiency,achieving an H_(2)O_(2)photosynthesis rate of 2068.7μmol·g^(-1)·h^(-1).This work introduces a straightforward method to simultaneously optimize charge transfer and O_(2)activation for boosting H_(2)O_(2)photosynthesis,offering valuable insights toward the real-world deployment of g-C_(3)N_(4)-based photocatalysts in environmental protection and energy conversion. 展开更多
关键词 H_(2)O_(2)production charge migration O_(2)activation photocatalysis graphitic carbon nitride(g-C_(3)N_(4))
原文传递
Overview of in-situ oxygen production technologies for lunar resources 被引量:1
6
作者 Youpeng Xu Sheng Pang +5 位作者 Liangwei Cong Guoyu Qian Dong Wang Laishi Li Yusheng Wu Zhi Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期233-255,共23页
The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extract... The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extracted from lunar regolith,which is highly rich in oxygen and contains polymetallic oxides.This oxygen and metal extraction can be achieved using existing metallurgical techniques.Furthermore,the ample reserves of water ice on the Moon offer another means for oxygen production.This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon,drawing from an analysis of lunar resources and environmental conditions.It delves into the principles,processes,advantages,and drawbacks of water-ice electrolysis,two-step oxygen production from lunar regolith,and one-step oxygen production from lunar regolith.The two-step methods involve hydrogen reduction,carbothermal reduction,and hydrometallurgy,while the one-step methods encompass fluorination/chlorination,high-temperature decomposition,molten salt electrolysis,and molten regolith electrolysis(MOE).Following a thorough comparison of raw materials,equipment,technology,and economic viability,MOE is identified as the most promising approach for future in-situ oxygen production on the Moon.Considering the corrosion characteristics of molten lunar regolith at high temperatures,along with the Moon's low-gravity environment,the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon.This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives. 展开更多
关键词 lunar resources in-situ oxygen production space metallurgy molten lunar regolith electrolysis
在线阅读 下载PDF
Proton exchange membrane-based electrocatalytic systems for hydrogen production 被引量:1
7
作者 Yangyang Zhou Hongjing Zhong +6 位作者 Shanhu Chen Guobin Wen Liang Shen Yanyong Wang Ru Chen Li Tao Shuangyin Wang 《Carbon Energy》 2025年第1期292-311,共20页
Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promisi... Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs. 展开更多
关键词 ELECTROLYSIS hydrogen production proton exchange membrane
在线阅读 下载PDF
Identification of interlayer and connectivity analysis based on machine learning and production data:A case study from M oilfield 被引量:1
8
作者 Xiaoshuai Wu Yuanliang Zhao +4 位作者 Jianpeng Zhao Shichen Shuai Bing Yu Junqing Rong Hui Chen 《Artificial Intelligence in Geosciences》 2025年第1期124-138,共15页
Interlayer is an important factor affecting the distribution of remaining oil.Accurate identification of interlayer distribution is of great significance in guiding oilfield production and development.However,the trad... Interlayer is an important factor affecting the distribution of remaining oil.Accurate identification of interlayer distribution is of great significance in guiding oilfield production and development.However,the traditional method of identifying interlayers has some limitations:(1)Due to the existence of overlaps in the cross plot for different categories of interlayers,it is difficult to establish a determined model to classify the type of interlayer;(2)Traditional identification methods only use two or three logging curves to identify the types of interlayers,making it difficult to fully utilize the information of the logging curves,the recognition accuracy will be greatly reduced;(3)For a large number of complex logging data,interlayer identification is time-consuming and laborintensive.Based on the existing well area data such as logging data and core data,this paper uses machine learning method to quantitatively identify the interlayers in the single well layer of CIII sandstone group in the M oilfield.Through the comparison of various classifiers,it is found that the decision tree method has the best applicability and the highest accuracy in the study area.Based on single well identification of interlayers,the continuity of well interval interlayers in the study area is analyzed according to the horizontal well.Finally,the influence of the continuity of interlayers on the distribution of remaining oil is verified by the spatial distribution characteristics of interlayers combined with the production situation of the M oilfield. 展开更多
关键词 INTERLAYER Machine learning Remaining oil distribution production development
在线阅读 下载PDF
Scalable Electrocatalytic Urea Wastewater Treatment Coupled with Hydrogen Production by Regulating Adsorption Behavior of Urea Molecule 被引量:1
9
作者 Chunming Yang Huijuan Pang +7 位作者 Xiang Li Xueyan Zheng Tingting Wei Xu Ma Qi Wang Chuantao Wang Danjun Wang Bin Xu 《Nano-Micro Letters》 2025年第7期177-189,共13页
Electrocatalytic urea wastewater treatment technology has emerged as a promising method for environmental remediation.However,the realization of highly efficient and scalable electrocatalytic urea wastewater treatment... Electrocatalytic urea wastewater treatment technology has emerged as a promising method for environmental remediation.However,the realization of highly efficient and scalable electrocatalytic urea wastewater treatment(SEUWT)is still an enormous challenge.Herein,through regulating the adsorption behavior of urea functional groups,the efficient SEUWT coupled hydrogen production is realized in anion exchange membrane water electrolyzer(AEMWE).Density functional theory calculations indicate that self-driven electron transfer at the heterogeneous interface(NiO/Co_(3)O_(4))can induce charge redistribution,resulting in electron-rich NiO and electron-deficient Co_(3)O_(4),which are superior to adsorbing C=O(electron-withdrawing group)and–NH_(2)(electron-donating group),respectively,regulating the adsorption behavior of urea molecule and accelerating the reaction kinetics of urea oxidation.This viewpoint is further verified by temperature-programmed desorption experiments.The SEUWT coupled hydrogen production in AEMWE assembled with NiO/Co_(3)O_(4)(anode)and NiCoP(cathode)can continuously treat urea wastewater at an initial current density of 600 mA cm^(-2),with the average urea treatment efficiency about 53%.Compared with overall water splitting,the H_(2) production rate(8.33 mmol s^(-1))increases by approximately 3.5 times.This work provides a cost-effective strategy for scalable purifying urea-rich wastewater and energy-saving hydrogen production. 展开更多
关键词 Urea wastewater treatment Hydrogen production Adsorption behavior Heterogeneous interface
在线阅读 下载PDF
Optimal Production Capacity Matching for Blockchain-Enabled Manufacturing Collaboration With the Iterative Double Auction Method 被引量:1
10
作者 Ying Chen Feilong Lin +2 位作者 Zhongyu Chen Changbing Tang Cailian Chen 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期550-562,共13页
The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a block... The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a blockchain-enabled manufacturing collaboration framework is proposed,with a focus on the production capacity matching problem for blockchainbased peer-to-peer(P2P)collaboration.First,a digital model of production capacity description is built for trustworthy and transparent sharing over the blockchain.Second,an optimization problem is formulated for P2P production capacity matching with objectives to maximize both social welfare and individual benefits of all participants.Third,a feasible solution based on an iterative double auction mechanism is designed to determine the optimal price and quantity for production capacity matching with a lack of personal information.It facilitates automation of the matching process while protecting users'privacy via blockchainbased smart contracts.Finally,simulation results from the Hyperledger Fabric-based prototype show that the proposed approach increases social welfare by 1.4%compared to the Bayesian game-based approach,makes all participants profitable,and achieves 90%fairness of enterprises. 展开更多
关键词 Blockchain iterative double auction manufacturing collaboration production capacity matching
在线阅读 下载PDF
Crosstalk between degradation and bioenergetics: how autophagy and endolysosomal processes regulate energy production
11
作者 Angelid Pabon Jagannatham Naidu Bhupana Ching-On Wong 《Neural Regeneration Research》 SCIE CAS 2025年第3期671-681,共11页
Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy... Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation. 展开更多
关键词 AUTOPHAGY BIOENERGETICS endolysosome energy production GLYCOLYSIS metabolic reprogramming MITOCHONDRIA
暂未订购
Effects of supplementing bile acids on the production performance,fatty acid and bile acid composition,and gut microbiota in transition dairy cows 被引量:1
12
作者 Lei Li Jiaxiao Li +7 位作者 Zhihui Liu Zihan Jin Mengyang Wang Ying Wu Zhihong Zhang Xinfeng Hou Junhu Yao Jun Zhang 《Journal of Animal Science and Biotechnology》 2025年第5期2152-2169,共18页
Background During the transition period,cows are prone to negative energy balance,which can lead to a decline in production performance and health in severe cases.In recent years,it has been discovered that bile acids... Background During the transition period,cows are prone to negative energy balance,which can lead to a decline in production performance and health in severe cases.In recent years,it has been discovered that bile acids(BAs)can act not only as fat emulsifiers but also as signaling molecules to regulate body metabolism.Although BAs have been used to some extent in monogastric and aquatic animals,their role in ruminants,particularly in transition cows,remains unclear.Therefore,this study aimed to determine the effects of BAs on the production performance,milk and plasma fatty acid and BA composition,and fecal microbiota in transition dairy cows.Results Forty-six healthy transition Holstein dairy cows with similar conditions were randomly divided into two groups and supplemented with 0 or 20 g/d of BAs from 21 d before the expected calving to 21 d after calving.The production performance was tracked until 60 d after calving.The results indicated that BA supplementation significantly improved postpartum milk fat content and yields as well as the yields of unsaturated fatty acids,monounsaturated fatty acids,and polyunsaturated fatty acids in milk.There was a significant increase in the concentration of triglyceride and the proportion of C≤16 fatty acids in the plasma of cows supplemented with BAs,while the concentration of β-hydroxybutyrate and the proportion of C>16 fatty acids in the plasma decreased significantly.BA supplementation significantly altered the composition of the fecal bacterial community and increased the relative abundance of bacteria beneficial for BA metabolism and transformation(Romboutsia,Clostridium sensu_stricto_6,and Clostridium sensu_stricto_1).Functional prediction analysis showed that the relative abundance of bile salt hydrolase,7 α-hydroxysteroid dehydrogenase,and BA inducible E as well as the pathways related to BA metabolism also significantly increased in cows supplemented BAs.In addition,BA supplementation significantly altered the composition of plasma and fecal BAs,particularly increasing circulating secondary BA concentration,which might induce the complete oxidation of fatty acids in the liver and further reduce the concentration of β-hydroxybutyrate.Conclusions These findings highlight the potential benefits of BA supplementation in improving milk yields and quality,as well as influencing metabolic pathways in transition dairy cows.Meanwhile,further studies are needed to elucidate the underlying mechanisms and explore the broader implications of these results by using more tissue samples. 展开更多
关键词 Bile acids Fatty acids Gut microbiota production performance Transition dairy cow
在线阅读 下载PDF
Integrated Optimization Scheduling Model for Ship Outfitting Production with Endogenous Uncertainties 被引量:1
13
作者 Lijun Liu Pu Cao +2 位作者 Yajing zhou Zhixin Long Zuhua Jiang 《哈尔滨工程大学学报(英文版)》 2025年第1期194-209,共16页
Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan ... Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan is one of the crucial issues in shipbuilding.In this paper,production scheduling and material ordering with endogenous uncertainty of the outfitting process are investigated.The uncertain factors in outfitting equipment production are usually decision-related,which leads to difficulties in addressing uncertainties in the outfitting production workshops before production is conducted according to plan.This uncertainty is regarded as endogenous uncertainty and can be treated as non-anticipativity constraints in the model.To address this problem,a stochastic two-stage programming model with endogenous uncertainty is established to optimize the outfitting job scheduling and raw material ordering process.A practical case of the shipyard of China Merchants Heavy Industry Co.,Ltd.is used to evaluate the performance of the proposed method.Satisfactory results are achieved at the lowest expected total cost as the complete kit rate of outfitting equipment is improved and emergency replenishment is reduced. 展开更多
关键词 Ship outfitting production scheduling Purchase planning Endogenous uncertainty Multistage stochastic programming
在线阅读 下载PDF
NiMo-based alloy and its sulfides for energy-saving hydrogen production via sulfion oxidation assisted alkaline seawater splitting 被引量:1
14
作者 Miaosen Yang Junyang Ding +3 位作者 Zhiwei Wang Jingwen Zhang Zimo Peng Xijun Liu 《Chinese Chemical Letters》 2025年第9期595-601,共7页
Establishing an energy-saving and affordable hydrogen production route from infinite seawater presents a promising strategy for achieving carbon neutrality and low-carbon development.Compared with the kinetically slug... Establishing an energy-saving and affordable hydrogen production route from infinite seawater presents a promising strategy for achieving carbon neutrality and low-carbon development.Compared with the kinetically sluggish oxygen evolution reaction(OER),the thermodynamically advantageous sulfion oxidation reaction(SOR)enables the S^(2-)pollutants recovery while reducing the energy input of water electrolysis.Here,a nanoporous NiMo alloy ligament(np-NiMo)with AlNi_(3)/Al_(5)Mo heterostructure was prepared for hydrogen evolution reaction(HER,-0.134V versus reversible hydrogen electrode(vs.RHE)at 50mA/cm^(2)),which needs an Al_(89)Ni_(10)Mo_(1)as a precursor and dealloying operation.Further,the np-NiMo alloy was thermal-treated with S powder to generate Mo-doped NiS_(2)(np-NiMo-S)for OER(1.544V vs.RHE at 50mA/cm^(2))and SOR(0.364 V vs.RHE at 50mA/cm^(2)),while still maintaining the nanostructuring advantages.Moreover,for a two-electrode electrolyzer system with np-NiMo cathode(1M KOH+seawater)coupling np-NiMo-S anode(1mol/L KOH+seawater+1 mol/L Na_(2)S),a remarkably ultra-low cell potential of 0.532 V is acquired at 50mA/cm^(2),which is about 1.015 V below that of normal alkaline seawater splitting.The theory calculations confirmed that the AlNi_(3)/Al_(5)Mo heterostructure within np-NiMo promotes H_(2)O dissociation for excellent HER,while the Mo-dopant of np-NiMo-S lowers energy barriers for the rate-determining step from^(*)S_(4)to^(*)S_(8).This work develops two kinds of NiMo alloy with tremendous prominence for achieving energy-efficient hydrogen production from alkaline seawater and sulfur recycling from sulfion-rich sewage. 展开更多
关键词 NiMo alloy Alkaline seawater electrolysis Hydrogen production Sulfion oxidation reaction Theoretical calculation
原文传递
A multi-scale and multi-mechanism coupled model for carbon isotope fractionation of methane during shale gas production 被引量:1
15
作者 Jun Wang Fang-Wen Chen +4 位作者 Wen-Biao Li Shuang-Fang Lu Sheng-Xian Zhao Yong-Yang Liu Zi-Yi Wang 《Petroleum Science》 2025年第7期2719-2746,共28页
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho... Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies. 展开更多
关键词 Shale gas Isotope fractionation MULTI-SCALE production prediction Adsorbed/free gas ratio
原文传递
Accelerated O_(2) adsorption and stabilized *OOH for electrocatalytic H_(2)O_(2) production 被引量:1
16
作者 Danni Deng Jinxian Wang +6 位作者 Meng Wang Yuchao Wang Jiabi Jiang Yingbi Chen Yu Bai Qiumei Wu Yongpeng Lei 《Journal of Materials Science & Technology》 2025年第24期76-81,共6页
Electrocatalytic hydrogen peroxide(H_(2)O_(2))production via the two-electron oxygen reduction reaction(2e−ORR)is promising,but non-metal catalysts with high selectivity are lacking.Herein,a high content of pyrrolic N... Electrocatalytic hydrogen peroxide(H_(2)O_(2))production via the two-electron oxygen reduction reaction(2e−ORR)is promising,but non-metal catalysts with high selectivity are lacking.Herein,a high content of pyrrolic N doped carbon(HPNC)with small mesopores is constructed.Over 80%H_(2)O_(2) selectivity at a wide potential of 0.2–0.6 V is achieved.The finite element simulation reveals that small pore-size mesopores are beneficial to O_(2) adsorption.And in-situ characterization proves that HPNC suppresses the breakage of Osingle bondO bond and enhances the stabilization of *OOH intermediates,thus improving the 2e−ORR performance.This work highlights the combination of non-metal active sites and geometry for 2e−ORR electrocatalysis. 展开更多
关键词 Pyrrolic nitrogen Electrocatalytic hydrogen peroxide production Two-electron oxygen reduction reaction Non-metal ∗OOH intermediates
原文传递
Pulsed dynamic electrolysis enhanced PEMWE hydrogen production:Revealing the effects of pulsed electric fields on protons mass transport and hydrogen bubble escape 被引量:1
17
作者 Xuewei Zhang Wei Zhou +13 位作者 Yuming Huang Liang Xie Tonghui Li Huimin Kang Lijie Wang Yang Yu Yani Ding Junfeng Li Jiaxiang Chen Miaoting Sun Shuo Cheng Xiaoxiao Meng Jihui Gao Guangbo Zhao 《Journal of Energy Chemistry》 2025年第1期201-214,共14页
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for... The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors. 展开更多
关键词 Water electrolysis Hydrogen production Pulsed dynamic electrolysis Proton exchange membrane water electrolysis Mass transport
在线阅读 下载PDF
Surface defect engineering of ZnCoS in ZnCdS with twin crystal structure for visible-light-driven H_(2) production coupled with benzyl alcohol oxidation 被引量:1
18
作者 Tan Ji Siang Peipei Zhang +1 位作者 Binghui Chen Wee-Jun Ong 《Chinese Journal of Catalysis》 2025年第2期84-98,共15页
Photoredox dual reaction of organic synthesis and H2 evolution opens up a novel pathway for collaboratively generating clean fuels and high-quality chemicals,providing a more effective approach of solar energy convers... Photoredox dual reaction of organic synthesis and H2 evolution opens up a novel pathway for collaboratively generating clean fuels and high-quality chemicals,providing a more effective approach of solar energy conversion.Herein,a surface defect-engineered ZnCoS/ZnCdS heterostructure with zinc blende(ZB)/wurtzite(WZ)phase junctions is synthesized for photocatalytic cooperative coupling of benzaldehyde(BAD)and H_(2) production.This surface defect-engineered ZnCoS/ZnCdS heterostructure elaborately integrates the mixed phase junction advantage of ZnCdS semiconductor and the cocatalytic function of ZnCoS possessing Zn(VZn-ZnCoS/ZnCdS)or S vacancies(VS-ZnCoS/ZnCdS).The optimum VS-ZnCoS/ZnCdS simultaneously exhibits a superior H2 production rate of 14.23 mmol h^(-1) g^(-1) accompanied with BAD formation rate of 12.29 mmol h^(-1) g^(-1) under visible-light irradiation,which is approximately two-fold greater than that of pristine ZnCdS.Under simulated sunlight irradiation(AM 1.5),VS-ZnCoS/ZnCdS achieves H2 evolution(27.43 mmol gcat^(-1) h^(-1))with 0.52%of STH efficiency,accompany with 26.31 mmol gcat^(-1) h^(-1) of BAD formation rate.The underlying solar-driven mechanism is elucidated by a series of in-situ characterization and control experiments,which reveals the synergistic effect of interfacial ZB/WZ phase junctions in ZnCdS and S vacancies of ZnCoS on enhancement of the photoredox dual reaction.The VS-ZnCoS/ZnCdS follows a predominant oxygen-centered radical integrating with carbon-centered radical pathways for BAD formation and a simultaneous electron-driven proton reduction for H_(2) production.Interestingly,the nature of surface vacancies not only facilitates the separation of photoinduced charge carriers but also able to selectively adjust the mechanism pathway for BAD production via tuning the oxygen-centered radical and carbon-centered radical formation. 展开更多
关键词 Photoredoxdual reaction Aromatic alcohol conversion Surface vacancy Organic synthesis H_(2)production
在线阅读 下载PDF
A review on production and application of direct reduced iron in gas-based shaft furnace–electric arc furnace route 被引量:1
19
作者 Ling-zhi Yang Zeng Feng +4 位作者 Hang Hu Guang-sheng Wei Bo-tao Xue Yu-feng Guo Tao Jiang 《Journal of Iron and Steel Research International》 2025年第3期485-518,共34页
The iron and steel industry,standing as a quintessential manufacture example with high consumption,pollution and emissions,faces significant environmental and sustainable development challenges.Electric arc furnace(EA... The iron and steel industry,standing as a quintessential manufacture example with high consumption,pollution and emissions,faces significant environmental and sustainable development challenges.Electric arc furnace(EAF)steelmaking process mainly uses scrap as raw material and is characterized by environmentally friendly and recyclable process.However,the further development of EAF route in China is limited by the reserve,supply,availability and quality of scrap resource.Direct reduced iron(DRI)is one of typical low-carbon and clean charges,which can effectively make up for the adverse effects caused by the lack of scrap.The physical and chemical properties,classifications,and production technologies of DRI are firstly reviewed.In particular,the reducing gas types,reduction temperature,and reduction mechanism of the DRI production with gas-based shaft furnace(SF)technology are detailed.Considering the crucial role played by DRI application in EAF,the influences of DRI addition on EAF smelting rules and operations including the blending and charging process,heat transfer and melting in molten bath,slag formation operation,refractory corrosion,and slag system evolution are then further discussed.Finally,the comparative analysis and assessment of the consumption level of material and energy as well as the cleaner production both covering the clean chemical composition of molten steel and the clean environment impact in EAF steelmaking with DRI charged are conducted.From perspectives of metallurgical process engineering,a suitable route of hydrogen generation and application(from coke oven gas,methanol,and clean energy power),CO_(2) capture and utilization integrated with SF–EAF process is proposed.In view of the difficulties in large-scale DRI application in EAF,the follow-up work should focus on the investigation of DRI charging and melting,slag system evolution and molten pool reaction rules,as well as the developments of the DRI standardized use technology and intelligent batching and control models. 展开更多
关键词 Electric arc furnace steelmaking Direct reduced iron Hydrogen-based shaft furnace Sustainable production Low-carbon development
原文传递
Assessment of Future Cotton Production in the Tarim River Basin under Climate Model Projections and Water Management 被引量:1
20
作者 Shengru Yue Lunche Wang +1 位作者 Qian Cao Jia Sun 《Journal of Earth Science》 2025年第4期1780-1792,共13页
Climate change is significantly impacting cotton production in the Tarim River Basin.The study investigated the climate change characteristics from 2021 to 2100 using climate change datasets simulated per the coupled ... Climate change is significantly impacting cotton production in the Tarim River Basin.The study investigated the climate change characteristics from 2021 to 2100 using climate change datasets simulated per the coupled model inter-comparison project phase six(CMIP6)climatic patterns under the shared socioeconomic pathways SSP2-4.5 and SSP5-8.5.The DSSAT-CROPGROCotton model,along with stepwise multiple regression analyses,was used to simulate changes in the potential yield of seed cotton due to climate change.The results show that while future temperatures in the Tarim River Basin will rise significantly,changes in precipitation and radiation during the cotton-growing season are minimal.Seed cotton yields are more sensitive to low temperatures than to precipitation and radiation.The potential yield of seed cotton under the SSP2-4.5 scenario would increase by 14.8%,23.7%,29.0%,and 29.4%in the 2030S,2050S,2070S,and 2090S,respectively.In contrast,under the SSP5-8.5 scenario,the potential yield of seed cotton would see increases of 17.5%,27.1%,30.1%,and 22.6%,respectively.Except for the 2090s under the SSP5-8.5 scenario,future seed cotton production can withstand a 10%to 20%deficit in irrigation.These findings will help develop climate change adaptation strategies for cotton cultivation. 展开更多
关键词 climate change Tarim River Basin potential yield of seed cotton DSSAT CMIP6 future cotton production
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部