Based on the split hopkinson pressure bar(SHPB)tests results,the cubic specimens have been numerically modeled in this paper to investigate the impact of key factors,such as the rise time,duration,and incident pulse s...Based on the split hopkinson pressure bar(SHPB)tests results,the cubic specimens have been numerically modeled in this paper to investigate the impact of key factors,such as the rise time,duration,and incident pulse shape,on achieving stress uniformity.After analysis,the paper provides actionable methods aimed at optimizing the conditions for stress uniformity within the cubic specimen.Finally,the lateral inertia effect of cubic specimen has been scrutinized to address the existing gap in this academic area.展开更多
The double-sided lapping process is extensively employed in the manufacturing of wafers,optical windows,and seal rings due to its high efficiency and ability to achieve precise flatness.However,limited research has ex...The double-sided lapping process is extensively employed in the manufacturing of wafers,optical windows,and seal rings due to its high efficiency and ability to achieve precise flatness.However,limited research has explored the thickness uniformity among different workpieces after double-sided lapping,and the underlying mechanism remains unclear.To address the demand for higher precision,this paper first analyzed the relative kinematic model between the workpiece and the lapping plate to clarify the causes of thickness variations among workpieces after double-sided lapping.Subsequently,a finite element method(FEM)model was developed to account for the pressure distribution on the workpiece surfaces at the initial stage of the process.The results indicate that the number of workpieces influences the final thickness variation.Then,various sets of thin copper plates with different thicknesses were lapped,and the findings revealed that five copper plates processed simultaneously exhibited more uniform thickness compared to the three plates.The experimental results align well with the theoretical analysis.Ultimately,a thickness variation of less than 6μm was achieved on five copper plates measuringΦ100×2.9 mm.This study presents a comprehensive analysis of the mechanisms influencing thickness uniformity in the double-sided lapping process and provides practical guidelines for optimizing the process to achieve stringent precision standards in industrial applications.展开更多
Ceramic hollow spheres have great potential for deep-sea applications.However,the irregularity of the conventional molding process,among other reasons,results in low wall thickness uniformity of hollow spheres.To solv...Ceramic hollow spheres have great potential for deep-sea applications.However,the irregularity of the conventional molding process,among other reasons,results in low wall thickness uniformity of hollow spheres.To solve this problem,in this work,we developed a biaxial rotation grouting process for deep-sea ceramic hollow buoyancy spheres,which improves the drawbacks of the traditional rotary grouting method that results in poor wall thickness uniformity of the hollow spheres due to its irregular rotational processing.In this paper,an experimental study was carried out to investigate the effects of different rotational methods,rotational speeds,rotational time,solid phase content,etc.on the wall thickness uniformity of ceramic hollow spheres.The results show that the hollow floating balls prepared by the biaxial rotation method have the lowest wall thickness standard deviation(0.04)when the rotation speed is 60 rpm,the molding time is 8 min,and the solid phase content is 70 wt%.After the hydrostatic pressure test of 120 MPa,the hydrostatic compressive strength of hollow spheres prepared by the biaxial rotation method was increased by 31.67%compared with that of the traditional process.展开更多
The mineralization process of microbial-induced calcium carbonate precipitation(MICP)is influenced by many factors,and the uniformity of the calcium carbonate precipitation has become the main focus and challenge for ...The mineralization process of microbial-induced calcium carbonate precipitation(MICP)is influenced by many factors,and the uniformity of the calcium carbonate precipitation has become the main focus and challenge for MICP technology.In this study,the uniformity of the saturated calcareous sand treated with MICP was in-vestigated through one-dimensional calcareous sand column tests and model tests.The coefficient of variation was employed in one-dimensional sand column tests to investigate the impact of injection rate,cementation solution concentration,and number of injection cycles on the uniformity of the MICP treatment.Additionally,model tests were conducted to investigate the impact of injection pressure and methods on the treatment range and uniformity under three-dimensional seepage conditions.Test results demonstrate that the reinforcement strength and uniformity are significantly influenced by the injection rate of the cementation solution,with a rate of 3 mL/min,yielding a favorable treatment effect.Excessive concentration of the cementation solution can lead to significant non-uniformity and a reduction in the compressive strength of MICP-treated samples.Conversely,excessively low concentrations may result in decreased bonding efficiency.Among the four considered con-centrations,0.5 mol/L and 1 mol/L exhibit superior reinforcing effects.The morphological development of calcareous sandy foundation reinforcement is associated with the spatial distribution pattern of the bacterial solution,exhibiting a relatively larger reinforcement area in proximity to the lower region of the model and a gradually decreasing range towards the upper part.Under three-dimensional seepage conditions,in addition to the non-uniform radial cementation along the injection pipe,there is also vertical heterogeneity of cementation along the length of the injection pipe due to gravitational effects,resulting in preferential deposition of calcium carbonate at the lower section,The application of injection pressure and a double-pipe circulation injection method can mitigate the accumulation of bacterial solution and cementation solution at the bottom,thereby improving the reinforcement range and uniformity.展开更多
The practical application of lithium(Li)metal batteries(LMBs)faces challenges due to the irreversible Li deposition/dissolution process,which promotes Li dendrite growth with severe parasitic reactions during cycling....The practical application of lithium(Li)metal batteries(LMBs)faces challenges due to the irreversible Li deposition/dissolution process,which promotes Li dendrite growth with severe parasitic reactions during cycling.To address these issues,achieving uniform Li‐ion flux and improving Li‐ion conductivity of the separator are the top priorities.Herein,a separator(PCELS)with enhanced Li‐ion conductivity,composed of polymer,ceramic,and electrically conductive carbon,is proposed to facilitate fast Li‐ion transport kinetics and increase Li deposition uniformity of the LMBs.The PCELS immobilizes PF6–anions with high adsorption energies,leading to a high Li‐ion transference number.Simultaneously,the PCELS shows excellent electrolyte wettability on both its sides,promoting rapid ion transport.Moreover,the electrically conductive carbon within the PCELS provides additional electron transport channels,enabling efficient charge transfer and uniform Li‐ion flux.With these advantages,the PCELS achieves rapid Li‐ion transport kinetics and uniform Li deposition,demonstrating excellent cycling stability over 100 cycles at a high current density of 12.0 mA cm^(-2).Furthermore,the PCELS shows stable cycling performances in Li–S cell tests and delivers an excellent capacity retention of 95.45%in the Li|LiFePO_(4) full‐cell test with a high areal capacity of over 5.5 mAh cm^(-2).展开更多
On the morning of May 31st,the parallel forum"Seeking Harmony without Uniformity in Mutual Learning:Diversity of Civilisations from the Sinologists'Perspective"was held in Dunhuang.The forum was hosted b...On the morning of May 31st,the parallel forum"Seeking Harmony without Uniformity in Mutual Learning:Diversity of Civilisations from the Sinologists'Perspective"was held in Dunhuang.The forum was hosted by the Chinese Association for International Understanding and organised by Beijing Language and Culture University.Leading Sinologists and Chinese culture researchers from Europe,Asia and Latin America gathered to discuss the theme of civilisational diversity and explore pathways for coexistence and mutual enrichment.展开更多
At present,the naked-eye three-dimensional(3D)display technology still has some drawbacks,such as low brightness uniformity,high crosstalk,low light efficiency,short viewing distance,and the manufacturing is difficult...At present,the naked-eye three-dimensional(3D)display technology still has some drawbacks,such as low brightness uniformity,high crosstalk,low light efficiency,short viewing distance,and the manufacturing is difficulty.Based on the principle of naked-eye 3D display and the Fresnel optical theory,this paper designs a Fresnel lens array and the star-shaped liquid crystal display(LCD)switch of unit LCD screen to achieve low-crosstalk and high brightness uniformity for the autostereoscopic 3D display.The unit parameters of a 139.7 cm 4K model autostereoscopic 3D displayer are provided and they are optimized by the TracePro software.The results show that when the pitch of the Fresnel lens on the exit surface is 0.304 mm,the width of each serration of Fresnel lens is 0.0234 mm,the length of the Fresnel lens is 2.87 mm,and the center height of star-shaped LCD switch is 0.030 mm,the center length is 0.040 mm,the width of star-shaped LCD switch is 0.050 mm,and the image crosstalk is less than 2%when the viewing distance is 2.50 m.The problem on the brightness of the image in different positions is improved.展开更多
To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflectio...To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflection-intelligent reflecting surface(STAR-IRS),has been proposed in this work.A Harris Hawks optimizer algorithm(HHOA)-based two-stage alternating iteration algorithm(TSAIA)is presented to jointly optimize the magnitude and uniformity of the received optical power.Besides,to demonstrate the superiority of the proposed strategy,several benchmark schemes are simulated and compared.Results showed that compared to other optimization strategies,the TSAIA scheme is more capable of balancing the average value and variance of the received optical power,when the maximal ratio combining(MRC)strategy is adopted at the receiver.Moreover,as the number of the STAR-IRS elements increases,the optical power variance of the system optimized by TSAIA scheme would become smaller while the average optical power would get larger.This study will benefit the design of received optical power distribution for indoor VLC systems.展开更多
The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and e...The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and existence of uniform attractor under some suitable assumptions on the nonlinear term g(u),the nonlinear damping f(u_(t))and the external force h(x,t).Specifically,the asymptotic compactness of the semigroup is verified by the energy reconstruction method.展开更多
The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinemen...The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24.展开更多
Structural uniformity is an important parameter influencing physical and mechanical properties of lotus-type porous metals prepared by directional solidification of metal-gas eutectic (Gasar). The effect of superheat ...Structural uniformity is an important parameter influencing physical and mechanical properties of lotus-type porous metals prepared by directional solidification of metal-gas eutectic (Gasar). The effect of superheat on structural uniformity as well as average porosity, pore morphology of porous metals was studied. The experimental results show that, when the superheat is higher than a critical value (ΔTc), the bubbling or boiling phenomenon will occur and the gas bubbles will form in the melt and float out of the melt. As a result, the final porosity will decrease. In addition, a higher superheat will simultaneously cause a non-uniform porous structure due to the pores coalescence and bubbling phenomenon. Finally, a theoretical model was developed to predict the critical superheat for the hydrogen to escape from the melt and the corresponding escapement ratio of hydrogen content. Considering the escapement of hydrogen, the predicted porosities are in good agreement with the experimental results.展开更多
As an important constitute of land consolidation, high-standard basic farmland construction is an important means to protect the quantity, quality and ecological environment of cultivated land. Its target not only lie...As an important constitute of land consolidation, high-standard basic farmland construction is an important means to protect the quantity, quality and ecological environment of cultivated land. Its target not only lies in the increase of cultivated land quantity, but also the improvement of cultivated land quality, agricultural production conditions and ecosystem environments. In the present study, the quality evaluation method and construction arrangement of cultivated land were explored to facilitate the process of decision-making and implementation for high-standard basic farmland construction(HSBFC) with administrative village as the unit. Taking the land comprehensive improvement project area in Quzhou County, Handan City, Hebei Province as a case study, the whole process of the study comprised of three steps: 1) establishment of the evaluation model of cultivated land quality uniformity based on regional optimum cultivated land quality, and construction of the uniformity evaluation index system from the aspects of soil fertility quality, engineering quality, spatial quality and eco-environment quality, according to the new concept of cultivated land quality; 2) calculation of cultivated land quality uniformity by grading indicators, assigning scores and weighting sums, exploring the local homogenization characteristics of regional cultivated land quality through spatial autocorrelation analysis, and analyzing the constraints and transformative potential of barrier factors; 3) arrangement of HSBFC according to the principle of concentration, continuity and priority to the easy operation. The results revealed that the value of farmland quality uniformity for the administrative villages in the study area was between 7.76 and 21.96, and there was a difference between various administrative villages. The regional spatial autocorrelation patterns included High-High(HH), Low-Low(LL), High-Low(HL) and Low-High(LH). These indicate that regional cultivated land quality has local homogenization characteristics. The most restrictive factors in the study area were the medium and low transformation difficulty indexes, including soil organic matter content, farmland shelterbelt network density, field regularity and scale of the field. In addition, there were also high transformation difficulty indicators in some areas, such as sectional configuration. The project area was divided into four partitions: major construction area, secondary construction area, general construction area, and conditional construction area. The cultivated land area of each subarea was 1538.85 ha, 1224.27 ha, 555.93 ha, and 1666.63 ha, respectively. This comprised of 30.87%, 24.56%, 11.15% and 33.42% of the total project area, respectively. The evaluation model and index system could satisfy the evaluation of farmland quality and diagnosis of obstacle factors to facilitate the subsequent construction decision. The present study provides reference for the practice of regional HSBFC, and a new feasible idea and method for related studies.展开更多
In this article, we consider the characterization problem in design theory. The objective is to characterize minimum projection uniformity for two-level designs in terms of their complementary designs. Here, the compl...In this article, we consider the characterization problem in design theory. The objective is to characterize minimum projection uniformity for two-level designs in terms of their complementary designs. Here, the complementary design means a design in which all the Hamming distances of any two runs are the same, which generalizes the concept of a pair of complementary designs in the literature. Based on relationships of the uniformity pattern between a pair of complementary designs, we propose a minimum projection uniformity (MPU) rule to assess and compare two-level factorials.展开更多
Litter uniformity, which is usually represented by within-litter weight coefficient of variation at birth (CVB), could influence litter performance of sows and the profitability of pig enterprises. The objective of ...Litter uniformity, which is usually represented by within-litter weight coefficient of variation at birth (CVB), could influence litter performance of sows and the profitability of pig enterprises. The objective of this study was to characterize CVB and its effect on other reproductive traits in Large White sows. Genetic parameters and genetic correlation of the reproductive traits, including CVB, within-litter weight coefficient of variation at three weeks (CVT), total number born (TNB), number born alive (NBA), number born dead (NBD), gestation length (GL), piglet mortality at birth (Mo), piglet mortality at three weeks (M3), total litter weight at birth (TLW0), and total litter weight at three weeks (TLW3) were estimated for 2 032 Large White litters. The effects of parity and classified litter size on CVB, CVT, TNB, NBA, NBD, GL, M0, M3, TLW0, and TLW3 were also estimated. The heritabilities of these reproductive traits ranged from 0.06 to 0.17, with the lowest heritability for CVB and the highest heritability for TLW0. Phenotypic and genetic correlations between these reproductive traits were low to highly positive and negative (ranging from -0.03 to 0.93, and -0.53 to 0.93, respectively). The genetic correlations between TNB and CVB, and between M0 and CVB were 0.32 and 0.29, respectively. In addition, CVB was significantly influenced by parity and litter size class (P〈0.05). All the results suggest that piglet uniformity should be maintained in pig production practices and pig breeding programs.展开更多
The dynamics of water and salt in soil were monitored in the 2010 and 2011 growing seasons of cotton to evaluate the salinity risk of soil under drip irrigation in arid environments for different management practices ...The dynamics of water and salt in soil were monitored in the 2010 and 2011 growing seasons of cotton to evaluate the salinity risk of soil under drip irrigation in arid environments for different management practices of drip system uniformity and irrigation amount. In the experiments, three Christiansen uniformity coefficients (CU) of approximately 65, 80, and 95% (referred to as low, medium, and high uniformity, respectively) and three irrigation amounts of 50, 75, and 100% of full irrigation were used. The distribution of the soil water content and bulk electrical conductivity (ECb) was monitored continuously with approximately equally spaced frequency domain reflectometry (FDR) sensors located along a dripline. Gravimetric samples of soil were collected regularly to determine the distribution of soil salinity. A great fluctuation in CU of water content and ECb at 60 cm depth was observed for the low uniformity treatment during the irrigation season, while a relatively stable variation pattern was observed for the high uniformity treatment. The ECb CU was substantially lower than the water content CU and its value was greatly related to the water content CU and the initial ECb CU. The spatial variation of seasonal mean soil water content and seasonal mean soil bulk electrical conductivity showed a high dependence on the variation pattern of emitter discharge rate along a dripline for the low and medium uniformity treatments. A greater irrigation amount produced a significantly lower soil salinity at the end of the irrigation season, while the influence of the system uniformity on the soil salinity was insignificant at a probability level of 0.1. In arid regions, the determination of the target drip irrigation system uniformity should consider the potential salinity risk of soil caused by nonuniform water application as the influence of the system uniformity on the distribution of the soil salinity was progressively strengthened during the growing season of crop.展开更多
This study aims to systematically analyze the key parameters of the reflow process that influence the uniformity of the chromium passivation film coated on tinplate. The distribution characteristics of the chromium pa...This study aims to systematically analyze the key parameters of the reflow process that influence the uniformity of the chromium passivation film coated on tinplate. The distribution characteristics of the chromium passivation film coated on the tinplate surface under different treatment conditions were systematically characterized using the scanning Kelvin probe technique, X-ray photoelectron spectroscopy, and X-ray diffraction. Results indicate that the use of flux reduces the porosity of tin coating, thereby favoring the uniform growth of the passivation film. Furthermore, an increase in the reflow power and quenching temperature facilitates the homogeneous distribution of the passivation film on the tinplate surface,particularly when treated with electrolytic cathodic sodium dichromate.展开更多
In the manufacture of SiC_p/Al completes via powder metallurgy, the method of assessing the distri-bution uniformity of SiC particles is very important. The SiC_p distribution uniformity on each processingprocedure a...In the manufacture of SiC_p/Al completes via powder metallurgy, the method of assessing the distri-bution uniformity of SiC particles is very important. The SiC_p distribution uniformity on each processingprocedure at the macro- and micro-mixed stages was investigated and the methods for determining mix-ture quality were put forward.展开更多
In this study, small- and large-particle-diameter phosphor powders were mixed together(hybrid phosphors)to balance light efficacy and angular color uniformity and pursue optimal results. Phosphor with small-particle...In this study, small- and large-particle-diameter phosphor powders were mixed together(hybrid phosphors)to balance light efficacy and angular color uniformity and pursue optimal results. Phosphor with small-particlediameter of 4 lm was employed and it was mixed into each large-particle-diameter phosphor of 10, 16, 22, and 26 lm,at mass percentage from 0 % to 50 % with an interval of10 %, respectively. Remote phosphor package was adopted and overall phosphor concentration was kept constant for better comparison. Moreover, absorption coefficient labs,scattering coefficient lscaand extinction coefficient lext of each hybrid phosphors were calculated based on Mie theory to further discuss the experiment results. Results show that, the introduction of small-particle-diameter phosphor to large one can highly improve angular color uniformity while only slightly reduce light efficacy. The optimal performance with angular color uniformity of91.6 % as well as normalized light efficacy of 95.7 % is achieved in the white light emitting diode with hybrid phosphors consisting of 60 wt% powder of 22 μm and40 wt% powder of 4 μm.展开更多
50mm 3C-SiC epilayers are grown on (100) and (111) Si substrates in a newly developed horizontal lowpressure hot-wall CVD reactor under different growth pressures and flow rates of H2 carrier gas. The structure,el...50mm 3C-SiC epilayers are grown on (100) and (111) Si substrates in a newly developed horizontal lowpressure hot-wall CVD reactor under different growth pressures and flow rates of H2 carrier gas. The structure,electrical properties, and thickness uniformity of the 3C-SiC epilayers are investigated by X-ray diffraction (XRD) ,sheet resistance measurement, and spectroscopic ellipsometry. XRD patterns show that the 3C-SiC films have excellent crystallinity. The narrowest full widths at half maximum of the SIC(200) and (111) peaks are 0.41° and 0.21°, respectively. The best electrical uniformity of the 50mm 3C-SiC films obtained by sheet resistance measurement is 2.15%. A σ/mean value of ± 5.7% in thickness uniformity is obtained.展开更多
An analytic model based on ANSYS/LS-DYNA has been developed on the cold rolling process for Q235 steel rebar with 12 mm in diameter. The elastic-plastic finite element method (FEM) and the cold deformation resistance ...An analytic model based on ANSYS/LS-DYNA has been developed on the cold rolling process for Q235 steel rebar with 12 mm in diameter. The elastic-plastic finite element method (FEM) and the cold deformation resistance model of Q235 steel were adopted in this model. Deformation uniformity of the final product has been analyzed using this model. The results indicate that the uniformity of the final product is obtained only as the centerline of the bending rolls is vertical to the centerline of the driven roll and parallel to the centerline of the drive roll in the whole rolling process. Besides, the number of the bending rolls must even realize the continuous bending and reverse bending process. Also, the number of the bending rolls must match the deformation degree of the workpiece in the cold rolling process. The validity of this finite element model was verified by the size and distribution of grains from the billet to the rebar in a practical cold rolling process.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.52278518 and 51938011)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.24KJB560021)。
文摘Based on the split hopkinson pressure bar(SHPB)tests results,the cubic specimens have been numerically modeled in this paper to investigate the impact of key factors,such as the rise time,duration,and incident pulse shape,on achieving stress uniformity.After analysis,the paper provides actionable methods aimed at optimizing the conditions for stress uniformity within the cubic specimen.Finally,the lateral inertia effect of cubic specimen has been scrutinized to address the existing gap in this academic area.
基金Supported by the Liaoning Provincial Natural Science Foundation(Grant No.2023-MSBA-008)Unveiling and Commanding Program of Liaoning Province(Grant No.2022JH1/10800080)the Fundamental Research Funds for the Central Universities(Grant No.DUT24MS008).
文摘The double-sided lapping process is extensively employed in the manufacturing of wafers,optical windows,and seal rings due to its high efficiency and ability to achieve precise flatness.However,limited research has explored the thickness uniformity among different workpieces after double-sided lapping,and the underlying mechanism remains unclear.To address the demand for higher precision,this paper first analyzed the relative kinematic model between the workpiece and the lapping plate to clarify the causes of thickness variations among workpieces after double-sided lapping.Subsequently,a finite element method(FEM)model was developed to account for the pressure distribution on the workpiece surfaces at the initial stage of the process.The results indicate that the number of workpieces influences the final thickness variation.Then,various sets of thin copper plates with different thicknesses were lapped,and the findings revealed that five copper plates processed simultaneously exhibited more uniform thickness compared to the three plates.The experimental results align well with the theoretical analysis.Ultimately,a thickness variation of less than 6μm was achieved on five copper plates measuringΦ100×2.9 mm.This study presents a comprehensive analysis of the mechanisms influencing thickness uniformity in the double-sided lapping process and provides practical guidelines for optimizing the process to achieve stringent precision standards in industrial applications.
基金Funded by the Key Research and Development Program of Shandong Province(No.2020JMRH0101)。
文摘Ceramic hollow spheres have great potential for deep-sea applications.However,the irregularity of the conventional molding process,among other reasons,results in low wall thickness uniformity of hollow spheres.To solve this problem,in this work,we developed a biaxial rotation grouting process for deep-sea ceramic hollow buoyancy spheres,which improves the drawbacks of the traditional rotary grouting method that results in poor wall thickness uniformity of the hollow spheres due to its irregular rotational processing.In this paper,an experimental study was carried out to investigate the effects of different rotational methods,rotational speeds,rotational time,solid phase content,etc.on the wall thickness uniformity of ceramic hollow spheres.The results show that the hollow floating balls prepared by the biaxial rotation method have the lowest wall thickness standard deviation(0.04)when the rotation speed is 60 rpm,the molding time is 8 min,and the solid phase content is 70 wt%.After the hydrostatic pressure test of 120 MPa,the hydrostatic compressive strength of hollow spheres prepared by the biaxial rotation method was increased by 31.67%compared with that of the traditional process.
基金support of Natural Science Foundation of China(Grant No.52108324,No.52008207,and No.52108298)for conducting this study.
文摘The mineralization process of microbial-induced calcium carbonate precipitation(MICP)is influenced by many factors,and the uniformity of the calcium carbonate precipitation has become the main focus and challenge for MICP technology.In this study,the uniformity of the saturated calcareous sand treated with MICP was in-vestigated through one-dimensional calcareous sand column tests and model tests.The coefficient of variation was employed in one-dimensional sand column tests to investigate the impact of injection rate,cementation solution concentration,and number of injection cycles on the uniformity of the MICP treatment.Additionally,model tests were conducted to investigate the impact of injection pressure and methods on the treatment range and uniformity under three-dimensional seepage conditions.Test results demonstrate that the reinforcement strength and uniformity are significantly influenced by the injection rate of the cementation solution,with a rate of 3 mL/min,yielding a favorable treatment effect.Excessive concentration of the cementation solution can lead to significant non-uniformity and a reduction in the compressive strength of MICP-treated samples.Conversely,excessively low concentrations may result in decreased bonding efficiency.Among the four considered con-centrations,0.5 mol/L and 1 mol/L exhibit superior reinforcing effects.The morphological development of calcareous sandy foundation reinforcement is associated with the spatial distribution pattern of the bacterial solution,exhibiting a relatively larger reinforcement area in proximity to the lower region of the model and a gradually decreasing range towards the upper part.Under three-dimensional seepage conditions,in addition to the non-uniform radial cementation along the injection pipe,there is also vertical heterogeneity of cementation along the length of the injection pipe due to gravitational effects,resulting in preferential deposition of calcium carbonate at the lower section,The application of injection pressure and a double-pipe circulation injection method can mitigate the accumulation of bacterial solution and cementation solution at the bottom,thereby improving the reinforcement range and uniformity.
基金supported by Ministry of Science and ICT,South Korea(RS‐2024‐00407282)National Research Foundation of Korea(RS‐2024‐00408156).
文摘The practical application of lithium(Li)metal batteries(LMBs)faces challenges due to the irreversible Li deposition/dissolution process,which promotes Li dendrite growth with severe parasitic reactions during cycling.To address these issues,achieving uniform Li‐ion flux and improving Li‐ion conductivity of the separator are the top priorities.Herein,a separator(PCELS)with enhanced Li‐ion conductivity,composed of polymer,ceramic,and electrically conductive carbon,is proposed to facilitate fast Li‐ion transport kinetics and increase Li deposition uniformity of the LMBs.The PCELS immobilizes PF6–anions with high adsorption energies,leading to a high Li‐ion transference number.Simultaneously,the PCELS shows excellent electrolyte wettability on both its sides,promoting rapid ion transport.Moreover,the electrically conductive carbon within the PCELS provides additional electron transport channels,enabling efficient charge transfer and uniform Li‐ion flux.With these advantages,the PCELS achieves rapid Li‐ion transport kinetics and uniform Li deposition,demonstrating excellent cycling stability over 100 cycles at a high current density of 12.0 mA cm^(-2).Furthermore,the PCELS shows stable cycling performances in Li–S cell tests and delivers an excellent capacity retention of 95.45%in the Li|LiFePO_(4) full‐cell test with a high areal capacity of over 5.5 mAh cm^(-2).
文摘On the morning of May 31st,the parallel forum"Seeking Harmony without Uniformity in Mutual Learning:Diversity of Civilisations from the Sinologists'Perspective"was held in Dunhuang.The forum was hosted by the Chinese Association for International Understanding and organised by Beijing Language and Culture University.Leading Sinologists and Chinese culture researchers from Europe,Asia and Latin America gathered to discuss the theme of civilisational diversity and explore pathways for coexistence and mutual enrichment.
基金supported by the 2022 Fujian Provincial Young and Middle-aged Teacher Education and Research Project(Science and Technology)(No.JAT220468)the Xiamen Natural Science Foundation(No.3502Z20227334).
文摘At present,the naked-eye three-dimensional(3D)display technology still has some drawbacks,such as low brightness uniformity,high crosstalk,low light efficiency,short viewing distance,and the manufacturing is difficulty.Based on the principle of naked-eye 3D display and the Fresnel optical theory,this paper designs a Fresnel lens array and the star-shaped liquid crystal display(LCD)switch of unit LCD screen to achieve low-crosstalk and high brightness uniformity for the autostereoscopic 3D display.The unit parameters of a 139.7 cm 4K model autostereoscopic 3D displayer are provided and they are optimized by the TracePro software.The results show that when the pitch of the Fresnel lens on the exit surface is 0.304 mm,the width of each serration of Fresnel lens is 0.0234 mm,the length of the Fresnel lens is 2.87 mm,and the center height of star-shaped LCD switch is 0.030 mm,the center length is 0.040 mm,the width of star-shaped LCD switch is 0.050 mm,and the image crosstalk is less than 2%when the viewing distance is 2.50 m.The problem on the brightness of the image in different positions is improved.
基金supported by the National Natural Science Foundation of China(No.62071365)the Key Research and Development Program of Shaanxi Province(No.2017ZDCXL-GY-06-02).
文摘To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflection-intelligent reflecting surface(STAR-IRS),has been proposed in this work.A Harris Hawks optimizer algorithm(HHOA)-based two-stage alternating iteration algorithm(TSAIA)is presented to jointly optimize the magnitude and uniformity of the received optical power.Besides,to demonstrate the superiority of the proposed strategy,several benchmark schemes are simulated and compared.Results showed that compared to other optimization strategies,the TSAIA scheme is more capable of balancing the average value and variance of the received optical power,when the maximal ratio combining(MRC)strategy is adopted at the receiver.Moreover,as the number of the STAR-IRS elements increases,the optical power variance of the system optimized by TSAIA scheme would become smaller while the average optical power would get larger.This study will benefit the design of received optical power distribution for indoor VLC systems.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11961059,1210502)the University Innovation Project of Gansu Province(Grant No.2023B-062)the Gansu Province Basic Research Innovation Group Project(Grant No.23JRRA684).
文摘The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and existence of uniform attractor under some suitable assumptions on the nonlinear term g(u),the nonlinear damping f(u_(t))and the external force h(x,t).Specifically,the asymptotic compactness of the semigroup is verified by the energy reconstruction method.
基金Projects(51204053,51074048,51204048)supported by the National Natural Science Foundation of ChinaProject(20110491518)supported by China Postdoctoral Science FoundationProject(2012CB619506)supported by the National Basic Research Program of China
文摘The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24.
基金Project(51271096)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0310)supported by the Program for New Century Excellent Talents in University,Ministry of Education,China
文摘Structural uniformity is an important parameter influencing physical and mechanical properties of lotus-type porous metals prepared by directional solidification of metal-gas eutectic (Gasar). The effect of superheat on structural uniformity as well as average porosity, pore morphology of porous metals was studied. The experimental results show that, when the superheat is higher than a critical value (ΔTc), the bubbling or boiling phenomenon will occur and the gas bubbles will form in the melt and float out of the melt. As a result, the final porosity will decrease. In addition, a higher superheat will simultaneously cause a non-uniform porous structure due to the pores coalescence and bubbling phenomenon. Finally, a theoretical model was developed to predict the critical superheat for the hydrogen to escape from the melt and the corresponding escapement ratio of hydrogen content. Considering the escapement of hydrogen, the predicted porosities are in good agreement with the experimental results.
基金Under the auspices of National Science and Technology Support Program of China(No.2015BAD06B01)
文摘As an important constitute of land consolidation, high-standard basic farmland construction is an important means to protect the quantity, quality and ecological environment of cultivated land. Its target not only lies in the increase of cultivated land quantity, but also the improvement of cultivated land quality, agricultural production conditions and ecosystem environments. In the present study, the quality evaluation method and construction arrangement of cultivated land were explored to facilitate the process of decision-making and implementation for high-standard basic farmland construction(HSBFC) with administrative village as the unit. Taking the land comprehensive improvement project area in Quzhou County, Handan City, Hebei Province as a case study, the whole process of the study comprised of three steps: 1) establishment of the evaluation model of cultivated land quality uniformity based on regional optimum cultivated land quality, and construction of the uniformity evaluation index system from the aspects of soil fertility quality, engineering quality, spatial quality and eco-environment quality, according to the new concept of cultivated land quality; 2) calculation of cultivated land quality uniformity by grading indicators, assigning scores and weighting sums, exploring the local homogenization characteristics of regional cultivated land quality through spatial autocorrelation analysis, and analyzing the constraints and transformative potential of barrier factors; 3) arrangement of HSBFC according to the principle of concentration, continuity and priority to the easy operation. The results revealed that the value of farmland quality uniformity for the administrative villages in the study area was between 7.76 and 21.96, and there was a difference between various administrative villages. The regional spatial autocorrelation patterns included High-High(HH), Low-Low(LL), High-Low(HL) and Low-High(LH). These indicate that regional cultivated land quality has local homogenization characteristics. The most restrictive factors in the study area were the medium and low transformation difficulty indexes, including soil organic matter content, farmland shelterbelt network density, field regularity and scale of the field. In addition, there were also high transformation difficulty indicators in some areas, such as sectional configuration. The project area was divided into four partitions: major construction area, secondary construction area, general construction area, and conditional construction area. The cultivated land area of each subarea was 1538.85 ha, 1224.27 ha, 555.93 ha, and 1666.63 ha, respectively. This comprised of 30.87%, 24.56%, 11.15% and 33.42% of the total project area, respectively. The evaluation model and index system could satisfy the evaluation of farmland quality and diagnosis of obstacle factors to facilitate the subsequent construction decision. The present study provides reference for the practice of regional HSBFC, and a new feasible idea and method for related studies.
基金supported by the NSF of China (10671080)NCET (06-672)the Key Project of Chinese Ministry of Education (105119)
文摘In this article, we consider the characterization problem in design theory. The objective is to characterize minimum projection uniformity for two-level designs in terms of their complementary designs. Here, the complementary design means a design in which all the Hamming distances of any two runs are the same, which generalizes the concept of a pair of complementary designs in the literature. Based on relationships of the uniformity pattern between a pair of complementary designs, we propose a minimum projection uniformity (MPU) rule to assess and compare two-level factorials.
基金supported by the Agricultural Science and Technology Innovation Program, China (ASTIPIAS02)the National Key Technology R&D Program of China (2011BAD28B01)+2 种基金the National Natural Science Foundation of China (31201781)the Earmarked Fund for Modern Agro-Industry Technology Research System, China (2011ZX08006-003)the Chinese Academy of Agricultural Sciences Foundation (2014ZL006, 2011cj-5, 2012ZL069 and 2014ywf-yb-8)
文摘Litter uniformity, which is usually represented by within-litter weight coefficient of variation at birth (CVB), could influence litter performance of sows and the profitability of pig enterprises. The objective of this study was to characterize CVB and its effect on other reproductive traits in Large White sows. Genetic parameters and genetic correlation of the reproductive traits, including CVB, within-litter weight coefficient of variation at three weeks (CVT), total number born (TNB), number born alive (NBA), number born dead (NBD), gestation length (GL), piglet mortality at birth (Mo), piglet mortality at three weeks (M3), total litter weight at birth (TLW0), and total litter weight at three weeks (TLW3) were estimated for 2 032 Large White litters. The effects of parity and classified litter size on CVB, CVT, TNB, NBA, NBD, GL, M0, M3, TLW0, and TLW3 were also estimated. The heritabilities of these reproductive traits ranged from 0.06 to 0.17, with the lowest heritability for CVB and the highest heritability for TLW0. Phenotypic and genetic correlations between these reproductive traits were low to highly positive and negative (ranging from -0.03 to 0.93, and -0.53 to 0.93, respectively). The genetic correlations between TNB and CVB, and between M0 and CVB were 0.32 and 0.29, respectively. In addition, CVB was significantly influenced by parity and litter size class (P〈0.05). All the results suggest that piglet uniformity should be maintained in pig production practices and pig breeding programs.
基金supported by the National Natural Science Foundation of China (50979115)
文摘The dynamics of water and salt in soil were monitored in the 2010 and 2011 growing seasons of cotton to evaluate the salinity risk of soil under drip irrigation in arid environments for different management practices of drip system uniformity and irrigation amount. In the experiments, three Christiansen uniformity coefficients (CU) of approximately 65, 80, and 95% (referred to as low, medium, and high uniformity, respectively) and three irrigation amounts of 50, 75, and 100% of full irrigation were used. The distribution of the soil water content and bulk electrical conductivity (ECb) was monitored continuously with approximately equally spaced frequency domain reflectometry (FDR) sensors located along a dripline. Gravimetric samples of soil were collected regularly to determine the distribution of soil salinity. A great fluctuation in CU of water content and ECb at 60 cm depth was observed for the low uniformity treatment during the irrigation season, while a relatively stable variation pattern was observed for the high uniformity treatment. The ECb CU was substantially lower than the water content CU and its value was greatly related to the water content CU and the initial ECb CU. The spatial variation of seasonal mean soil water content and seasonal mean soil bulk electrical conductivity showed a high dependence on the variation pattern of emitter discharge rate along a dripline for the low and medium uniformity treatments. A greater irrigation amount produced a significantly lower soil salinity at the end of the irrigation season, while the influence of the system uniformity on the soil salinity was insignificant at a probability level of 0.1. In arid regions, the determination of the target drip irrigation system uniformity should consider the potential salinity risk of soil caused by nonuniform water application as the influence of the system uniformity on the distribution of the soil salinity was progressively strengthened during the growing season of crop.
文摘This study aims to systematically analyze the key parameters of the reflow process that influence the uniformity of the chromium passivation film coated on tinplate. The distribution characteristics of the chromium passivation film coated on the tinplate surface under different treatment conditions were systematically characterized using the scanning Kelvin probe technique, X-ray photoelectron spectroscopy, and X-ray diffraction. Results indicate that the use of flux reduces the porosity of tin coating, thereby favoring the uniform growth of the passivation film. Furthermore, an increase in the reflow power and quenching temperature facilitates the homogeneous distribution of the passivation film on the tinplate surface,particularly when treated with electrolytic cathodic sodium dichromate.
文摘In the manufacture of SiC_p/Al completes via powder metallurgy, the method of assessing the distri-bution uniformity of SiC particles is very important. The SiC_p distribution uniformity on each processingprocedure at the macro- and micro-mixed stages was investigated and the methods for determining mix-ture quality were put forward.
基金financially supported by the National Natural Science Foundation of China (No. 51272027)
文摘In this study, small- and large-particle-diameter phosphor powders were mixed together(hybrid phosphors)to balance light efficacy and angular color uniformity and pursue optimal results. Phosphor with small-particlediameter of 4 lm was employed and it was mixed into each large-particle-diameter phosphor of 10, 16, 22, and 26 lm,at mass percentage from 0 % to 50 % with an interval of10 %, respectively. Remote phosphor package was adopted and overall phosphor concentration was kept constant for better comparison. Moreover, absorption coefficient labs,scattering coefficient lscaand extinction coefficient lext of each hybrid phosphors were calculated based on Mie theory to further discuss the experiment results. Results show that, the introduction of small-particle-diameter phosphor to large one can highly improve angular color uniformity while only slightly reduce light efficacy. The optimal performance with angular color uniformity of91.6 % as well as normalized light efficacy of 95.7 % is achieved in the white light emitting diode with hybrid phosphors consisting of 60 wt% powder of 22 μm and40 wt% powder of 4 μm.
文摘50mm 3C-SiC epilayers are grown on (100) and (111) Si substrates in a newly developed horizontal lowpressure hot-wall CVD reactor under different growth pressures and flow rates of H2 carrier gas. The structure,electrical properties, and thickness uniformity of the 3C-SiC epilayers are investigated by X-ray diffraction (XRD) ,sheet resistance measurement, and spectroscopic ellipsometry. XRD patterns show that the 3C-SiC films have excellent crystallinity. The narrowest full widths at half maximum of the SIC(200) and (111) peaks are 0.41° and 0.21°, respectively. The best electrical uniformity of the 50mm 3C-SiC films obtained by sheet resistance measurement is 2.15%. A σ/mean value of ± 5.7% in thickness uniformity is obtained.
基金Item Sponsored by Financial Supports From National Pillar Program of China(2007DAE30B02)
文摘An analytic model based on ANSYS/LS-DYNA has been developed on the cold rolling process for Q235 steel rebar with 12 mm in diameter. The elastic-plastic finite element method (FEM) and the cold deformation resistance model of Q235 steel were adopted in this model. Deformation uniformity of the final product has been analyzed using this model. The results indicate that the uniformity of the final product is obtained only as the centerline of the bending rolls is vertical to the centerline of the driven roll and parallel to the centerline of the drive roll in the whole rolling process. Besides, the number of the bending rolls must even realize the continuous bending and reverse bending process. Also, the number of the bending rolls must match the deformation degree of the workpiece in the cold rolling process. The validity of this finite element model was verified by the size and distribution of grains from the billet to the rebar in a practical cold rolling process.