Fine slag(FS)is an unavoidable by-product of coal gasification.FS,which is a simple heap of solid waste left in the open air,easily causes environmental pollution and has a low resource utilization rate,thereby restri...Fine slag(FS)is an unavoidable by-product of coal gasification.FS,which is a simple heap of solid waste left in the open air,easily causes environmental pollution and has a low resource utilization rate,thereby restricting the development of energy-saving coal gasification technologies.The multiscale analysis of FS performed in this study indicates typical grain size distribution,composition,crystalline structure,and chemical bonding characteristics.The FS primarily contained inorganic and carbon components(dry bases)and exhibited a"three-peak distribution"of the grain size and regular spheroidal as well as irregular shapes.The irregular particles were mainly adsorbed onto the structure and had a dense distribution and multiple pores and folds.The carbon constituents were primarily amorphous in structure,with a certain degree of order and active sites.C 1s XPS spectrum indicated the presence of C–C and C–H bonds and numerous aromatic structures.The inorganic components,constituting 90%of the total sample,were primarily silicon,aluminum,iron,and calcium.The inorganic components contained Si–O-Si,Si–O–Al,Si–O,SO_(4)^(2−),and Fe–O bonds.Fe 2p XPS spectrum could be deconvoluted into Fe 2p_(1/2) and Fe 2p_(3/2) peaks and satellite peaks,while Fe existed mainly in the form of Fe(III).The findings of this study will be beneficial in resource utilization and formation mechanism of fine slag in future.展开更多
Background:Early and accurate diagnosis of cataracts,which ranks among the leading preventable causes of blindness,is critical to securing positive outcomes for patients.Recently,eye image analyses have used deep lear...Background:Early and accurate diagnosis of cataracts,which ranks among the leading preventable causes of blindness,is critical to securing positive outcomes for patients.Recently,eye image analyses have used deep learning(DL)approaches to automate cataract classification more precisely,leading to the development of the Multiscale Parallel Feature Aggregation Network with Attention Fusion(MPFAN-AF).Focused on improving a model’s performance,this approach applies multiscale feature extraction,parallel feature fusion,along with attention-based fusion to sharpen its focus on salient features,which are crucial in detecting cataracts.Methods:Coarse-level features are captured through the application of convolutional layers,and these features undergo refinement through layered kernels of varying sizes.Moreover,this method captures all the diverse representations of cataracts accurately by parallel feature aggregation.Utilizing the Cataract Eye Dataset available on Kaggle,containing 612 labelled images of eyes with and without cataracts proportionately(normal vs.pathological),this model was trained and tested.Results:Results using the proposed model reflect greater precision over traditional convolutional neural networks(CNNs)models,achieving a classification accuracy of 97.52%.Additionally,the model demonstrated exceptional performance in classification tasks.The ablation studies validated that all applications added value to the prediction process,particularly emphasizing the attention fusion module.Conclusion:The MPFAN-AF model demonstrates high efficiency together with interpretability because it shows promise as an integration solution for real-time mobile cataract detection screening systems.Standard performance indicators indicate that AI-based ophthalmology tools have a promising future for use in remote conditions that lack medical resources.展开更多
To improve design accuracy and reliability of structures,this study solves the uncertain natural frequencies with consideration for geometric nonlinearity and structural uncertainty.Frequencies of the laminated plate ...To improve design accuracy and reliability of structures,this study solves the uncertain natural frequencies with consideration for geometric nonlinearity and structural uncertainty.Frequencies of the laminated plate with all four edges clamped(CCCC)are derived based on Navier's method and Galerkin's method.The novelty of the current work is that the number of unknowns in the displacement field model of a CCCC plate with free midsurface(CCCC-2 plate)is only three compared with four or five in cases of other exposed methods.The present analytical method is proved to be accurate and reliable by comparing linear natural frequencies and nonlinear natural frequencies with other models available in the open literature.Furthermore,a novel method for analyzing effects of mean values and tolerance zones of uncertain structural parameters on random frequencies is proposed based on a self-developed Multiscale Feature Extraction and Fusion Network(MFEFN)system.Compared with a direct Monte Carlo Simulation(MCS),the MFEFNbased procedure significantly reduces the calculation burden with a guarantee of accuracy.Our research provides a method to calculate nonlinear natural frequencies under two boundary conditions and presentes a surrogate model to predict frequencies for accuracy analysis and optimization design.展开更多
Engineering geological and hydro-geological characteristics of foundation rock and surrounding rock mass are the main factors that affect the stability of underground engineering. This paper presents the concept of mu...Engineering geological and hydro-geological characteristics of foundation rock and surrounding rock mass are the main factors that affect the stability of underground engineering. This paper presents the concept of multiscale hierarchical digital rock mass models to describe the rock mass, including its structures in different scales and corresponding scale dependence. Four scales including regional scale,engineering scale, laboratory scale and microscale are determined, and the corresponding scaledependent geological structures and their characterization methods are provided. Image analysis and processing method, geostatistics and Monte Carlo simulation technique are used to establish the multiscale hierarchical digital rock mass models, in which the main micro-and macro-structures of rock mass in different geological units and scales are reflected and connected. A computer code is developed for numerically analyzing the strength, fracture behavior and hydraulic conductivity of rock mass using the multiscale hierarchical digital models. Using the models and methods provided in this paper, the geological information of rock mass in different geological units and scales can be considered sufficiently,and the influence of downscale characteristics(such as meso-scale) on the upscale characteristics(such as engineering scale) can be calculated by considering the discrete geological structures in the downscale model as equivalent continuous media in the upscale model. Thus the mechanical and hydraulic properties of rock mass may be evaluated rationally and precisely. The multiscale hierarchical digital rock mass models and the corresponding methods proposed in this paper provide a unified and simple solution for determining the mechanical and hydraulic properties of rock mass in different scales.展开更多
Assimilating satellite radiances into Numerical Weather Prediction(NWP) models has become an important approach to increase the accuracy of numerical weather forecasting. In this study, the assimilation technique sche...Assimilating satellite radiances into Numerical Weather Prediction(NWP) models has become an important approach to increase the accuracy of numerical weather forecasting. In this study, the assimilation technique scheme was employed in NOAA's STMAS(Space-Time Multiscale Analysis System) to assimilate AMSU-A radiances data.Channel selection sensitivity experiments were conducted on assimilated satellite data in the first place. Then, real case analysis of AMSU-A data assimilation was performed. The analysis results showed that, following assimilating of AMSU-A channels 5-11 in STMAS, the objective function quickly converged, and the channel vertical response was consistent with the AMSU-A weighting function distribution, which suggests that the channels can be used in the assimilation of satellite data in STMAS. With the case of the Typhoon Morakot in Taiwan Island in August 2009 as an example, experiments on assimilated and unassimilated AMSU-A radiances data were designed to analyze the impact of the assimilation of satellite data on STMAS. The results demonstrated that assimilation of AMSU-A data provided more accurate prediction of the precipitation region and intensity, and especially, it improved the 0-6h precipitation forecast significantly.展开更多
Palmatine is a valuable ingredient in Chinese medicine that is produced by Phellodendron amurense Rupr. The contents of palmatine content in root bark, trunk bark, perennial branch bark, annual branches, and leaves of...Palmatine is a valuable ingredient in Chinese medicine that is produced by Phellodendron amurense Rupr. The contents of palmatine content in root bark, trunk bark, perennial branch bark, annual branches, and leaves of the trees with different ages and geographies in Northeast China were measured by high-performance liquid chromatography. The contents of palmatine in the barks of root, trunk, and perennial branch were significantly higher than those in annual branches and leaves. The contents of palmatine in trunk bark and root bark from Lesser Khingan Mountains increased with age, which is significantly opposite to other three vegetation types. The contents of palmatine in perennial branch bark, annual bark and leaves had no significant reg- ularity. Moreover, the contents of palmatine in samples of root bark, trunk bark, perennial branch bark and annual bark varied significantly with latitude. The nature populations of P. amurense growing at low latitude contained significantly more palmatine than those growing at high latitude. These results provide a scientific basis for the reasonable cultivation and efficient utilization of P. amurense.展开更多
This study presents a multiscale method to evaluate the transverse tensile strength and failure mechanism of SiC_(f)/TC17 cruciform specimen machined from a large-size ring.The mechanical properties and failure of the...This study presents a multiscale method to evaluate the transverse tensile strength and failure mechanism of SiC_(f)/TC17 cruciform specimen machined from a large-size ring.The mechanical properties and failure of the specimen were evaluated through a macroscale model under transverse tensile loading at 200°C.A mesoscale model was developed to analyze the transverse tensile behavior and failure of the composite specimen.Interfacial debonding,plastic deformation of matrix and cladding,and damage to the composite core were incorporated into the mesoscopic and macroscopic models.The stress–strain curves and fracture modes obtained from the numerical simulation showed good agreement with the experimental curves,acoustic emission test results,and fracture morphology.The simulation results suggested that the damage to the central region interface and the plastic deformation of the matrix initiated first and propagated outwards.Subsequently,the interfacial failure,matrix failure,and formation of macro-crack developed,which led to the crack of the titanium matrix composite core.Finally,cladding was plastically deformed and crack developed,which led to the severe failure of the cruciform specimen.展开更多
Factorial kriging analysis is applied to the research on the spatial multiscale variability of heavy metals in submarine. It is used to analyze the multiscale spatial structures of seven heavy metals, Ni, Cu, Zn, Pb, ...Factorial kriging analysis is applied to the research on the spatial multiscale variability of heavy metals in submarine. It is used to analyze the multiscale spatial structures of seven heavy metals, Ni, Cu, Zn, Pb, Cr, As and Cd in the surface sediment from the northeastern of Beibu Gulf, identify and separate spatial variations at different scales of heavy metals, and discuss the provenance of heavy metals and the influencing factors. The results show that the existence of three-scale spatial variations those consist of nugget effect, a spherical structure with range of 30 km(short-range scale) and a spherical structure with range of 140 km(long-range scale) in the linear model of coregionalization fitted. The spatial distribution features of seven heavy metals at short-range scale reflect "spot-like" or "stripe-like" local-scale spatial variations; the spatial distribution features of the seven heavy metals at long-range scale represent "slice-like" regional-scale spatial variations. At local scale, Zn, Cr, Ni,Cu, Pb and Cd are derived primarily from parent materials of Hainan Island, Leizhou Peninsula and Guangxi land, whose spatial distribution characteristics are controlled by granularity of sediments, while As is influenced dominantly by human pollution components from Hainan Island and Leizhou Peninsula. At regional scale, Zn,Cr, Ni and Cu originate primarily from parent rock materials of Leizhou Peninsula and Hainan Island, secondly from Guangxi land; As originated primarily from parent rock materials from Hainan Island, secondly from Leizhou Peninsula and Guangxi land. These metals are transported and migrated with sediments dominated by the anticlockwise circulation of Beibu Gulf year-round, deposited in "convergence center", forming the whole sedimentary pattern in direction of NWW-NNW at regional scale. The difference in distribution type between As and other metals at regional scale is mainly due to their different geochemical behavior.展开更多
This paper reports a multiscale analysis method to predict the thermomechanical coupling performance of composite structures with quasi-periodic properties.In these material structures,the configurations are periodic,...This paper reports a multiscale analysis method to predict the thermomechanical coupling performance of composite structures with quasi-periodic properties.In these material structures,the configurations are periodic,and the material coefficients are quasi-periodic,i.e.,they depend not only on the microscale information but also on the macro location.Also,a mutual interaction between displacement and temperature fields is considered in the problem,which is our particular interest in this study.The multiscale asymptotic expansions of the temperature and displacement fields are constructed and associated error estimation in nearly pointwise sense is presented.Then,a finite element-difference algorithm based on the multiscale analysis method is brought forward in detail.Finally,some numerical examples are given.And the numerical results show that the multiscale method presented in this paper is effective and reliable to study the nonlinear thermo-mechanical coupling problem of composite structures with quasiperiodic properties.展开更多
The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching...The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating patients with skeletal deficiencies.展开更多
A novel multiscale algorithm based on the higher-order continuum at both micro-and macrostructural level is proposed for the consideration of the quasi-brittle damage response of heterogeneous materials.Herein,the mic...A novel multiscale algorithm based on the higher-order continuum at both micro-and macrostructural level is proposed for the consideration of the quasi-brittle damage response of heterogeneous materials.Herein,the microlevel damage is modelled by the degradation of the homogenized stress and tangent stiffness tensors,which are then upscaled to govern the localization at the macrolevel.The C^1 continuity finite element employing a modified case of Mindlin’s form II strain energy density is derived for the softening analysis.To the authors’knowledge,the finite element discretization based on the strain gradient theory is applied for the modeling of damage evolution at the microstructural level for heterogeneous materials for the first time.The advantage of the novel C1 finite element formulation in comparison with the standard finite element discretization in terms of the regularization efficiency as well as the objectivity has been shown.An isotropic damage law is used for the reduction of the constitutive and nonlocal material behaviour,which is necessary for the physically correct description of the localization formation in quasi-brittle materials.The capabilities of the derived finite element to capture the fully developed localization zones are tested on a random representative volume element(RVE)for several different loading cases.By employing the conventional second-order computational homogenization,the microstructural material constitutive response is averaged over the whole RVE area.In order to model the loss of structural integrity when sharp localization is formed across RVE,the specific conditions which detect a completely formed localization zone are developed.A new failure criterion at the microstructural level has been proposed.The derived finite element formulation,as well as the multiscale damage algorithm,are implemented into the finite element program ABAQUS.The capabilities of the presented multiscale scheme to capture the effects of the deformation localization are demonstrated by few benchmark numerical examples.展开更多
Fretting wear is a phenomenon,in which wear happens between two oscillatory moving contact surfaces in microscale amplitude.In this paper,the effect of debris between pad and specimen is analyzed by using a semi-concu...Fretting wear is a phenomenon,in which wear happens between two oscillatory moving contact surfaces in microscale amplitude.In this paper,the effect of debris between pad and specimen is analyzed by using a semi-concurrent multiscale method.Firstly,the macroscale fretting wear model is performed.Secondly,the part with the wear profile is imported from the macroscale model to a microscale model after running in stage.Thirdly,an effective pad’s radius is extracted by analyzing the contact pressure in order to take into account the effect of the debris.Finally,the effective radius is up-scaled from the microscale model to the macroscale model,which is used after running in stage.In this way,the effect of debris is considered by changing the radius of the pad in the macroscale model.Due to the smaller number of elements in the microscale model compared with the macroscale model containing the debris layer,the semi-concurrent method proposed in this paper is more computationally efficient.Moreover,the results of this semi-concurrent method show a better agreement with experimental data,compared to the results of the model ignoring the effect of debris.展开更多
This paper is devoted to the homogenization and statistical multiscale analysis of a transient heat conduction problem in random porous materials with a nonlinear radiation boundary condition.A novel statistical multi...This paper is devoted to the homogenization and statistical multiscale analysis of a transient heat conduction problem in random porous materials with a nonlinear radiation boundary condition.A novel statistical multiscale analysis method based on the two-scale asymptotic expansion is proposed.In the statistical multiscale formulations,a unified linear homogenization procedure is established and the second-order correctors are introduced for modeling the nonlinear radiative heat transfer in random perforations,which are our main contributions.Besides,a numerical algorithm based on the statistical multiscale method is given in details.Numerical results prove the accuracy and efficiency of our method for multiscale simulation of transient nonlinear conduction and radiation heat transfer problem in random porous materials.展开更多
This paper is devoted to the microstructure geometric modeling and mechanical properties computation of cancellous bone.The microstructure of the cancellous bone determines its mechanical properties and a precise geom...This paper is devoted to the microstructure geometric modeling and mechanical properties computation of cancellous bone.The microstructure of the cancellous bone determines its mechanical properties and a precise geometric modeling of this structure is important to predict the material properties.Based on the microscopic observation,a new microstructural unit cell model is established by introducing the Schwarz surface in this paper.And this model is very close to the real microstructure and satisfies the main biological characteristics of cancellous bone.By using the unit cell model,the multiscale analysis method is newly applied to predict the mechanical properties of cancellous bone.The effective stiffness parameters are calculated by the up-scaling multi-scale analysis.And the distribution of microscopic stress in cancellous bone is determined through the down-scaling procedure.In addition,the effect of porosity on the stiffness parameters is also investigated.The predictive mechanical properties are in good agreement with the available experimental results,which verifies the applicability of the proposed unit cell model and the validness of the multiscale analysis method to predict the mechanical properties of cancellous bone.展开更多
Cemented carbide tools are widely utilized in titanium alloy machining.However,severe tool wear usually occurs during machining;thus,the wear process has attracted widespread attention.Electromagnetic treatment was ap...Cemented carbide tools are widely utilized in titanium alloy machining.However,severe tool wear usually occurs during machining;thus,the wear process has attracted widespread attention.Electromagnetic treatment was applied in our previous study to significantly improve the tool life of cemented carbide tools in Ti6Al4V machining.To investigate the effect of electromagnetic treatment on wear performance,a multiscale analysis of the wear process of cemented carbide tools in the turning process,including microdefects and wear topography at various scales,was conducted in the present study.The distribution of dislocations in the tool material was measured through electron backscatter diffraction,and the surface topographies in the wear area during the Ti6Al4V cutting process were recorded via white light interferometry.Fractal analysis based on the scaling property of surface roughness was carried out to further quantify the wear performance of the tools.The results revealed that the wear mechanism of the cutting tools was mainly adhesion and diffusion,and the diffusion wear of the electromagnetically treated tools was less than that of the untreated tools.Based on the multiscale analysis of flank wear,the effect of electromagnetic treatment on the enhancement of the wear resistance of cemented carbide cutting tools was demonstrated.The multiscale analysis of the wear performance of cutting tools in this study effectively revealed the mechanism by which electromagnetic treatment enhances wear resistance,thus contributing to filling the research gap of traditional studies on tool wear that generally employ single scales.展开更多
Spatial statistics are crucial for analyzing clustering patterns in various spaces,such as the distribution of trees in a forest or stars in the sky.Advances in spatial biology,such as single-cell spatial transcriptom...Spatial statistics are crucial for analyzing clustering patterns in various spaces,such as the distribution of trees in a forest or stars in the sky.Advances in spatial biology,such as single-cell spatial transcriptomics,enable researchers to map gene expression patterns within tissues,offering unprecedented insights into cellular functions and disease pathology.Common methods for deriving spatial relationships include density-based methods(quadrat analysis,kernel density estimators)and distance-based methods(nearest-neighbor distance[NND],Ripley’s K function).While density-based methods are effective for visualization,they struggle with quantification due to sensitivity to parameters and complex significance tests.In contrast,distance-based methods offer robust frameworks for hypothesis testing,quantifying spatial clustering or dispersion,and facilitating comparisons with models such as uniform random distributions or Poisson processes[1,2].展开更多
A multiscale method for simulating the dynamic response of ceramic matrix composite (CMC) with matrix cracks is developed. At the global level, the finite element method is employed to simulate the dynamic response ...A multiscale method for simulating the dynamic response of ceramic matrix composite (CMC) with matrix cracks is developed. At the global level, the finite element method is employed to simulate the dynamic response of a CMC beam. While at the local level, the multiscale mechanical method is used to estimate the stress/strain response of the material. A distributed computing system is developed to speed up the simulation. The simulation of dynamic response of a Nicalon/CAS-II beam being subjected to harmonic loading is performed as a numerical example. The results show that both the stress/strain responses under tension and compressive loading are nonlinear. These conditions result in a different response compared with that of elastic beam, such as: 1) the displacement response is not symmetric about the axis of time; 2) in the condition of small external load, the response at first order natural frequency is limited within a finite range; 3) decreasing the matrix crack space will increase the displace- ment response of the beam.展开更多
The effects of welding speed on the macroscopic and microscopic residual stresses(RSes) in friction stir welded 17 vol.% SiCp/2009 Al-T4 composite plates were studied via neutron diffraction and an improved decoupled ...The effects of welding speed on the macroscopic and microscopic residual stresses(RSes) in friction stir welded 17 vol.% SiCp/2009 Al-T4 composite plates were studied via neutron diffraction and an improved decoupled hierarchical multiscale modeling methods. Measurements showed that the macroscopic and total RSes had the largest variations in the longitudinal direction(LD). Increasing the welding speed led to higher values of measured LD macroscopic and total RSes in the matrix. The welding speed also significantly influenced the distributions and magnitudes of the microscopic RSes. The RSes were predicted via an improved hierarchical multiscale model, which includes a constant coefficient of friction based thermal model. The RSes in the composite plates before friction stir welding(FSW) were computed and then set as the initial states of the FSW process during modeling. This improved decoupled multiscale model provided improved predictions of the temperature and RSes compared with our previous model.展开更多
Based on the eigenvector expansion idea, the Multiscale Eigenelement Method(MEM)was proposed by the author and co-workers. MEM satisfies two equivalent conditions, one condition is the equivalence of strain energy, an...Based on the eigenvector expansion idea, the Multiscale Eigenelement Method(MEM)was proposed by the author and co-workers. MEM satisfies two equivalent conditions, one condition is the equivalence of strain energy, and the other is the deformation similarity. These two equivalent conditions character the structure-preserving property of a multiscale analysis method. The equivalence of strain energy is necessary for achieving accurate macro behaviors such as lower order frequencies, while the deformation similarity is essential for predicting accurate micro behaviors such as stresses. The MEM has become a powerful multiscale method for the analysis of composite structures because of its high accuracy and efficiency. In this paper, the research advances of MEM are reviewed and all types of eigenelement methods are compared, focusing on superiorities and deficiencies from practical viewpoint. It is concluded that the eigenelement methods with smooth shape functions are more suitable for the analysis of macro behaviors such as lower order frequencies, and the eigenelement methods with piecewise shape functions are suitable for the analysis of both macro and micro behaviors.展开更多
基金Scientific Research Foundation for the Introduction of Talent in Anhui University of Science and Technology(2023yjrc90)Graduate Research Project of Higher Education in Anhui Province(YJS20210377)+2 种基金Postgraduate Innovation Fund of Anhui University of Science and Technology(2021CX1002)University Synergy Innovation Program of Anhui Province(GXXT-2020-006)National Science Fund for Young Scientists(52200139).
文摘Fine slag(FS)is an unavoidable by-product of coal gasification.FS,which is a simple heap of solid waste left in the open air,easily causes environmental pollution and has a low resource utilization rate,thereby restricting the development of energy-saving coal gasification technologies.The multiscale analysis of FS performed in this study indicates typical grain size distribution,composition,crystalline structure,and chemical bonding characteristics.The FS primarily contained inorganic and carbon components(dry bases)and exhibited a"three-peak distribution"of the grain size and regular spheroidal as well as irregular shapes.The irregular particles were mainly adsorbed onto the structure and had a dense distribution and multiple pores and folds.The carbon constituents were primarily amorphous in structure,with a certain degree of order and active sites.C 1s XPS spectrum indicated the presence of C–C and C–H bonds and numerous aromatic structures.The inorganic components,constituting 90%of the total sample,were primarily silicon,aluminum,iron,and calcium.The inorganic components contained Si–O-Si,Si–O–Al,Si–O,SO_(4)^(2−),and Fe–O bonds.Fe 2p XPS spectrum could be deconvoluted into Fe 2p_(1/2) and Fe 2p_(3/2) peaks and satellite peaks,while Fe existed mainly in the form of Fe(III).The findings of this study will be beneficial in resource utilization and formation mechanism of fine slag in future.
文摘Background:Early and accurate diagnosis of cataracts,which ranks among the leading preventable causes of blindness,is critical to securing positive outcomes for patients.Recently,eye image analyses have used deep learning(DL)approaches to automate cataract classification more precisely,leading to the development of the Multiscale Parallel Feature Aggregation Network with Attention Fusion(MPFAN-AF).Focused on improving a model’s performance,this approach applies multiscale feature extraction,parallel feature fusion,along with attention-based fusion to sharpen its focus on salient features,which are crucial in detecting cataracts.Methods:Coarse-level features are captured through the application of convolutional layers,and these features undergo refinement through layered kernels of varying sizes.Moreover,this method captures all the diverse representations of cataracts accurately by parallel feature aggregation.Utilizing the Cataract Eye Dataset available on Kaggle,containing 612 labelled images of eyes with and without cataracts proportionately(normal vs.pathological),this model was trained and tested.Results:Results using the proposed model reflect greater precision over traditional convolutional neural networks(CNNs)models,achieving a classification accuracy of 97.52%.Additionally,the model demonstrated exceptional performance in classification tasks.The ablation studies validated that all applications added value to the prediction process,particularly emphasizing the attention fusion module.Conclusion:The MPFAN-AF model demonstrates high efficiency together with interpretability because it shows promise as an integration solution for real-time mobile cataract detection screening systems.Standard performance indicators indicate that AI-based ophthalmology tools have a promising future for use in remote conditions that lack medical resources.
基金the research project funded by the Fundamental Research Funds for the Central Universities(No.HIT.OCEP.2024038)the National Natural Science Foundation of China(No.52372351)the State Key Laboratory of Micro-Spacecraft Rapid Design and Intelligent Cluster,China(No.MS02240107)。
文摘To improve design accuracy and reliability of structures,this study solves the uncertain natural frequencies with consideration for geometric nonlinearity and structural uncertainty.Frequencies of the laminated plate with all four edges clamped(CCCC)are derived based on Navier's method and Galerkin's method.The novelty of the current work is that the number of unknowns in the displacement field model of a CCCC plate with free midsurface(CCCC-2 plate)is only three compared with four or five in cases of other exposed methods.The present analytical method is proved to be accurate and reliable by comparing linear natural frequencies and nonlinear natural frequencies with other models available in the open literature.Furthermore,a novel method for analyzing effects of mean values and tolerance zones of uncertain structural parameters on random frequencies is proposed based on a self-developed Multiscale Feature Extraction and Fusion Network(MFEFN)system.Compared with a direct Monte Carlo Simulation(MCS),the MFEFNbased procedure significantly reduces the calculation burden with a guarantee of accuracy.Our research provides a method to calculate nonlinear natural frequencies under two boundary conditions and presentes a surrogate model to predict frequencies for accuracy analysis and optimization design.
基金the Outstanding Youth Science Foundation of National Natural Science Foundation (Grant No. 51522903)the National Key Research and Development Plan (Grant No. 2016YFC0501104)+1 种基金the National Natural Science Foundation of China (Grant Nos. U1361103, 51479094 and 51379104)the Open Research Fund Program of the State Key Laboratory of Hydroscience and Engineering,Tsinghua University (Grant Nos. 2015-KY-04, 2016-KY-02 and 2016KY-05)
文摘Engineering geological and hydro-geological characteristics of foundation rock and surrounding rock mass are the main factors that affect the stability of underground engineering. This paper presents the concept of multiscale hierarchical digital rock mass models to describe the rock mass, including its structures in different scales and corresponding scale dependence. Four scales including regional scale,engineering scale, laboratory scale and microscale are determined, and the corresponding scaledependent geological structures and their characterization methods are provided. Image analysis and processing method, geostatistics and Monte Carlo simulation technique are used to establish the multiscale hierarchical digital rock mass models, in which the main micro-and macro-structures of rock mass in different geological units and scales are reflected and connected. A computer code is developed for numerically analyzing the strength, fracture behavior and hydraulic conductivity of rock mass using the multiscale hierarchical digital models. Using the models and methods provided in this paper, the geological information of rock mass in different geological units and scales can be considered sufficiently,and the influence of downscale characteristics(such as meso-scale) on the upscale characteristics(such as engineering scale) can be calculated by considering the discrete geological structures in the downscale model as equivalent continuous media in the upscale model. Thus the mechanical and hydraulic properties of rock mass may be evaluated rationally and precisely. The multiscale hierarchical digital rock mass models and the corresponding methods proposed in this paper provide a unified and simple solution for determining the mechanical and hydraulic properties of rock mass in different scales.
基金National Natural Science Foundation of China(41375027,41130960,41275114,41275039)Public Benefit Research Foundation of China Meteorological Administration(GYHY201406001,GYHY201106044)+1 种基金"863"Program(2012AA120903)National Key Research and Development Program of China(2016YFB0502501)
文摘Assimilating satellite radiances into Numerical Weather Prediction(NWP) models has become an important approach to increase the accuracy of numerical weather forecasting. In this study, the assimilation technique scheme was employed in NOAA's STMAS(Space-Time Multiscale Analysis System) to assimilate AMSU-A radiances data.Channel selection sensitivity experiments were conducted on assimilated satellite data in the first place. Then, real case analysis of AMSU-A data assimilation was performed. The analysis results showed that, following assimilating of AMSU-A channels 5-11 in STMAS, the objective function quickly converged, and the channel vertical response was consistent with the AMSU-A weighting function distribution, which suggests that the channels can be used in the assimilation of satellite data in STMAS. With the case of the Typhoon Morakot in Taiwan Island in August 2009 as an example, experiments on assimilated and unassimilated AMSU-A radiances data were designed to analyze the impact of the assimilation of satellite data on STMAS. The results demonstrated that assimilation of AMSU-A data provided more accurate prediction of the precipitation region and intensity, and especially, it improved the 0-6h precipitation forecast significantly.
基金supported by Special Fund for ForestryScientific Research in the Public Interest(Grant No.201104066)
文摘Palmatine is a valuable ingredient in Chinese medicine that is produced by Phellodendron amurense Rupr. The contents of palmatine content in root bark, trunk bark, perennial branch bark, annual branches, and leaves of the trees with different ages and geographies in Northeast China were measured by high-performance liquid chromatography. The contents of palmatine in the barks of root, trunk, and perennial branch were significantly higher than those in annual branches and leaves. The contents of palmatine in trunk bark and root bark from Lesser Khingan Mountains increased with age, which is significantly opposite to other three vegetation types. The contents of palmatine in perennial branch bark, annual bark and leaves had no significant reg- ularity. Moreover, the contents of palmatine in samples of root bark, trunk bark, perennial branch bark and annual bark varied significantly with latitude. The nature populations of P. amurense growing at low latitude contained significantly more palmatine than those growing at high latitude. These results provide a scientific basis for the reasonable cultivation and efficient utilization of P. amurense.
基金This work was supported by the National Science and Technology Major Project(HT-J2019-VI-0007-0121)the CAS Project for Young Scientists in Basic Research(YSBR-025)the National Natural Science Foundation of China(No.52101164).
文摘This study presents a multiscale method to evaluate the transverse tensile strength and failure mechanism of SiC_(f)/TC17 cruciform specimen machined from a large-size ring.The mechanical properties and failure of the specimen were evaluated through a macroscale model under transverse tensile loading at 200°C.A mesoscale model was developed to analyze the transverse tensile behavior and failure of the composite specimen.Interfacial debonding,plastic deformation of matrix and cladding,and damage to the composite core were incorporated into the mesoscopic and macroscopic models.The stress–strain curves and fracture modes obtained from the numerical simulation showed good agreement with the experimental curves,acoustic emission test results,and fracture morphology.The simulation results suggested that the damage to the central region interface and the plastic deformation of the matrix initiated first and propagated outwards.Subsequently,the interfacial failure,matrix failure,and formation of macro-crack developed,which led to the crack of the titanium matrix composite core.Finally,cladding was plastically deformed and crack developed,which led to the severe failure of the cruciform specimen.
基金The National Natural Science Foundation of China under contract Nos 41176045,41476050,41106047,41476047 and41106045the Scientific Research Fund of the Second Institute of Oceanography,State Oceanic Administration of China under contract No.JG1204+2 种基金the National Special Project for"Global change and air-sea interaction"under contract Nos GASI-04-01-02 and GASI-GEOGE-03Chinese Polar Environment Comprehensive Investigation and Assessment Programmes under contract Nos CHINARE2012-01-02,CHINARE2013-01-02,CHINARE2014-01-02,CHINARE2013-04-01 and CHINARE2014-04-01the Marine Public Welfare Research Project,State Oceanic Administration of China under contract No.201105003
文摘Factorial kriging analysis is applied to the research on the spatial multiscale variability of heavy metals in submarine. It is used to analyze the multiscale spatial structures of seven heavy metals, Ni, Cu, Zn, Pb, Cr, As and Cd in the surface sediment from the northeastern of Beibu Gulf, identify and separate spatial variations at different scales of heavy metals, and discuss the provenance of heavy metals and the influencing factors. The results show that the existence of three-scale spatial variations those consist of nugget effect, a spherical structure with range of 30 km(short-range scale) and a spherical structure with range of 140 km(long-range scale) in the linear model of coregionalization fitted. The spatial distribution features of seven heavy metals at short-range scale reflect "spot-like" or "stripe-like" local-scale spatial variations; the spatial distribution features of the seven heavy metals at long-range scale represent "slice-like" regional-scale spatial variations. At local scale, Zn, Cr, Ni,Cu, Pb and Cd are derived primarily from parent materials of Hainan Island, Leizhou Peninsula and Guangxi land, whose spatial distribution characteristics are controlled by granularity of sediments, while As is influenced dominantly by human pollution components from Hainan Island and Leizhou Peninsula. At regional scale, Zn,Cr, Ni and Cu originate primarily from parent rock materials of Leizhou Peninsula and Hainan Island, secondly from Guangxi land; As originated primarily from parent rock materials from Hainan Island, secondly from Leizhou Peninsula and Guangxi land. These metals are transported and migrated with sediments dominated by the anticlockwise circulation of Beibu Gulf year-round, deposited in "convergence center", forming the whole sedimentary pattern in direction of NWW-NNW at regional scale. The difference in distribution type between As and other metals at regional scale is mainly due to their different geochemical behavior.
基金financially supported by the National Natural Science Foundation of China(11501449)the Fundamental Research Funds for the Central Universities(3102017zy043)+2 种基金the China Postdoctoral Science Foundation(2016T91019)the fund of the State Key Laboratory of Solidification Processing in NWPU(SKLSP201628)the Scientific Research Program Funded by Shaanxi Provincial Education Department(14JK1353).
文摘This paper reports a multiscale analysis method to predict the thermomechanical coupling performance of composite structures with quasi-periodic properties.In these material structures,the configurations are periodic,and the material coefficients are quasi-periodic,i.e.,they depend not only on the microscale information but also on the macro location.Also,a mutual interaction between displacement and temperature fields is considered in the problem,which is our particular interest in this study.The multiscale asymptotic expansions of the temperature and displacement fields are constructed and associated error estimation in nearly pointwise sense is presented.Then,a finite element-difference algorithm based on the multiscale analysis method is brought forward in detail.Finally,some numerical examples are given.And the numerical results show that the multiscale method presented in this paper is effective and reliable to study the nonlinear thermo-mechanical coupling problem of composite structures with quasiperiodic properties.
基金supported by grants from NIH (P30GM103333 and RO1AR054385 to LW)China CSC fellowship (to LF)DOD W81XWH-13-1-0148 (to XLL)
文摘The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating patients with skeletal deficiencies.
基金This work has been fully supported by Croatian Science Foundation under the project“Multiscale Numerical Modelling of Material Deformation Responses from Macro-to Nanolevel”(2516).
文摘A novel multiscale algorithm based on the higher-order continuum at both micro-and macrostructural level is proposed for the consideration of the quasi-brittle damage response of heterogeneous materials.Herein,the microlevel damage is modelled by the degradation of the homogenized stress and tangent stiffness tensors,which are then upscaled to govern the localization at the macrolevel.The C^1 continuity finite element employing a modified case of Mindlin’s form II strain energy density is derived for the softening analysis.To the authors’knowledge,the finite element discretization based on the strain gradient theory is applied for the modeling of damage evolution at the microstructural level for heterogeneous materials for the first time.The advantage of the novel C1 finite element formulation in comparison with the standard finite element discretization in terms of the regularization efficiency as well as the objectivity has been shown.An isotropic damage law is used for the reduction of the constitutive and nonlocal material behaviour,which is necessary for the physically correct description of the localization formation in quasi-brittle materials.The capabilities of the derived finite element to capture the fully developed localization zones are tested on a random representative volume element(RVE)for several different loading cases.By employing the conventional second-order computational homogenization,the microstructural material constitutive response is averaged over the whole RVE area.In order to model the loss of structural integrity when sharp localization is formed across RVE,the specific conditions which detect a completely formed localization zone are developed.A new failure criterion at the microstructural level has been proposed.The derived finite element formulation,as well as the multiscale damage algorithm,are implemented into the finite element program ABAQUS.The capabilities of the presented multiscale scheme to capture the effects of the deformation localization are demonstrated by few benchmark numerical examples.
文摘Fretting wear is a phenomenon,in which wear happens between two oscillatory moving contact surfaces in microscale amplitude.In this paper,the effect of debris between pad and specimen is analyzed by using a semi-concurrent multiscale method.Firstly,the macroscale fretting wear model is performed.Secondly,the part with the wear profile is imported from the macroscale model to a microscale model after running in stage.Thirdly,an effective pad’s radius is extracted by analyzing the contact pressure in order to take into account the effect of the debris.Finally,the effective radius is up-scaled from the microscale model to the macroscale model,which is used after running in stage.In this way,the effect of debris is considered by changing the radius of the pad in the macroscale model.Due to the smaller number of elements in the microscale model compared with the macroscale model containing the debris layer,the semi-concurrent method proposed in this paper is more computationally efficient.Moreover,the results of this semi-concurrent method show a better agreement with experimental data,compared to the results of the model ignoring the effect of debris.
基金This work was financially supported by the National Natural Science Foundation of China(11501449)the Fundamental Research Funds for the Central Universities(3102017zy043)+1 种基金the fund of the State Key Laboratory of Solidification Processing in NWPU(SKLSP201628)the National Key Research and Development Program of China(2016YFB1100602).
文摘This paper is devoted to the homogenization and statistical multiscale analysis of a transient heat conduction problem in random porous materials with a nonlinear radiation boundary condition.A novel statistical multiscale analysis method based on the two-scale asymptotic expansion is proposed.In the statistical multiscale formulations,a unified linear homogenization procedure is established and the second-order correctors are introduced for modeling the nonlinear radiative heat transfer in random perforations,which are our main contributions.Besides,a numerical algorithm based on the statistical multiscale method is given in details.Numerical results prove the accuracy and efficiency of our method for multiscale simulation of transient nonlinear conduction and radiation heat transfer problem in random porous materials.
基金This work is supported by the National Natural Science Foundation of China(11471262,11501449)Fundamental Research Funds for the Central Universities(3102017zy043)China Postdoctoral Science Foundation(2018M633569).
文摘This paper is devoted to the microstructure geometric modeling and mechanical properties computation of cancellous bone.The microstructure of the cancellous bone determines its mechanical properties and a precise geometric modeling of this structure is important to predict the material properties.Based on the microscopic observation,a new microstructural unit cell model is established by introducing the Schwarz surface in this paper.And this model is very close to the real microstructure and satisfies the main biological characteristics of cancellous bone.By using the unit cell model,the multiscale analysis method is newly applied to predict the mechanical properties of cancellous bone.The effective stiffness parameters are calculated by the up-scaling multi-scale analysis.And the distribution of microscopic stress in cancellous bone is determined through the down-scaling procedure.In addition,the effect of porosity on the stiffness parameters is also investigated.The predictive mechanical properties are in good agreement with the available experimental results,which verifies the applicability of the proposed unit cell model and the validness of the multiscale analysis method to predict the mechanical properties of cancellous bone.
基金supported by the National Natural Science Foundation of China(No.52275441)the Shenzhen Science and Technology Program(No.KJZD20230923114606013).
文摘Cemented carbide tools are widely utilized in titanium alloy machining.However,severe tool wear usually occurs during machining;thus,the wear process has attracted widespread attention.Electromagnetic treatment was applied in our previous study to significantly improve the tool life of cemented carbide tools in Ti6Al4V machining.To investigate the effect of electromagnetic treatment on wear performance,a multiscale analysis of the wear process of cemented carbide tools in the turning process,including microdefects and wear topography at various scales,was conducted in the present study.The distribution of dislocations in the tool material was measured through electron backscatter diffraction,and the surface topographies in the wear area during the Ti6Al4V cutting process were recorded via white light interferometry.Fractal analysis based on the scaling property of surface roughness was carried out to further quantify the wear performance of the tools.The results revealed that the wear mechanism of the cutting tools was mainly adhesion and diffusion,and the diffusion wear of the electromagnetically treated tools was less than that of the untreated tools.Based on the multiscale analysis of flank wear,the effect of electromagnetic treatment on the enhancement of the wear resistance of cemented carbide cutting tools was demonstrated.The multiscale analysis of the wear performance of cutting tools in this study effectively revealed the mechanism by which electromagnetic treatment enhances wear resistance,thus contributing to filling the research gap of traditional studies on tool wear that generally employ single scales.
基金Daniel Shafiee Kermany,Ju Young Ahn,Matthew Vasquez,Lin Wang,Kai Liu,Raksha Raghunathan,Jianting Sheng,Hong Zhao,and Stephen Tin Chi Wong are supported by NCI U01CA252553,NCI R01CA238727,NCI R01CA177909,NCI R01CA244413John S.Dunn Research Foundation,and Ting Tsung and Wei Fong Chao Foundation+3 种基金Xiang Hong-Fei Zhang,Zhan Xu,Xiaoxin Hao,Weijie Zhang are supported by US Department of Defense DAMD W81XWH-16-1-0073(Era of Hope Scholarship)NCI R01CA183878,NCI R01CA251950,NCI U01CA252553,DAMD W81XWH-20-1-0375Breast Cancer Research Foundation,and McNair Medical Institute.Vahid Afshar-Kharghan,Min Soon Cho,Wendolyn Carlos-AlcaldeHani Lee are supported by NCI R01CA177909,NCI R01CA016672,NCI R01CA275762,and NCI P50CA217685.
文摘Spatial statistics are crucial for analyzing clustering patterns in various spaces,such as the distribution of trees in a forest or stars in the sky.Advances in spatial biology,such as single-cell spatial transcriptomics,enable researchers to map gene expression patterns within tissues,offering unprecedented insights into cellular functions and disease pathology.Common methods for deriving spatial relationships include density-based methods(quadrat analysis,kernel density estimators)and distance-based methods(nearest-neighbor distance[NND],Ripley’s K function).While density-based methods are effective for visualization,they struggle with quantification due to sensitivity to parameters and complex significance tests.In contrast,distance-based methods offer robust frameworks for hypothesis testing,quantifying spatial clustering or dispersion,and facilitating comparisons with models such as uniform random distributions or Poisson processes[1,2].
基金Jiangsu Postdoctoral Science Foundation (0902013C)Innovation Foundation for Young Teachers in University of Aeronautics and Astronautics (Y1024-054)
文摘A multiscale method for simulating the dynamic response of ceramic matrix composite (CMC) with matrix cracks is developed. At the global level, the finite element method is employed to simulate the dynamic response of a CMC beam. While at the local level, the multiscale mechanical method is used to estimate the stress/strain response of the material. A distributed computing system is developed to speed up the simulation. The simulation of dynamic response of a Nicalon/CAS-II beam being subjected to harmonic loading is performed as a numerical example. The results show that both the stress/strain responses under tension and compressive loading are nonlinear. These conditions result in a different response compared with that of elastic beam, such as: 1) the displacement response is not symmetric about the axis of time; 2) in the condition of small external load, the response at first order natural frequency is limited within a finite range; 3) decreasing the matrix crack space will increase the displace- ment response of the beam.
基金supported financially by the National Key R&D Program of China (No. 2017YFB0703104)the National Natural Science Foundation of China (No. 51401219)
文摘The effects of welding speed on the macroscopic and microscopic residual stresses(RSes) in friction stir welded 17 vol.% SiCp/2009 Al-T4 composite plates were studied via neutron diffraction and an improved decoupled hierarchical multiscale modeling methods. Measurements showed that the macroscopic and total RSes had the largest variations in the longitudinal direction(LD). Increasing the welding speed led to higher values of measured LD macroscopic and total RSes in the matrix. The welding speed also significantly influenced the distributions and magnitudes of the microscopic RSes. The RSes were predicted via an improved hierarchical multiscale model, which includes a constant coefficient of friction based thermal model. The RSes in the composite plates before friction stir welding(FSW) were computed and then set as the initial states of the FSW process during modeling. This improved decoupled multiscale model provided improved predictions of the temperature and RSes compared with our previous model.
基金supported by the National Natural Science Foundation of China (Nos. 11672019, 11372021 and 37686003)the Academic Excellence Foundation of BUAA for PhD Students (No. 2017038)
文摘Based on the eigenvector expansion idea, the Multiscale Eigenelement Method(MEM)was proposed by the author and co-workers. MEM satisfies two equivalent conditions, one condition is the equivalence of strain energy, and the other is the deformation similarity. These two equivalent conditions character the structure-preserving property of a multiscale analysis method. The equivalence of strain energy is necessary for achieving accurate macro behaviors such as lower order frequencies, while the deformation similarity is essential for predicting accurate micro behaviors such as stresses. The MEM has become a powerful multiscale method for the analysis of composite structures because of its high accuracy and efficiency. In this paper, the research advances of MEM are reviewed and all types of eigenelement methods are compared, focusing on superiorities and deficiencies from practical viewpoint. It is concluded that the eigenelement methods with smooth shape functions are more suitable for the analysis of macro behaviors such as lower order frequencies, and the eigenelement methods with piecewise shape functions are suitable for the analysis of both macro and micro behaviors.