期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Analysis and optimization of microchannel array precision grinding processes with micro-structured micro-grinding tool
1
作者 Jianfei JIA Qinghe ZHANG +7 位作者 Wei YANG Honghui YAO Guicheng WU Huan ZHAO Jianhui ZHU Kenan LI Bing GUO Jun QIN 《Chinese Journal of Aeronautics》 2025年第7期669-683,共15页
Micro-grinding has been widely used in aerospace and other industry.However,the small diameter of the micro-grinding tool has limited its machining performance and efficiency.In order to solve the above problems,micro... Micro-grinding has been widely used in aerospace and other industry.However,the small diameter of the micro-grinding tool has limited its machining performance and efficiency.In order to solve the above problems,micro-structure has been applied on the micro-grinding tool.A morphology modeling has been established in this study to characterize the surface of microstructured micro-grinding tool,and the grinding performance of micro-structured micro-grinding tool has been analyzed through undeformed chip thickness,abrasive edge width,and effective distance between abrasives.Then deviation analysis,path optimization and parameter optimization of microchannel array precision grinding have been finished to improve processing quality and efficiency,and the deflection angle has the most obvious effects on the rectangular slot depth,micro-structured micro-grinding tool could reduce 10%surface roughness and 20%grinding force compared to original micro-grinding tool.Finally,the microchannel array has been machined with a size deviation of 2μm and surface roughness of 0.2μm. 展开更多
关键词 GRINDING Precision grinding Microchannel array MICRO-STRUCTURE micro-grinding tool
原文传递
Modeling and Evaluating of Surface Roughness Prediction in Micro-grinding on Soda-lime Glass Considering Tool Characterization 被引量:5
2
作者 CHENG Jun GONG Yadong WANG Jinsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第6期1091-1100,共10页
The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality proce... The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 ~tm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5x 107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography, which would provide significant research theory and experimental reference of material removal mechanism in micro-grinding of soda-lime glass. 展开更多
关键词 micro-grinding tool topography characterization soda-lime glass surface roughness prediction
在线阅读 下载PDF
Micro-Grinding Performance of Hard-Brittle Chip Materials in Precision Micro-Grinding Microgroove
3
作者 ZHANG Long XIE Jin +1 位作者 ZHU Limin LU Yanjun 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第S1期70-76,共7页
The micro-structure on hard-brittle chip materials(HBCMs) surface can produce predominant functions and features. The micro-grinding with diamond wheel micro-tip is an efficient method to machine microstructure on HBC... The micro-structure on hard-brittle chip materials(HBCMs) surface can produce predominant functions and features. The micro-grinding with diamond wheel micro-tip is an efficient method to machine microstructure on HBCMs. However, different HBCMs and crystal orientation may have a significant influence on the micro-grinding performance. In this paper, the micro-grinding performance along different crystal orientation of HBCMs is investigated. First, a dressed 600~#diamond grinding wheel is used to micro-grind micro-structure on HBCMs. Then, the experiment of micro-grinding force test is completed. Finally, the quality of microgroove,the grinding ratio and the micro-grinding force are investigated and they are related to the crystal orientation of HBCMs. It is shown that the stronger resistance to the micro-crack propagation has the best quality of microgroove and the smallest grinding ratio. Moreover, the hardest single-crystal SiC has the best machinability and the micro-grinding force is 38.9%, 10.8% and 46.8% less than the one of sapphire, single-crystal Si and quartz glass, respectively. The direction to micro-grind easily is the crystal orientation 1010 for single-crystal SiC and sapphire. In addition, the micro-grinding force increases with the increase of the micro-grinding depth and feed rate and decreases with the increase of the grinding wheel speed. 展开更多
关键词 precision micro-grinding crystal orientation hard-brittle chip materials(HBCMs)
原文传递
Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant 被引量:14
4
作者 Yuying YANG Min YANG +4 位作者 Changhe LI Runze LI Zafar SAID Hafiz Muhammad ALI Shubham SHARMA 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第1期115-130,共16页
Bone grinding is an essential and vital procedure in most surgical operations.Currently,the insufficient cooling capacity of dry grinding,poor visibility of drip irrigation surgery area,and large grinding force leadin... Bone grinding is an essential and vital procedure in most surgical operations.Currently,the insufficient cooling capacity of dry grinding,poor visibility of drip irrigation surgery area,and large grinding force leading to high grinding temperature are the technical bottlenecks of micro-grinding.A new micro-grinding process called ultrasonic vibration-assisted nanoparticle jet mist cooling(U-NJMC)is innovatively proposed to solve the technical problem.It combines the advantages of ultrasonic vibration(UV)and nanoparticle jet mist cooling(NJMC).Notwithstanding,the combined effect of multi parameter collaborative of U-NJMC on cooling has not been investigated.The grinding force,friction coefficient,specific grinding energy,and grinding temperature under dry,drip irrigation,UV,minimum quantity lubrication(MQL),NJMC,and U-NJMC micro-grinding were compared and analyzed.Results showed that the minimum normal grinding force and tangential grinding force of U-NJMC micro-grinding were 1.39 and 0.32 N,which were 75.1%and 82.9%less than those in dry grinding,respectively.The minimum friction coefficient and specific grinding energy were achieved using U-NJMC.Compared with dry,drip,UV,MQL,and NJMC grinding,the friction coefficient of U-NJMC was decreased by 31.3%,17.0%,19.0%,9.8%,and 12.5%,respectively,and the specific grinding energy was decreased by 83.0%,72.7%,77.8%,52.3%,and 64.7%,respectively.Compared with UV or NJMC alone,the grinding temperature of U-NJMC was decreased by 33.5%and 10.0%,respectively.These results showed that U-NJMC provides a novel approach for clinical surgical micro-grinding of biological bone. 展开更多
关键词 micro-grinding biological bone ultrasonic vibration(UV) nanoparticle jet mist cooling(NJMC) grinding force grinding temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部