期刊文献+
共找到82,926篇文章
< 1 2 250 >
每页显示 20 50 100
A Semi-Lightweight Multi-Feature Integration Architecture for Micro-Expression Recognition
1
作者 Mengqi Li Xiaodong Huang Lifeng Wu 《Computers, Materials & Continua》 2025年第7期975-995,共21页
Micro-expressions,fleeting involuntary facial cues lasting under half a second,reveal genuine emotions and are valuable in clinical diagnosis and psychotherapy.Real-time recognition on resource-constrained embedded de... Micro-expressions,fleeting involuntary facial cues lasting under half a second,reveal genuine emotions and are valuable in clinical diagnosis and psychotherapy.Real-time recognition on resource-constrained embedded devices remains challenging,as current methods struggle to balance performance and efficiency.This study introduces a semi-lightweight multifunctional network that enhances real-time deployment and accuracy.Unlike prior simplistic feature fusion techniques,our novel multi-feature fusion strategy leverages temporal,spatial,and differential features to better capture dynamic changes.Enhanced by Residual Network(ResNet)architecture with channel and spatial attention mechanisms,the model improves feature representation while maintaining a lightweight design.Evaluations on SMIC,CASME II,SAMM,and their composite dataset show superior performance in Unweighted F1 Score(UF1)and Unweighted Average Recall(UAR),alongside faster detection speeds compared to existing algorithms. 展开更多
关键词 micro-expressions Dynamic Fusion Res Net(DFR-Net) feature fusion attention mechanism
在线阅读 下载PDF
Micro-expression recognition algorithm based on graph convolutional network and Transformer model 被引量:1
2
作者 吴进 PANG Wenting +1 位作者 WANG Lei ZHAO Bo 《High Technology Letters》 EI CAS 2023年第2期213-222,共10页
Micro-expressions are spontaneous, unconscious movements that reveal true emotions.Accurate facial movement information and network training learning methods are crucial for micro-expression recognition.However, most ... Micro-expressions are spontaneous, unconscious movements that reveal true emotions.Accurate facial movement information and network training learning methods are crucial for micro-expression recognition.However, most existing micro-expression recognition technologies so far focus on modeling the single category of micro-expression images and neural network structure.Aiming at the problems of low recognition rate and weak model generalization ability in micro-expression recognition, a micro-expression recognition algorithm is proposed based on graph convolution network(GCN) and Transformer model.Firstly, action unit(AU) feature detection is extracted and facial muscle nodes in the neighborhood are divided into three subsets for recognition.Then, graph convolution layer is used to find the layout of dependencies between AU nodes of micro-expression classification.Finally, multiple attentional features of each facial action are enriched with Transformer model to include more sequence information before calculating the overall correlation of each region.The proposed method is validated in CASME II and CAS(ME)^2 datasets, and the recognition rate reached 69.85%. 展开更多
关键词 micro-expression recognition graph convolutional network(GCN) action unit(AU)detection Transformer model
在线阅读 下载PDF
Micro-Expression Recognition Based on Spatio-Temporal Feature Extraction of Key Regions
3
作者 Wenqiu Zhu Yongsheng Li +1 位作者 Qiang Liu Zhigao Zeng 《Computers, Materials & Continua》 SCIE EI 2023年第10期1373-1392,共20页
Aiming at the problems of short duration,low intensity,and difficult detection of micro-expressions(MEs),the global and local features of ME video frames are extracted by combining spatial feature extraction and tempo... Aiming at the problems of short duration,low intensity,and difficult detection of micro-expressions(MEs),the global and local features of ME video frames are extracted by combining spatial feature extraction and temporal feature extraction.Based on traditional convolution neural network(CNN)and long short-term memory(LSTM),a recognition method combining global identification attention network(GIA),block identification attention network(BIA)and bi-directional long short-term memory(Bi-LSTM)is proposed.In the BIA,the ME video frame will be cropped,and the training will be carried out by cropping into 24 identification blocks(IBs),10 IBs and uncropped IBs.To alleviate the overfitting problem in training,we first extract the basic features of the preprocessed sequence through the transfer learning layer,and then extract the global and local spatial features of the output data through the GIA layer and the BIA layer,respectively.In the BIA layer,the input data will be cropped into local feature vectors with attention weights to extract the local features of the ME frames;in the GIA layer,the global features of the ME frames will be extracted.Finally,after fusing the global and local feature vectors,the ME time-series information is extracted by Bi-LSTM.The experimental results show that using IBs can significantly improve the model’s ability to extract subtle facial features,and the model works best when 10 IBs are used. 展开更多
关键词 micro-expression recognition attention mechanism long and short-term memory network transfer learning identification block
在线阅读 下载PDF
Micro-Expression Recognition Algorithm Based on Information Entropy Feature
4
作者 WU Jin MIN Yu +1 位作者 YANG Xiaodie MA Simin 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第5期589-599,共11页
The intensity of the micro-expression is weak,although the directional low frequency components in the image are preserved by many algorithms,the extracted micro-expression ft^ature information is not sufficient to ac... The intensity of the micro-expression is weak,although the directional low frequency components in the image are preserved by many algorithms,the extracted micro-expression ft^ature information is not sufficient to accurately represent its sequences.In order to improve the accuracy of micro-expression recognition,first,each frame image is extracted from,its sequences,and the image frame is pre-processed by using gray normalization,size normalization,and two-dimensional principal component analysis(2DPCA);then,the optical flow method is used to extract the motion characteristics of the reduced-dimensional image,the information entropy value of the optical flow characteristic image is calculated by the information entropy principle,and the information entropy value is analyzed to obtain the eigenvalue.Therefore,more micro-expression feature information is extracted,including more important information,which can further improve the accuracy of micro-expression classification and recognition;finally,the feature images are classified by using the support vector machine(SVM).The experimental results show that the micro-expression feature image obtained by the information entropy statistics can effectively improve the accuracy of micro-expression recognition. 展开更多
关键词 micro-expression recognition two-dimensional principal component analysis(2DPCA) optical flow information entropy statistics support vector machine(SVM)
原文传递
Micro-expression recognition algorithm based on the combination of spatial and temporal domains
5
作者 Wu Jin Xi Meng +2 位作者 Dai Wei Wang Lei Wang Xinran 《High Technology Letters》 EI CAS 2021年第3期303-309,共7页
Aiming at the problem of unsatisfactory effects of traditional micro-expression recognition algorithms,an efficient micro-expression recognition algorithm is proposed,which uses convolutional neural networks(CNN)to ex... Aiming at the problem of unsatisfactory effects of traditional micro-expression recognition algorithms,an efficient micro-expression recognition algorithm is proposed,which uses convolutional neural networks(CNN)to extract spatial features of micro-expressions,and long short-term memory network(LSTM)to extract time domain features.CNN and LSTM are combined as the basis of micro-expression recognition.In many CNN structures,the visual geometry group(VGG)using a small convolution kernel is finally selected as the pre-network through comparison.Due to the difficulty of deep learning training and over-fitting,the dropout method and batch normalization method are used to solve the problem in the VGG network.Two data sets CASME and CASME II are used for test comparison,in order to solve the problem of insufficient data sets,randomly determine the starting frame,and a fixedlength frame sequence is used as the standard,and repeatedly read all sample frames of the entire data set to achieve trayersal and data amplification.Finallv.a hieh recognition rate of 67.48% is achieved. 展开更多
关键词 micro-expression recognition convolutional neural network(CNN) long short-term memory(LSTM) batch normalization algorithm DROPOUT
在线阅读 下载PDF
An improved micro-expression recognition algorithm of 3D convolutional neural network
6
作者 WU Jin SHI Qianwen +2 位作者 XI Meng WANG Lei ZENG Huadie 《High Technology Letters》 EI CAS 2022年第1期63-71,共9页
The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dim... The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dimensional convolutional neural network(3D-CNN),which can extract two-di-mensional features in spatial domain and one-dimensional features in time domain,simultaneously.The network structure design is based on the deep learning framework Keras,and the discarding method and batch normalization(BN)algorithm are effectively combined with three-dimensional vis-ual geometry group block(3D-VGG-Block)to reduce the risk of overfitting while improving training speed.Aiming at the problem of the lack of samples in the data set,two methods of image flipping and small amplitude flipping are used for data amplification.Finally,the recognition rate on the data set is as high as 69.11%.Compared with the current international average micro-expression recog-nition rate of about 67%,the proposed algorithm has obvious advantages in recognition rate. 展开更多
关键词 micro-expression recognition deep learning three-dimensional convolutional neural network(3D-CNN) batch normalization(BN)algorithm DROPOUT
在线阅读 下载PDF
Adaptive spatio-temporal attention neural network for cross-database micro-expression recognition
7
作者 Yuhan RAN 《Virtual Reality & Intelligent Hardware》 2023年第2期142-156,共15页
Background The use of micro-expression recognition to recognize human emotions is one of the most critical challenges in human-computer interaction applications. In recent years, cross-database micro-expression recogn... Background The use of micro-expression recognition to recognize human emotions is one of the most critical challenges in human-computer interaction applications. In recent years, cross-database micro-expression recognition(CDMER) has emerged as a significant challenge in micro-expression recognition and analysis. Because the training and testing data in CDMER come from different micro-expression databases, CDMER is more challenging than conventional micro-expression recognition. Methods In this paper, an adaptive spatio-temporal attention neural network(ASTANN) using an attention mechanism is presented to address this challenge. To this end, the micro-expression databases SMIC and CASME II are first preprocessed using an optical flow approach,which extracts motion information among video frames that represent discriminative features of micro-expression.After preprocessing, a novel adaptive framework with a spatiotemporal attention module was designed to assign spatial and temporal weights to enhance the most discriminative features. The deep neural network then extracts the cross-domain feature, in which the second-order statistics of the sample features in the source domain are aligned with those in the target domain by minimizing the correlation alignment(CORAL) loss such that the source and target databases share similar distributions. Results To evaluate the performance of ASTANN, experiments were conducted based on the SMIC and CASME II databases under the standard experimental evaluation protocol of CDMER. The experimental results demonstrate that ASTANN outperformed other methods in relevant crossdatabase tasks. Conclusions Extensive experiments were conducted on benchmark tasks, and the results show that ASTANN has superior performance compared with other approaches. This demonstrates the superiority of our method in solving the CDMER problem. 展开更多
关键词 Cross-database micro-expression recognition Deep learning Attention mechanism Domain adaption
在线阅读 下载PDF
Gender-Specific Multi-Task Micro-Expression Recognition Using Pyramid CGBP-TOP Feature
8
作者 Chunlong Hu Jianjun Chen +3 位作者 Xin Zuo Haitao Zou Xing Deng Yucheng Shu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第3期547-559,共13页
Micro-expression recognition has attracted growing research interests in the field of compute vision.However,micro-expression usually lasts a few seconds,thus it is difficult to detect.This paper presents a new framew... Micro-expression recognition has attracted growing research interests in the field of compute vision.However,micro-expression usually lasts a few seconds,thus it is difficult to detect.This paper presents a new framework to recognize micro-expression using pyramid histogram of Centralized Gabor Binary Pattern from Three Orthogonal Panels(CGBP-TOP)which is an extension of Local Gabor Binary Pattern from Three Orthogonal Panels feature.CGBP-TOP performs spatial and temporal analysis to capture the local facial characteristics of micro-expression image sequences.In order to keep more local information of the face,CGBP-TOP is extracted based on pyramid subregions of the micro-expression video frame.The combination of CGBP-TOP and spatial pyramid can represent well and truly the facial movements of the micro-expression image sequences.However,the dimension of our pyramid CGBP-TOP tends to be very high,which may lead to high data redundancy problem.In addition,it is clear that people of different genders usually have different ways of micro-expression.Therefore,in this paper,in order to select the relevant features of micro-expression,the gender-specific sparse multi-task learning method with adaptive regularization term is adopted to learn a compact subset of pyramid CGBP-TOP feature for micro-expression classification of different sexes.Finally,extensive experiments on widely used CASME II and SMIC databases demonstrate that our method can efficiently extract micro-expression motion features in the micro-expression video clip.Moreover,our proposed approach achieves comparable results with the state-of-the-art methods. 展开更多
关键词 micro-expression recognition FEATURE extraction spatial PYRAMID MULTI-TASK learning REGULARIZATION
在线阅读 下载PDF
Apex Frame Spotting Using Attention Networks for Micro-Expression Recognition System
9
作者 Ng Lai Yee Mohd Asyraf Zulkifley +1 位作者 Adhi Harmoko Saputro Siti Raihanah Abdani 《Computers, Materials & Continua》 SCIE EI 2022年第12期5331-5348,共18页
Micro-expression is manifested through subtle and brief facial movements that relay the genuine person’s hidden emotion.In a sequence of videos,there is a frame that captures the maximum facial differences,which is c... Micro-expression is manifested through subtle and brief facial movements that relay the genuine person’s hidden emotion.In a sequence of videos,there is a frame that captures the maximum facial differences,which is called the apex frame.Therefore,apex frame spotting is a crucial sub-module in a micro-expression recognition system.However,this spotting task is very challenging due to the characteristics of micro-expression that occurs in a short duration with low-intensity muscle movements.Moreover,most of the existing automated works face difficulties in differentiating micro-expressions from other facial movements.Therefore,this paper presents a deep learning model with an attention mechanism to spot the micro-expression apex frame from optical flow images.The attention mechanism is embedded into the model so that more weights can be allocated to the regions that manifest the facial movements with higher intensity.The method proposed in this paper has been tested and verified on two spontaneous micro-expression databases,namely Spontaneous Micro-facial Movement(SAMM)and Chinese Academy of Sciences Micro-expression(CASME)II databases.The proposed system performance is evaluated by using the Mean Absolute Error(MAE)metric that measures the distance between the predicted apex frame and the ground truth label.The best MAE of 14.90 was obtained when a combination of five convolutional layers,local response normalization,and attention mechanism is used to model the apex frame spotting.Even with limited datasets,the results have proven that the attention mechanism has better emphasized the regions where the facial movements likely to occur and hence,improves the spotting performance. 展开更多
关键词 Deep learning convolutional neural networks emotion recognition
在线阅读 下载PDF
Cross-Domain Spatial-Temporal GCN Model for Micro-Expression Recognition
10
作者 Minghui Su Chenwen Ma +3 位作者 Tianhuan Huang Lei Chen Hongchao Zhou Xianye Ben 《Journal of Beijing Institute of Technology》 2025年第5期496-509,共14页
Although significant progress has been made in micro-expression recognition,effectively modeling the intricate spatial-temporal dynamics remains a persistent challenge owing to their brief duration and complex facial ... Although significant progress has been made in micro-expression recognition,effectively modeling the intricate spatial-temporal dynamics remains a persistent challenge owing to their brief duration and complex facial dynamics.Furthermore,existing methods often suffer from limited gen-eralization,as they primarily focus on single-dataset tasks with small sample sizes.To address these two issues,this paper proposes the cross-domain spatial-temporal graph convolutional network(GCN)(CDST-GCN)model,which comprises two primary components:a siamese attention spa-tial-temporal branch(SASTB)and a global-aware dynamic spatial-temporal branch(GDSTB).Specifically,SASTB utilizes a contrastive learning strategy to project macro-and micro-expressions into a shared,aligned feature space,actively addressing cross-domain discrepancies.Additionally,it integrates an attention-gated mechanism that generates adaptive adjacency matrices to flexibly model collaborative patterns among facial landmarks.While largely preserving the structural paradigm of SASTB,GDSTB enhances the feature representation by integrating global context extracted from a pretrained model.Through this dual-branch architecture,CDST-GCN success-fully models both the global and local spatial-temporal features.The experimental results on CASME II and SAMM datasets demonstrate that the proposed model achieves competitive perfor-mance.Especially in more challenging 5-class tasks,the accuracy of the model on CASME II dataset is as high as 80.5%. 展开更多
关键词 micro-expression recognition attention mechanism cross-domain dynamic spatial-tem-poral graph convolutional neural network
在线阅读 下载PDF
Counterfactual discriminative micro-expression recognition
11
作者 Yong Li Menglin Liu +2 位作者 Lingjie Lao Yuanzhi Wang Zhen Cui 《Visual Intelligence》 2024年第1期350-359,共10页
Micro-expressions are spontaneous,rapid and subtle facial movements that can hardly be suppressed or fabricated.Micro-expression recognition(MER)is one of the most challenging topics in affective computing.It aims to ... Micro-expressions are spontaneous,rapid and subtle facial movements that can hardly be suppressed or fabricated.Micro-expression recognition(MER)is one of the most challenging topics in affective computing.It aims to recognize subtle facial movements which are quite difficult for humans to perceive in a fleeting period.Recently,many deep learning-based MER methods have been developed.However,how to effectively capture subtle temporal variations for robust MER still perplexes us.We propose a counterfactual discriminative micro-expression recognition(CoDER)method to effectively learn the slight temporal variations for video-based MER.To explicitly capture the causality from temporal dynamics hidden in the micro-expression(ME)sequence,we propose ME counterfactual reasoning by comparing the effects of the facts w.r.t.original ME sequences and the counterfactuals w.r.t.counterfactually-revised ME sequences,and then perform causality-aware prediction to encourage the model to learn those latent ME temporal cues.Extensive experiments on four widely-used ME databases demonstrate the effectiveness of CoDER,which results in comparable and superior MER performance compared with that of the state-of-the-art methods.The visualization results show that CoDER successfully perceives the meaningful temporal variations in sequential faces. 展开更多
关键词 Affective computing micro-expression recognition Temporal variation Counterfactual reasoning Causal graph
在线阅读 下载PDF
Multi-scale joint feature network for micro-expression recognition 被引量:5
12
作者 Xinyu Li Guangshun Wei +1 位作者 Jie Wang Yuanfeng Zhou 《Computational Visual Media》 EI CSCD 2021年第3期407-417,共11页
Micro-expression recognition is a substantive cross-study of psychology and computer science,and it has a wide range of applications(e.g.,psychological and clinical diagnosis,emotional analysis,criminal investigation,... Micro-expression recognition is a substantive cross-study of psychology and computer science,and it has a wide range of applications(e.g.,psychological and clinical diagnosis,emotional analysis,criminal investigation,etc.).However,the subtle and diverse changes in facial muscles make it difficult for existing methods to extract effective features,which limits the improvement of micro-expression recognition accuracy.Therefore,we propose a multi-scale joint feature network based on optical flow images for micro-expression recognition.First,we generate an optical flow image that reflects subtle facial motion information.The optical flow image is then fed into the multi-scale joint network for feature extraction and classification.The proposed joint feature module(JFM)integrates features from different layers,which is beneficial for the capture of micro-expression features with different amplitudes.To improve the recognition ability of the model,we also adopt a strategy for fusing the feature prediction results of the three JFMs with the backbone network.Our experimental results show that our method is superior to state-of-the-art methods on three benchmark datasets(SMIC,CASME II,and SAMM)and a combined dataset(3 DB). 展开更多
关键词 micro-expression recognition multi-scale feature optical flow deep learning
原文传递
Review of micro-expression spotting and recognition in video sequences 被引量:2
13
作者 Hang PAN Lun XIE +3 位作者 Zhiliang WANG Bin LIU Minghao YANG Jianhua TAO 《Virtual Reality & Intelligent Hardware》 2021年第1期1-17,共17页
Facial micro-expressions are short and imperceptible expressions that involuntarily reveal the true emotions that a person may be attempting to suppress,hide,disguise,or conceal.Such expressions can reflect a person&#... Facial micro-expressions are short and imperceptible expressions that involuntarily reveal the true emotions that a person may be attempting to suppress,hide,disguise,or conceal.Such expressions can reflect a person's real emotions and have a wide range of application in public safety and clinical diagnosis.The analysis of facial micro-expressions in video sequences through computer vision is still relatively recent.In this research,a comprehensive review on the topic of spotting and recognition used in micro expression analysis databases and methods,is conducted,and advanced technologies in this area are summarized.In addition,we discuss challenges that remain unresolved alongside future work to be completed in the field of micro-expression analysis. 展开更多
关键词 Facial expression micro-expression spotting micro-expression recognition DATABASE REVIEW
在线阅读 下载PDF
Detection and Recognition of Spray Code Numbers on Can Surfaces Based on OCR
14
作者 Hailong Wang Junchao Shi 《Computers, Materials & Continua》 SCIE EI 2025年第1期1109-1128,共20页
A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can ... A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can bottom spray code number recognition.In the coding number detection stage,Differentiable Binarization Network is used as the backbone network,combined with the Attention and Dilation Convolutions Path Aggregation Network feature fusion structure to enhance the model detection effect.In terms of text recognition,using the Scene Visual Text Recognition coding number recognition network for end-to-end training can alleviate the problem of coding recognition errors caused by image color distortion due to variations in lighting and background noise.In addition,model pruning and quantization are used to reduce the number ofmodel parameters to meet deployment requirements in resource-constrained environments.A comparative experiment was conducted using the dataset of tank bottom spray code numbers collected on-site,and a transfer experiment was conducted using the dataset of packaging box production date.The experimental results show that the algorithm proposed in this study can effectively locate the coding of cans at different positions on the roller conveyor,and can accurately identify the coding numbers at high production line speeds.The Hmean value of the coding number detection is 97.32%,and the accuracy of the coding number recognition is 98.21%.This verifies that the algorithm proposed in this paper has high accuracy in coding number detection and recognition. 展开更多
关键词 Can coding recognition differentiable binarization network scene visual text recognition model pruning and quantification transport model
在线阅读 下载PDF
Comprehensive Review and Analysis on Facial Emotion Recognition:Performance Insights into Deep and Traditional Learning with Current Updates and Challenges
15
作者 Amjad Rehman Muhammad Mujahid +2 位作者 Alex Elyassih Bayan AlGhofaily Saeed Ali Omer Bahaj 《Computers, Materials & Continua》 SCIE EI 2025年第1期41-72,共32页
In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fi... In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fields,including computer games,smart homes,expression analysis,gesture recognition,surveillance films,depression therapy,patientmonitoring,anxiety,and others,have brought attention to its significant academic and commercial importance.This study emphasizes research that has only employed facial images for face expression recognition(FER),because facial expressions are a basic way that people communicate meaning to each other.The immense achievement of deep learning has resulted in a growing use of its much architecture to enhance efficiency.This review is on machine learning,deep learning,and hybrid methods’use of preprocessing,augmentation techniques,and feature extraction for temporal properties of successive frames of data.The following section gives a brief summary of assessment criteria that are accessible to the public and then compares them with benchmark results the most trustworthy way to assess FER-related research topics statistically.In this review,a brief synopsis of the subject matter may be beneficial for novices in the field of FER as well as seasoned scholars seeking fruitful avenues for further investigation.The information conveys fundamental knowledge and provides a comprehensive understanding of the most recent state-of-the-art research. 展开更多
关键词 Face emotion recognition deep learning hybrid learning CK+ facial images machine learning technological development
在线阅读 下载PDF
Multi-Stage-Based Siamese Neural Network for Seal Image Recognition
16
作者 Jianfeng Lu Xiangye Huang +3 位作者 Caijin Li Renlin Xin Shanqing Zhang Mahmoud Emam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期405-423,共19页
Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited... Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets. 展开更多
关键词 Seal recognition seal authentication document tampering siamese network spatial transformer network similarity comparison network
在线阅读 下载PDF
IoT-Based Real-Time Medical-Related Human Activity Recognition Using Skeletons and Multi-Stage Deep Learning for Healthcare 被引量:1
17
作者 Subrata Kumer Paul Abu Saleh Musa Miah +3 位作者 Rakhi Rani Paul Md.EkramulHamid Jungpil Shin Md Abdur Rahim 《Computers, Materials & Continua》 2025年第8期2513-2530,共18页
The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for he... The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs. 展开更多
关键词 Real-time human motion recognition(HMR) ENConvLSTM EfficientNet ConvLSTM skeleton data NTU RGB+D 120 dataset MRHA
在线阅读 下载PDF
Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network
18
作者 Yuxiang Zou Ning He +2 位作者 Jiwu Sun Xunrui Huang Wenhua Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1255-1276,共22页
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac... In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods. 展开更多
关键词 KNN interpolation multi-scale temporal convolution suppression graph convolutional network gait emotion recognition human skeleton
在线阅读 下载PDF
IDSSCNN-XgBoost:Improved Dual-Stream Shallow Convolutional Neural Network Based on Extreme Gradient Boosting Algorithm for Micro Expression Recognition
19
作者 Adnan Ahmad Zhao Li +1 位作者 Irfan Tariq Zhengran He 《Computers, Materials & Continua》 SCIE EI 2025年第1期729-749,共21页
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr... Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time. 展开更多
关键词 ME recognition dual stream shallow convolutional neural network euler video magnification TV-L1 XgBoost
在线阅读 下载PDF
Recognition of Pointer Meter Readings Based on YOLOv8 and DeepLabv3+
20
作者 Jingwei Li Md. Al Amin Zhiyu Shao 《Journal of Computer and Communications》 2025年第1期15-25,共11页
Pointer instruments are widely used in the nuclear power industry. Addressing the issues of low accuracy and slow detection speed in recognizing pointer meter readings under varying types and distances, this paper pro... Pointer instruments are widely used in the nuclear power industry. Addressing the issues of low accuracy and slow detection speed in recognizing pointer meter readings under varying types and distances, this paper proposes a recognition method based on YOLOv8 and DeepLabv3+. To improve the image input quality of the DeepLabv3+ model, the YOLOv8 detector is used to quickly locate the instrument region and crop it as the input image for recognition. To enhance the accuracy and speed of pointer recognition, the backbone network of DeepLabv3+ was replaced with Mo-bileNetv3, and the ECA+ module was designed to replace its SE module, reducing model parameters while improving recognition precision. The decoder’s fourfold-up sampling was replaced with two twofold-up samplings, and shallow feature maps were fused with encoder features of the corresponding size. The CBAM module was introduced to improve the segmentation accuracy of the pointer. Experiments were conducted using a self-made dataset of pointer-style instruments from nuclear power plants. Results showed that this method achieved a recognition accuracy of 94.5% at a precision level of 2.5, with an average error of 1.522% and an average total processing time of 0.56 seconds, demonstrating strong performance. 展开更多
关键词 Nuclear Power Pointer Instrument YOLOv8 DeepLabv3+ Reading recognition
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部