期刊文献+
共找到31,503篇文章
< 1 2 250 >
每页显示 20 50 100
Advancements in chromium-tolerant air electrode for solid oxide cells:A mini-review 被引量:1
1
作者 HUANG Jiongyuan CHEN Zhiyi +3 位作者 LUO Yujie AI Na JIANG Sanping CHEN Kongfa 《燃料化学学报(中英文)》 北大核心 2025年第2期249-261,共13页
Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poi... Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs. 展开更多
关键词 solid oxide cells air electrodes Cr poisoning surface modification
在线阅读 下载PDF
A high entropy stabilized perovskite oxide La_(0.2)Pr_(0.2)Sm_(0.2)Gd_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)as a promising air electrode for reversible solid oxide cells 被引量:1
2
作者 LI Ruoyu LI Xiaoyu +2 位作者 ZHANG Jinke GAO Yuan LING Yihan 《燃料化学学报(中英文)》 北大核心 2025年第2期282-290,共9页
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p... Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC. 展开更多
关键词 reversible solid oxide cell high entropy stabilized perovskite air electrode electrochemical performance
在线阅读 下载PDF
Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO_(2) reduction reaction through numerical simulations 被引量:1
3
作者 Lili Zhang Hui Gao +7 位作者 Gong Zhang Yuning Dong Kai Huang Zifan Pang Tuo Wang Chunlei Pei Peng Zhang Jinlong Gong 《Chinese Chemical Letters》 2025年第1期332-337,共6页
Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-sec... Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR. 展开更多
关键词 Electrochemical reduction of CO_(2) Membrane electrode assembly Mass transfer Gas diffusion electrode Computational fluid dynamics
原文传递
Electrochemical cutting with flexible electrode of controlled online deformation 被引量:1
4
作者 Lin Liu Zhengyang Xu +1 位作者 Yuheng Hao Yunlong Teng 《International Journal of Extreme Manufacturing》 2025年第1期453-480,共28页
Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shroude... Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shrouded blisk,this study proposes an innovative method of electrochemical cutting in which a flexible tube electrode is controlled by online deformation during processing.In this study,the processing principle of electrochemical cutting with a flexible electrode for controlled online deformation(FECC)was revealed for the first time.The online deformation process of flexible electrodes and the machining process of profiles were analysed in depth,and the corresponding theoretical models were established.Conventional electrochemical machining(ECM)is a multi-physical field-coupled process involving electric and flow fields.In FECC,classical mechanics are introduced into the tool cathode,which must be loaded at all times during the machining process.Therefore,in this study,before and after the deformation of the flexible electrode,a corresponding simulation study was conducted to understand the influence of the online deformation of the flexible electrode on the flow and electric fields.The feasibility of flexible electrodes for online deformation and the validity of the theoretical model were verified by deformation measurements and in situ observation experiments.Finally,the method was successfully applied to the machining of nickel-based high-temperature alloys,and different specifications of flexible electrodes were used to complete the machining of the corresponding complex profiles,thereby verifying the feasibility and versatility of the method.The method proposed in this study breaks the tradition of using a non-deformable cathode for ECM and adopts a flexible electrode that can be deformed during the machining process as the tool cathode,which improves machining flexibility and provides a valuable reference to promote the ECM of complex profiles. 展开更多
关键词 electrochemical machining online deformation flexible electrode
在线阅读 下载PDF
High‑Entropy Electrode Materials:Synthesis,Properties and Outlook
5
作者 Dongxiao Li Chang Liu +7 位作者 Shusheng Tao Jieming Cai Biao Zhong Jie Li Wentao Deng Hongshuai Hou Guoqiang Zou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期472-506,共35页
High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has c... High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has continuously evolved.In the last ten years,the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage,electrocatalysis,and related domains,accompanied by a rise in techniques for fabricating high-entropy electrode materials.Recently,the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches.However,the current definition of high-entropy materials remains relatively vague,and the preparation method of high-entropy materials is based on the preparation method of single metal/low-or medium-entropy materials.It should be noted that not all methods applicable to single metal/low-or medium-entropy materials can be directly applied to high-entropy materials.In this review,the definition and development of high-entropy materials are briefly reviewed.Subsequently,the classification of high-entropy electrode materials is presented,followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods.Finally,an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided,along with a proposal for potential future development directions for high-entropy materials. 展开更多
关键词 High-entropy Energy storage electrode materials
在线阅读 下载PDF
Liquid-metal-electrode-assisted electrolysis for the production of sodium and magnesium 被引量:1
6
作者 Lei Guo Huayi Yin +5 位作者 Wenmiao Li Shiyu Wang Kaifa Du Hao Shi Xu Wang Dihua Wang 《Journal of Magnesium and Alloys》 2025年第4期1579-1591,共13页
Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-car... Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg). 展开更多
关键词 Molten-salt electrolysis Inert anode Liquid metal electrodes SODIUM MAGNESIUM
在线阅读 下载PDF
High-Performance Supercapacitor Electrodes from Optimized Single-Step Carbonized Michelia Champaca Biomass 被引量:1
7
作者 Dibyashree Shrestha 《Journal of Environmental & Earth Sciences》 2025年第6期1-22,共22页
This study explores the potential of Michelia champaca wood as a sustainable and locally available precursor for the fabrication of high-performance supercapacitor electrodes.Activated carbons were synthesized through... This study explores the potential of Michelia champaca wood as a sustainable and locally available precursor for the fabrication of high-performance supercapacitor electrodes.Activated carbons were synthesized through single-step carbonization at 400℃ and 500℃(SSC-400℃ and SSC-500℃) and double-step carbonization at 400℃(DSC-400℃),with all samples activated using H_(3)PO_(4).The effects of carbonization stratergy on the structural,morphological,and electrochemical characteristics of the resulting carbon materials were systematically evaluated,using techniques such as BET,SEM,TEM,XRD,Raman scattering,FTIR,CV,GCD and EIS.Among the samples,SSC-400℃ exhibited the best electrochemical performance,achieving a specific capacitance of 292.2 Fg^(-1),an energy density of 6.4 Wh kg^(-1),and a power density of 198.4 W kg^(-1).This superior performance is attributed to its optimized pore structure,improved sur-face functionality and enhanced conductivity.SSC-500℃showed marginally lower performance,whereas,DSC-400℃ displayed the least favorable results,indicating that double-step carbonization process may negatively affect material quality by disrupting the pore network.This work highlights a strong correlation between synthesis methodology and electrochemical efficiency,directly reinforcing the importance of process optimization in electrode material develop-ment.The findings contribute to the broader goal of developing cost-effective,renewable and environmentally friendly energy storage systems.By valorizing biomass waste,the study supports global movements toward green energy technologies and circular carbon economies,offering a viable pathway for sustainable supercapacitor development and practical applications in energy storage devices. 展开更多
关键词 Michelia Champaca Wood Activated Carbon Supercapacitor electrodes CARBONIZATION Sustainable Materials
在线阅读 下载PDF
Advances in Graphene‑Based Electrode for Triboelectric Nanogenerator
8
作者 Bin Xie Yuanhui Guo +7 位作者 Yun Chen Hao Zhang Jiawei Xiao Maoxiang Hou Huilong Liu Li Ma Xin Chen Chingping Wong 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期378-403,共26页
With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation techno... With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation technology.Triboelectric nanogenerator(TENG)technology can convert small mechanical energy into electricity,which is expected to address this problem.As the core component of TENG,the choice of electrode materials significantly affects its performance.Traditional metal electrode materials often suffer from problems such as durability,which limits the further application of TENG.Graphene,as a novel electrode material,shows excellent prospects for application in TENG owing to its unique structure and excellent electrical properties.This review systematically summarizes the recent research progress and application prospects of TENGs based on graphene electrodes.Various precision processing methods of graphene electrodes are introduced,and the applications of graphene electrode-based TENGs in various scenarios as well as the enhancement of graphene electrodes for TENG performance are discussed.In addition,the future development of graphene electrode-based TENGs is also prospectively discussed,aiming to promote the continuous advancement of graphene electrode-based TENGs. 展开更多
关键词 Triboelectric nanogenerator Precision processing Graphene electrode Self-powered sensor
在线阅读 下载PDF
Regulating the mechano-electrochemistry of graphite-silicon hybrid anode through layered electrode structure design 被引量:1
9
作者 Chunhao Li Jing Wang +8 位作者 Xiancheng Wang Zihe Chen Renming Zhan Xiangrui Duan Xuerui Liu Kai Cheng Zhao Cai Li Wang Yongming Sun 《Journal of Energy Chemistry》 2025年第5期176-184,共9页
Graphite-silicon species(Gr-Si)hybrid anodes have merged as potential candidates for high-energy lithium-ion batteries(LIBs),yet long been plagued by rapid capacity fading due to their unstable mechano-electrochemistr... Graphite-silicon species(Gr-Si)hybrid anodes have merged as potential candidates for high-energy lithium-ion batteries(LIBs),yet long been plagued by rapid capacity fading due to their unstable mechano-electrochemistry.The dominant approach to enhance electrochemical stability of the Gr-Si hybrid anodes typically involves the optimization of the electrode material structures and the employment of low active Si species content in electrode(<10 wt%in most instances).However,the electrode structure design,a factor of equal importance in determining the electrochemical performance of Gr-Si hybrid anodes,has received scant attention.In this study,three Gr-Si hybrid anodes with the identical material composition but distinct electrode structures are designed to investigate the mechanoelectrochemistry of the electrodes.It is revealed that the substantial volume change of Si species particles in Gr-Si hybrid anodes led to the local lattice stress of Gr at their contact interface during the charge/discharge processes,thereby increasing thermodynamic and kinetic barrier of Li-ion migration.Furthermore,the huge disparity in volume change of Si species and Gr particles trigger the separate agglomeration of these two materials,resulting in a considerable electrode volume change and increased electrochemical resistance.An advanced Gr/Si hybrid anode with upper Gr and lower Si species layer structure design addresses the above challenges using photovoltaic waste silicon sources under high Si species content(17 wt%)and areal capacity(2.0 mA h cm^(-2))in Ah-level full pouch cells with a low negative/positive(N/P)ratio of 1.09.The cell shows stable cycling for 100 cycles at 0.3 C with an impressively low capacity decay rate of 0.0546%per cycle,outperforming most reported Gr-Si hybrid anodes. 展开更多
关键词 Graphite-silicon hybrid anode electrode structure Mechano-electrochemistry Local interfacial stress Cycling stability
在线阅读 下载PDF
Frequency optimization for electrodes in implantable brain-computer interfaces 被引量:1
10
作者 CHEN Han LIU Xiangyu +2 位作者 CHENG Jiajun QIN Jiangfan ZHANG Xueli 《Journal of Southeast University(English Edition)》 2025年第3期366-374,共9页
Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the... Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the design of electroencephalography electrodes in fully implanted BCI systems,this study investigates the penetration and absorption characteristics of microwave signals in human brain tissue at different frequencies.Electromagnetic simulations are used to analyze the power density distribution and specific absorption rate(SAR)of signals at various frequen-cies.The results indicate that lower-frequency signals offer advantages in terms of power density and attenuation coeffi-cients.However,SAR-normalized analysis,which considers both power density and electromagnetic radiation hazards,shows that higher-frequency signals perform better at superficial to intermediate depths.Specifically,at a depth of 2 mm beneath the cortex,the power density of a 6.5 GHz signal is 247.83%higher than that of a 0.4 GHz signal.At a depth of 5 mm,the power density of a 3.5 GHz signal exceeds that of a 0.4 GHz signal by 224.16%.The findings suggest that 6.5 GHz is optimal for electrodes at a depth of 2 mm,3.5 GHz for 5 mm,2.45 GHz for depths of 15-20 mm,and 1.8 GHz for 25 mm. 展开更多
关键词 brain-computer interfaces electromagnetic simulation electroencephalography electrodes power den-sity specific absorption rate
在线阅读 下载PDF
Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ) double perovskites as oxygen electrodes for solid oxide cells:Effect of chemical composition and electrospun morphology 被引量:1
11
作者 Jacek Winiarski Piotr Winiarz Konrad Świerczek 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2628-2638,共11页
Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structur... Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structural studies of other physicochemical properties are con-ducted on a series of materials obtained by the sol-gel method with different ratios of Gd and Sm cations.It is documented that changing the x value,and the resulting adjustment of the average ionic radius,have a significant impact on the crystal structure,stability,as well as on the total conductivity and thermomechanical properties of the materials,with the best results obtained for the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)composition.Oxygen electrodes are prepared using the selected compound,allowing to obtain low polarization resistance values,such as 0.086Ω·cm^(2)at 800℃.Systematic studies of electrocatalytic activity are conducted using La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(_(0.2))O_(3−δ)as the electrolyte for all electrodes,and Ce_(0.8)Gd_(0.2)O_(2−δ)electrolyte for the best performing Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes.The electrochemical data are analyzed using the distribution of relaxation times method.Also,the influence of the preparation method of the electrode material is in-ve`stigated using the electrospinning technique.Finally,the performance of the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes is tested in a Ni-YSZ(yttria-stabilized zirconia)anode-supported cell with a Ce_(0.8)Gd_(0.2)O_(2−δ)buffer layer,in the fuel cell and electrolyzer operating modes.With the electrospun electrode,a power density of 462 mW·cm^(−2)is obtained at 700℃,with a current density of ca.0.2 A·cm^(−2)at 1.3 V for the electrolysis at the same temperature,indicating better performance compared to the sol-gel-based electrode. 展开更多
关键词 multicomponent oxides double perovskites morphology modification ELECTROSPINNING oxygen electrodes solid oxide cells
在线阅读 下载PDF
High volumetric-energy-density flexible supercapacitors based on PEDOT:PSS incorporated with carbon quantum dots hybrid electrodes 被引量:1
12
作者 Dinh Cung Tien Nguyen Seonghan Kim +2 位作者 Bo-Seok Kim Sejung Kim Soo-Hyoung Lee 《Journal of Materials Science & Technology》 2025年第20期1-10,共10页
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Neve... Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Nevertheless,employing PEDOT:PSS in supercapacitors(SC)in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability.To surmount these limita-tions,PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes,which ex-hibit physical and chemical stability during SC operation.We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots(CQDs).The CQDs were synthesized under microwave irradiation,yielding green-and red-light emissions.Through optimiz-ing the ratios of CQDs to PEDOT:PSS,the SC electrodes were prepared using a spray-coating technique,marking a significant improvement in device performance with a high volumetric capacitance(104.10 F cm-3),impressive energy density(19.68 Wh cm^(-3)),and excellent cyclic stability,retaining~85% of its original volumetric capacitance after 15,000 repeated GCD cycles.Moreover,the SCs,when utilized as a flexible substrate,demonstrated the ability to maintain up to~85% of their electrochemical performance even after 3,000 bending cycles(at a bending angle of 60°).These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies. 展开更多
关键词 PEDOT:PSS Carbon quantum dots Hybrid electrode SUPERCAPACITOR Flexible power sources
原文传递
Enhanced electrode-level diagnostics for lithium-ion battery degradation using physics-informed neural networks 被引量:1
13
作者 Rui Xiong Yinghao He +2 位作者 Yue Sun Yanbo Jia Weixiang Shen 《Journal of Energy Chemistry》 2025年第5期618-627,共10页
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models... For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management. 展开更多
关键词 Lithium-ion batteries electrode level Ageing diagnosis Physics-informed neural network Convolutional neural networks
在线阅读 下载PDF
A high-entropy engineered perovskite oxide for efficient and stable LSCF-based air electrode of tubular reversible solid oxide cells 被引量:1
14
作者 Shiyue Zhu Tian Li +3 位作者 Ruoyu Li Xiaoyong Lu Yihan Ling Dong Tian 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2621-2627,共7页
Developing highly active and stable air electrodes remains challenging for reversible solid oxide cells(R-SOCs).Herein,we re-port an A-site high-entropy engineered perovskite oxide,La_(0.2)Pr_(0.2)Nd_(0.2)Ba_(0.2)Sr_(... Developing highly active and stable air electrodes remains challenging for reversible solid oxide cells(R-SOCs).Herein,we re-port an A-site high-entropy engineered perovskite oxide,La_(0.2)Pr_(0.2)Nd_(0.2)Ba_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF),and its electrocatalytic activity and stability property are systematically probed for tubular R-SOCs.The HE-LSCF air electrode exhibits excellent oxygen reduction reac-tion(ORR)activity with a low polarization resistance of 0.042Ω·cm^(2)at 700℃,which is much lower than that of La0.6Sr0.4Co_(0.8)Fe_(0.2)O_(3−δ)(LSCF),indicating the excellent catalytic activity of HE-LSCF.Meanwhile,the tubular R-SOCs with HE-LSCF shows a high peak power density of 1.18 W·cm^(−2)in the fuel cell mode and a promising electrolysis current density of−0.52 A·cm^(−2)at 1.5 V in the electrolysis mode with H_(2)(~10%H_(2)O)atmosphere at 700℃.More importantly,the tubular R-SOCs with HE-LSCF shows favorable stability under 180 h reversible cycling test.Our results show the high-entropy design can significantly enhance the activity and robustness of LSCF electrode for tubular R-SOCs. 展开更多
关键词 reversible solid oxide cells air electrode high-entropy oxygen reduction reaction electrolysis current density
在线阅读 下载PDF
Study on Affecting Factors of the Consistency of Printed Electrodes Based on an Online Pressure Monitoring System
15
作者 CAI Zi-mu GU Jin-tao +2 位作者 CHENG Guang-kai XU Guang-yi LI Yan 《印刷与数字媒体技术研究》 北大核心 2025年第2期91-97,共7页
In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this stu... In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this study,the consistency of printed electrodes was measured by using a confocal microscope and the pressure distribution detected by online pressure monitoring system was compared to investigate the relationship.The results demonstrated the relationship between printing pressure and the consistency of printed electrodes.As printing pressure increases,the ink layer at the corresponding position becomes thicker and that higher printing pressure enhances the consistency of the printed electrodes.The experiment confirms the feasibility of the online pressure monitoring system,which aids in predicting and controlling the consistency of printed electrodes,thereby improving their performance. 展开更多
关键词 Printing pressure Consistency of printed electrodes Screen printing Online monitoring
在线阅读 下载PDF
Electrode/Electrolyte Optimization‑Induced Double‑Layered Architecture for High‑Performance Aqueous Zinc‑(Dual)Halogen Batteries
16
作者 Chengwang Zhou Zhezheng Ding +7 位作者 Shengzhe Ying Hao Jiang Yan Wang Timing Fang You Zhang Bing Sun Xiao Tang Xiaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期121-137,共17页
Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growt... Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries. 展开更多
关键词 Zn metal anodes Double-layered protective film electrode/electrolyte optimization Aqueous zinc-(dual)halogen batteries
在线阅读 下载PDF
An Efficient Thick Electrode Design with Artificial Porous Structure and Gradient Particle Arrangement for Lithium-Ion Batteries
17
作者 Zhichen Du Quanbin Zha +5 位作者 Zihan Zhang Qin Chen Hui Yang Zhouguang Lu Tianyou Zhai Huiqiao Li 《Energy & Environmental Materials》 2025年第3期130-138,共9页
Thick electrode,with its feasibility and cost-effectiveness in lithium-ion batteries(LIBs),has attracted significant attention as a promising approach maximizing the energy density of battery.Through raising the mass ... Thick electrode,with its feasibility and cost-effectiveness in lithium-ion batteries(LIBs),has attracted significant attention as a promising approach maximizing the energy density of battery.Through raising the mass loading of active materials without altering the fundamental chemical attributes,thick electrodes can boost the energy density of the batteries effectively.Nevertheless,as the thickness of the electrode increases,the ionic conductivity of the electrode decreases,leading to abominable polarization in the thickness direction,which severely hampers the practical application of a thick electrode.This work proposes a novel porous gradient design of high-performance thick electrodes for LIBs.By constructing a porous structure that serves as a fast transport pathway for lithium(Li)ions,the ion transport kinetics within thick electrodes are significantly enhanced.Meanwhile,a particle size gradient design is incorporated to further mitigate polarization effects within the electrode,leading to substantial improvements in reaction homogeneity and material utilization.Employing this strategy,we have fabricated a porous gradient nanocellulose-carbon-nanotube based thick electrode,which exhibits an impressive capacity retention of 86.7%at a high mass loading of LiCoO_(2)(LCO)active material(20 mg cm^(-2))and a high current density of 5mA cm^(-2). 展开更多
关键词 celluloses gradient electrodes lithium-ion batteries porous electrodes thick electrode technology
在线阅读 下载PDF
Evolution of the volume expansion of SiO/C composite electrodes in lithium-ion batteries during aging cycles
18
作者 Haosong Yang Kai Sun +2 位作者 Xueyan Li Peng Tan Lili Gong 《中国科学技术大学学报》 北大核心 2025年第2期27-33,26,I0001,共9页
As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation ... As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation and fragmentation.This ultimately leads to a decrease in cell capacity.The trends of volume expansion and capacity change of the SiO/graphite(SiO/C)composite electrode during cycling were investigated via in situ expansion monitoring.First,a series of expansion test schemes were designed,and the linear relationship between negative electrode expansion and cell capacity degradation was quantitatively analyzed.Then,the effects of different initial pressures on the long-term cycling performance of the cell were evaluated.Finally,the mechanism of their effects was analyzed by scanning electron microscope.The results show that after 50 cycles,the cell capacity decreases from 2.556 mAh to 1.689 mAh,with a capacity retention ratio(CRR)of only 66.08%.A linear relationship between the capacity retention ratio and thickness expansion was found.Electrochemical measurements and scanning electron microscope images demonstrate that intense stress inhibits the lithiation of the negative electrode and that the electrode is more susceptible to irreversible damage during cycling.Overall,these results reveal the relationship between the cycling performance of SiO and the internal pressure of the electrode from a macroscopic point of view,which provides some reference for the application of SiO/C composite electrodes in lithium-ion batteries. 展开更多
关键词 lithium-ion batteries in situ expansion measurement initial stress cycle life SiO/C composite electrode
在线阅读 下载PDF
Mechanical Stress-Tolerant Diffusion-Dependent Electrode With Well-Dispersed Silicon Particles for High-Performance All-Solid-State Batteries
19
作者 Ju Young Kim Junhyeok Choi +6 位作者 Jaecheol Choi Yunho Lee Seok Hun Kang Seokjae Hong Hyungsub Kim Yong Min Lee Young-Gi Lee 《Carbon Energy》 2025年第8期114-124,共11页
All-solid-state batteries(ASSBs)are a promising next-generation energy storage solution due to their high energy density and enhanced safety.To achieve this,specialized electrode designs are required to efficiently en... All-solid-state batteries(ASSBs)are a promising next-generation energy storage solution due to their high energy density and enhanced safety.To achieve this,specialized electrode designs are required to efficiently enhance interparticle lithium-ion transport between solid components.In particular,for active materials with high specific capacity,such as silicon,their volume expansion and shrinkage must be carefully controlled to maintain mechanical interface stability,which is crucial for effective lithium-ion transport in ASSBs.Herein,we propose a mechanical stress-tolerant all-solid-state graphite/silicon electrode design to ensure stable lithium-ion diffusion at the interface through morphology control of active material particles.Plate-type graphite with a high surface-area-to-volume ratio is used to maximize the dispersion of silicon within the electrode.The carefully designed electrode can accommodate the volume changes of silicon,ensuring stable capacity retention over cycles.Additionally,spherical graphite is shown to contribute to improved rate performance by providing an efficient lithium-ion diffusion pathway within the electrode.Therefore,the synergistic effect of our electrode structure offers balanced electrochemical performance,providing practical insights into the mechano-electrochemical interactions essential for designing highperformance all-solid-state electrodes. 展开更多
关键词 active material all-solid-state electrode electrode design mechano-electrochemical interaction
在线阅读 下载PDF
A novel logging method for detecting highly resistive formations in oil-based mud using high-frequency electrodes
20
作者 Kang-Kang Wu Lei Wang +1 位作者 Shao-Gui Deng Xue-Wen Kou 《Petroleum Science》 2025年第5期1946-1958,共13页
The oil-based mud(OBM) borehole measurement environment presents significant limitations on the application of existing electrical logging instruments in high-resistance formations. In this paper, we propose a novel l... The oil-based mud(OBM) borehole measurement environment presents significant limitations on the application of existing electrical logging instruments in high-resistance formations. In this paper, we propose a novel logging method for detection of high-resistance formations in OBM using highfrequency electrodes. The method addresses the issue of shallow depth of investigation(DOI) in existing electrical logging instruments, while simultaneously ensuring the vertical resolution. Based on the principle of current continuity, the total impedance of the loop is obtained by equating the measurement loop to the series form of a capacitively coupled circuit. and its validity is verified in a homogeneous formation model and a radial two-layer formation model with a mud standoff. Then, the instrument operating frequency and electrode system parameters were preferentially determined by numerical simulation, and the effect of mud gap on impedance measurement was investigated. Subsequently, the DOI of the instrument was investigated utilizing the pseudo-geometric factor defined by the real part of impedance. It was determined that the detection depth of the instrument is 8.74 cm, while the effective vertical resolution was not less than 2 cm. Finally, a focused high-frequency electrode-type instrument was designed by introducing a pair of focused electrodes, which effectively enhanced the DOI of the instrument and was successfully deployed in the Oklahoma formation model. The simulation results demonstrate that the novel method can achieve a detection depth of 17.40 cm in highly-resistive formations drilling with OBM, which is approximately twice the depth of detection of the existing oil-based mud microimager instruments. Furthermore, its effective vertical resolution remains at or above 2 cm,which is comparable to the resolution of the existing OBM electrical logging instrument. 展开更多
关键词 Oil-based mud Highly-resistive High-frequency electrode Bulking electrode Depth of investigation
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部