The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermo...The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermoperation.The complex relationship between the defect phenomenon andmulti-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods,which limits the real-time and accuracy of defect identification.Therefore,a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed.The defect data of secondary equipment is transformed into the structured knowledge graph through knowledge extraction and fusion technology.The knowledge graph of power grid secondary equipment is mapped to the Bayesian network framework,combined with historical defect data,and introduced Noisy-OR nodes.The prior and conditional probabilities of the Bayesian network are then reasonably assigned to build a model that reflects the probability dependence between defect phenomena and potential causes in power grid secondary equipment.Defect identification of power grid secondary equipment is achieved by defect subgraph search based on the knowledge graph,and defect inference based on the Bayesian network.Practical application cases prove this method’s effectiveness in identifying secondary equipment defect causes,improving identification accuracy and efficiency.展开更多
To address the challenges of high-precision optical surface defect detection,we propose a novel design for a wide-field and broadband light field camera in this work.The proposed system can achieve a 50°field of ...To address the challenges of high-precision optical surface defect detection,we propose a novel design for a wide-field and broadband light field camera in this work.The proposed system can achieve a 50°field of view and operates at both visible and near-infrared wavelengths.Using the principles of light field imaging,the proposed design enables 3D reconstruction of optical surfaces,thus enabling vertical surface height measurements with enhanced accuracy.Using Zemax-based simulations,we evaluate the system’s modulation transfer function,its optical aberrations,and its tolerance to shape variations through Zernike coefficient adjustments.The results demonstrate that this camera can achieve the required spatial resolution while also maintaining high imaging quality and thus offers a promising solution for advanced optical surface defect inspection.展开更多
Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled t...Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design.展开更多
In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds...In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds in current intelligent inspection algorithms,this paper proposes CG-YOLOv8,a lightweight and improved model based on YOLOv8n for PCB surface defect detection.The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy,thereby enhancing the capability of identifying diverse defects under complex conditions.Specifically,a cascaded multi-receptive field(CMRF)module is adopted to replace the SPPF module in the backbone to improve feature perception,and an inverted residual mobile block(IRMB)is integrated into the C2f module to further enhance performance.Additionally,conventional convolution layers are replaced with GSConv to reduce computational cost,and a lightweight Convolutional Block Attention Module based Convolution(CBAMConv)module is introduced after Grouped Spatial Convolution(GSConv)to preserve accuracy through attention mechanisms.The detection head is also optimized by removing medium and large-scale detection layers,thereby enhancing the model’s ability to detect small-scale defects and further reducing complexity.Experimental results show that,compared to the original YOLOv8n,the proposed CG-YOLOv8 reduces parameter count by 53.9%,improves mAP@0.5 by 2.2%,and increases precision and recall by 2.0%and 1.8%,respectively.These improvements demonstrate that CG-YOLOv8 offers an efficient and lightweight solution for PCB surface defect detection.展开更多
In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experime...In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experiments with AlSi10 MgMn alloy.For castings with wall thickness of 2-4 mm,the ratio of the mean defect band width(w)and mean grain size(d)in the defect band(w/d)ranges 7-18,while it increases to 24.47 for the 5 mm-thick casting.This difference is related with the filling speed and the distribution of externally solidified crystals(ESCs).The mold flow analysis indicates that the filling speed decreases from 25.41 m·s^(-1)to 11.07 m·s^(-1)when wall thickness increases from 2 mm to 5 mm.Due to the decreasing filling speed along the wall thickness,ESCs gradually diffuse from the center to the defect band,which keep the shear strength in the defect band at a high-level during filling.Meanwhile,the shear strength generated during the filling also decreases as the shear rate drops.Finally,the defect bands in the 5 mm-thick region become widen and indistinct,and the porosity is as high as 5.25%.展开更多
Photosynthesis is a promising method for H_(2)O_(2)production,but its application in pure water is limited by slow oxidation kinetics and rapid photocarrier recombination of photocatalysts.Herein,a novel defective car...Photosynthesis is a promising method for H_(2)O_(2)production,but its application in pure water is limited by slow oxidation kinetics and rapid photocarrier recombination of photocatalysts.Herein,a novel defective carbon nitride photocatalyst(D-C3-xN4)containing the C vacancies and the frustrated Lewis pairs(B and N of cyano group)is designed for H_(2)O_(2)photosynthesis,and the role of C vacancies on the electron transfer mechanism during photocatalysis is systematically investigated.The D-C_(3-x)N_(4) exhibits a H_(2)O_(2)production rate of 140.1μmol·g^(-1)·h^(-1) in pure water,which is 87.6 times that of C_(3)N_(4).Such superior performance for H_(2)O_(2)photosynthesis is found to arise from the C vacancies and frustrated Lewis pairs(FLPs).The C vacancies have strong electron-trapping ability,which greatly enhances the separation of photocarriers.The C vacancies can also effectively reduce O_(2)to*OOH via a proton-coupled process,which significantly accelerates the O_(2)reduction kinetics.Meanwhile,the FLPs show an outstanding catalytic activity for H_(2)O oxidation.This study not only provides a new structure for highly active photocatalysts,but also deepens the understanding of the electron transfer mechanism of photocatalysts with trapped sites.展开更多
While thermal air exfoliation is widely used to prepare graphitic carbon nitride(g-C_(3)N_(4))nanosheets,the effects of calcination conditions and atmosphere on their electronic structure and photocatalytic CO_(2)redu...While thermal air exfoliation is widely used to prepare graphitic carbon nitride(g-C_(3)N_(4))nanosheets,the effects of calcination conditions and atmosphere on their electronic structure and photocatalytic CO_(2)reduction reaction(CO_(2)RR)performance remain systematically unexplored.We prepared g-C_(3)N_(4)nanosheets with varying thickness and defects by controlling exfoliation parameters.The obtained nanosheets calcined longest in air exhibited highest CO_(2)RR activity,twice that of bulk g-C_(3)N_(4).The comprehensive analysis of structural characterizations indicates the thickness of g-C_(3)N_(4)nanosheets became thinner,and the defects increased as the calcination time increased.The N vacancies(N_(v))and O-doping caused by N_(2) and O_(2)from air,respectively,enable valence band elevation(N_(v))and conduction band depression(O-doping)that collectively redistribute the electronic structure.Nitrogen/oxygen dual-defects generated impurity levels,reduced the work function and band gap of g-C_(3)N_(4)nanosheets,and served as shallow traps for photogenerated e^(-).The results of in-situ spectroscopy indicate these increased effective e^(-)are enriched around of N atoms to react with the adsorbed CO_(2).During the CO_(2)reduction process,the N_(v) promoted the formation of*COOH,and this dual-defect co-promoted the*CO desorption,resulting in the improved CO_(2)RR activity.These results comprehensively analyze the regulatory effect of thermal air calcination on the electronic structure of g-C_(3)N_(4),providing valuable insights for designing g-C_(3)N_(4)nanosheets based photocatalysts for CO_(2)RR.展开更多
Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,an...Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection.展开更多
In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and...In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing.展开更多
Phenanthrene(Phe)is one of the common polycyclic aromatic hydrocarbons in the environment,and recent studies show that it can cause cardiac developmental toxicity and immunotoxicity.However,it is still unknown whether...Phenanthrene(Phe)is one of the common polycyclic aromatic hydrocarbons in the environment,and recent studies show that it can cause cardiac developmental toxicity and immunotoxicity.However,it is still unknown whether it can affect the hematopoietic development in aquatic organisms.To address this question,zebrafish(Danio rerio)were chronically exposed to Phe at different concentrations.We found that Phe caused structural damage to the renal tubules in the kidney,induced malformed erythrocytes in peripheral blood,and decreased the proportion of myeloid cells in adult zebrafish,suggesting possible negative impacts that Phe posed to hematopoietic development.Then,using in situ hybridization technology,we found that Phe decreased the expression of primitive hematopoietic marker genes,specifically gata1 and pu.1,accompanied by an obstruction of primitive erythrocyte circulation.Furthermore,Phe impaired definitive hematopoiesis,increased aberrations of the transient hematopoietic site(PBI),and reduced the generation of hematopoietic stem cells,ultimately influencing the number of erythrocytes and myeloid cells.The findings suggested that Phe could induce hematopoietic toxicity in zebrafish embryos and pose unknown ecological risks.展开更多
Infectious bone defects represent a substantial challenge in clinical practice,necessitating the deployment of advanced therapeutic strategies.This study presents a treatment modality that merges a mild photothermal t...Infectious bone defects represent a substantial challenge in clinical practice,necessitating the deployment of advanced therapeutic strategies.This study presents a treatment modality that merges a mild photothermal therapy hydrogel with a pulsed drug delivery mechanism.The system is predicated on a hydrogel matrix that is thermally responsive,characteristic of bone defect sites,facilitating controlled and site-specific drug release.The cornerstone of this system is the incorporation of mild photothermal nanoparticles,which are activated within the temperature range of 40–43°C,thereby enhancing the precision and efficacy of drug delivery.Our findings demonstrate that the photothermal response significantly augments the localized delivery of therapeutic agents,mitigating systemic side effects and bolstering efficacy at the defect site.The synchronized pulsed release,cooperated with mild photothermal therapy,effectively addresses infection control,and promotes bone regeneration.This approach signifies a considerable advancement in the management of infectious bone defects,offering an effective and patient-centric alternative to traditional methods.Our research endeavors to extend its applicability to a wider spectrum of tissue regeneration scenarios,underscoring its transformative potential in the realm of regenerative medicine.展开更多
The rapid progress in the construction of heavy-haul and high-speed railways has led to a surge in rail defects and unforeseen failures.Addressing this issue necessitates the implementation of more sophisticated rail ...The rapid progress in the construction of heavy-haul and high-speed railways has led to a surge in rail defects and unforeseen failures.Addressing this issue necessitates the implementation of more sophisticated rail inspection methods,specifically involving real-time,precise detection,and assessment of rail defects.Current applications fail to address the evolving requirements,prompting the need for advancements.This paper provides a summary of various types of rail defects and outlines both traditional and innovative non-destructive inspection techniques,examining their fundamental features,benefits,drawbacks,and practical suitability for railway track inspection.It also explores potential enhancements to equipment and software.The comprehensive review draws upon pertinent international research and review papers.Furthermore,the paper introduces a fusion of inspection methods aimed at enhancing the overall reliability of defect detection.展开更多
Selective catalytic reduction of NO_(x) with CO(CO-SCR)is a process that purifies both NO and CO pollutants through a catalytic reaction.Specifically,the cleavage of NO on the catalyst surface is crucial for promoting...Selective catalytic reduction of NO_(x) with CO(CO-SCR)is a process that purifies both NO and CO pollutants through a catalytic reaction.Specifically,the cleavage of NO on the catalyst surface is crucial for promoting the reaction.During the reaction,the presence of oxygen vacancies can extract oxygen from NO,thereby facilitating the cleavage of NO on the catalyst surface.Thus,the formation of oxygen vacancies is key to accelerating the CO-SCR reaction,with different types of oxygen vacancies being more conducive to their generation.In this study,Rh/CeCuO_(x) catalysts were synthesized using the co-crystallization and impregnation methods,and asymmetric oxygen vacancies were induced through hydrogen thermal treatment.This structuralmodification was aimed at regulating the behavior of NO on the catalyst surface.The Rh/Ce0.95Cu0.05O_(x)-H_(2) catalyst exhibited the best performance in CO-SCR,achieving above 90%NO conversion at 162℃.Various characterization techniques showed that the H_(2) treatment effectively reduced some of the CuO and Rh_(2)O_(3),creating asymmetric oxygen vacancies that accelerated the cleavage of NO on the catalyst surface,rather than forming difficult-to-decompose nitrates.This study offers a novel approach to constructing oxygen vacancies in new CO-SCR catalysts.展开更多
Researchers have recently developed various surface engineering approaches to modify environmental catalysts and improve their catalytic activity.Defect engineering has proved to be one of the most promising modificat...Researchers have recently developed various surface engineering approaches to modify environmental catalysts and improve their catalytic activity.Defect engineering has proved to be one of the most promising modification methods.Constructing defects on the surface of catalytic materials can effectively modulate the coordination environment of the active sites,affecting and changing the electrons,geometry,and other important properties at the catalytic active sites,thus altering the catalytic activity of the catalysts.However,the conformational relationship between defects and catalytic activity remains to be clarified.This dissertation focuses on an overview of recent advances in defect engineering in environmental catalysis.Based on defining the classification of defects in catalytic materials,defect construction methods,and characterization techniques are summarized and discussed.Focusing on an overview of the characteristics of the role of defects in electrocatalytic,photocatalytic,and thermal catalytic reactions and the mechanism of catalytic reactions.An elaborate link is given between the reaction activity and the structure of catalyst defects.Finally,the existing challenges and possible future directions for the application of defect engineering in environmental catalysis are discussed,which are expected to guide the design and development of efficient environmental catalysts and mechanism studies.展开更多
As the global population ages,osteoporotic bone fractures leading to bone defects are increasingly becoming a significant challenge in the field of public health.Treating this disease faces many challenges,especially ...As the global population ages,osteoporotic bone fractures leading to bone defects are increasingly becoming a significant challenge in the field of public health.Treating this disease faces many challenges,especially in the context of an imbalance between osteoblast and osteoclast activities.Therefore,the development of new biomaterials has become the key.This article reviews various design strategies and their advantages and disadvantages for biomaterials aimed at osteoporotic bone defects.Overall,current research progress indicates that innovative design,functionalization,and targeting of materials can significantly enhance bone regeneration under osteoporotic conditions.By comprehensively considering biocompatibility,mechanical properties,and bioactivity,these biomaterials can be further optimized,offering a range of choices and strategies for the repair of osteoporotic bone defects.展开更多
Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,re...Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,reduce costs,and ensure product quality.In light of the recent advancement of Industry 4.0,identifying defects has become important for ensuring the quality of products during the manufacturing process.In this research,we present an ensemble methodology for accurately classifying hot rolled steel surface defects by combining the strengths of four pre-trained convolutional neural network(CNN)architectures:VGG16,VGG19,Xception,and Mobile-Net V2,compensating for their individual weaknesses.We evaluated our methodology on the Xsteel surface defect dataset(XSDD),which comprises seven different classes.The ensemble methodology integrated the predictions of individual models through two methods:model averaging and weighted averaging.Our evaluation showed that the model averaging ensemble achieved an accuracy of 98.89%,a recall of 98.92%,a precision of 99.05%,and an F1-score of 98.97%,while the weighted averaging ensemble reached an accuracy of 99.72%,a recall of 99.74%,a precision of 99.67%,and an F1-score of 99.70%.The proposed weighted averaging ensemble model outperformed the model averaging method and the individual models in detecting defects in terms of accuracy,recall,precision,and F1-score.Comparative analysis with recent studies also showed the superior performance of our methodology.展开更多
Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the e...Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.展开更多
To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,t...To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,the scSE attention mechanism is intro-duced into the backbone network of YOLOv5s.A Fusion-Block module and additional layers are added to the neck network of YOLOv5s to improve the effect of feature fusion,which is to meet the needs of complex object detection.To reduce the computation-al complexity of the model,the C3Ghost module is used to replace the CSP2_1 module in the neck network of YOLOv5s.The scSE-ASFF module is constructed and inserted between the neck network and the prediction end,which is to realize the fusion of features between the different layers.To address the issue of imbalanced sample quality in the dataset and improve the regression speed and accuracy of the loss function,the CIoU loss function in the YOLOv5s model is replaced with the Focal-EIoU loss function.Finally,ex-periments are conducted based on the collected weld defect dataset to verify the feasibility of the improved YOLOv5s for weld defects detection.The experimental results show that the precision and mAP of the improved YOLOv5s in detecting complex weld defects are as high as 83.4%and 76.1%,respectively,which are 2.5%and 7.6%higher than the traditional YOLOv5s model.The proposed weld defects detection method based on the improved YOLOv5s in this paper can effectively solve the problem of low weld defects detection accuracy.展开更多
High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,inclu...High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.展开更多
The stability of perovskite solar cells(PSCs)is adversely affected by nonradiative recombination resulting from buried interface defects.Herein,we synthesize a polyionic liquid,poly(p-vinylbenzyl trimethylam-monium he...The stability of perovskite solar cells(PSCs)is adversely affected by nonradiative recombination resulting from buried interface defects.Herein,we synthesize a polyionic liquid,poly(p-vinylbenzyl trimethylam-monium hexafluorophosphate)(PTA),and introduce it into the buried interface of PSCs.The quaternary ammonium cation(N(-CH_(3))^(3+))in PTA can fill the vacancies of organic cations within the perovskite structure and reduce shallow energy level defects.Additionally,the hexafluorophosphate(PF6−)in PTA forms a Lewis acid-base interaction with Pb^(2+)in the perovskite layer,effectively passivating deep en-ergy level defects.Furthermore,hydrogen bonding can be established between organic cations and the PF6−anion,preventing the formation of shallow energy level defects.Through this synergistic mecha-nism,the deep and shallow energy level defects are effectively mitigated,resulting in improved device performance.As a result,the resulting treated inverted PSC exhibits an impressive power conversion ef-ficiency(PCE)of 24.72%.Notably,the PTA-treated PSCs exhibit remarkable stability,with 88.5%of the original PCE retained after undergoing heat aging at 85℃ for 1078 h,and 89.1%of the initial PCE main-tained following continuous exposure to light for 1100 h at the maximum power point.Synergistically suppressing multiple defects at the buried interface through the use of polyionic liquids is a promising way to improve the commercial viability of PSCs.展开更多
基金supported by the State Grid Southwest Branch Project“Research on Defect Diagnosis and Early Warning Technology of Relay Protection and Safety Automation Devices Based on Multi-Source Heterogeneous Defect Data”.
文摘The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermoperation.The complex relationship between the defect phenomenon andmulti-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods,which limits the real-time and accuracy of defect identification.Therefore,a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed.The defect data of secondary equipment is transformed into the structured knowledge graph through knowledge extraction and fusion technology.The knowledge graph of power grid secondary equipment is mapped to the Bayesian network framework,combined with historical defect data,and introduced Noisy-OR nodes.The prior and conditional probabilities of the Bayesian network are then reasonably assigned to build a model that reflects the probability dependence between defect phenomena and potential causes in power grid secondary equipment.Defect identification of power grid secondary equipment is achieved by defect subgraph search based on the knowledge graph,and defect inference based on the Bayesian network.Practical application cases prove this method’s effectiveness in identifying secondary equipment defect causes,improving identification accuracy and efficiency.
基金supported by the Jilin Science and Technology Development Plan(20240101029JJ)the following study:synchronized high-speed detection of surface shape and defects in the grinding stage of complex surfaces(KLMSZZ202305)+3 种基金for the high-precision wide dynamic large aperture optical inspection system for fine astronomical observation by the National Major Research Instrument Development Project(62127901)for ultrasmooth manufacturing technology of large diameter complex curved surface by the National Key R&D Program(2022YFB3403405)for research on the key technology of rapid synchronous detection of surface shape and subsurface defects in the grinding stage of large diameter complex surfaces by the International Cooperation Project(2025010157)The Key Laboratory of Optical System Advanced Manufacturing Technology,Chinese Academy of Sciences(2022KLOMT02-04)also supported this study.
文摘To address the challenges of high-precision optical surface defect detection,we propose a novel design for a wide-field and broadband light field camera in this work.The proposed system can achieve a 50°field of view and operates at both visible and near-infrared wavelengths.Using the principles of light field imaging,the proposed design enables 3D reconstruction of optical surfaces,thus enabling vertical surface height measurements with enhanced accuracy.Using Zemax-based simulations,we evaluate the system’s modulation transfer function,its optical aberrations,and its tolerance to shape variations through Zernike coefficient adjustments.The results demonstrate that this camera can achieve the required spatial resolution while also maintaining high imaging quality and thus offers a promising solution for advanced optical surface defect inspection.
基金supported by the Research Project on Strengthening the Construction of an Important Ecological Security Barrier in Northern China by Higher Education Institutions in the Inner Mongolia Autonomous Region(STAQZX202313)the Inner Mongolia Autonomous Region Education Science‘14th Five-Year Plan’2024 Annual Research Project(NGJGH2024635).
文摘Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design.
基金funded by the Joint Funds of the National Natural Science Foundation of China(U2341223)the Beijing Municipal Natural Science Foundation(No.4232067).
文摘In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds in current intelligent inspection algorithms,this paper proposes CG-YOLOv8,a lightweight and improved model based on YOLOv8n for PCB surface defect detection.The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy,thereby enhancing the capability of identifying diverse defects under complex conditions.Specifically,a cascaded multi-receptive field(CMRF)module is adopted to replace the SPPF module in the backbone to improve feature perception,and an inverted residual mobile block(IRMB)is integrated into the C2f module to further enhance performance.Additionally,conventional convolution layers are replaced with GSConv to reduce computational cost,and a lightweight Convolutional Block Attention Module based Convolution(CBAMConv)module is introduced after Grouped Spatial Convolution(GSConv)to preserve accuracy through attention mechanisms.The detection head is also optimized by removing medium and large-scale detection layers,thereby enhancing the model’s ability to detect small-scale defects and further reducing complexity.Experimental results show that,compared to the original YOLOv8n,the proposed CG-YOLOv8 reduces parameter count by 53.9%,improves mAP@0.5 by 2.2%,and increases precision and recall by 2.0%and 1.8%,respectively.These improvements demonstrate that CG-YOLOv8 offers an efficient and lightweight solution for PCB surface defect detection.
基金supported by the National Natural Science Foundation of China(No.52474396 and 52175284)the National Key Research and Development Program of China(Grant No.2022YFB3404201)。
文摘In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experiments with AlSi10 MgMn alloy.For castings with wall thickness of 2-4 mm,the ratio of the mean defect band width(w)and mean grain size(d)in the defect band(w/d)ranges 7-18,while it increases to 24.47 for the 5 mm-thick casting.This difference is related with the filling speed and the distribution of externally solidified crystals(ESCs).The mold flow analysis indicates that the filling speed decreases from 25.41 m·s^(-1)to 11.07 m·s^(-1)when wall thickness increases from 2 mm to 5 mm.Due to the decreasing filling speed along the wall thickness,ESCs gradually diffuse from the center to the defect band,which keep the shear strength in the defect band at a high-level during filling.Meanwhile,the shear strength generated during the filling also decreases as the shear rate drops.Finally,the defect bands in the 5 mm-thick region become widen and indistinct,and the porosity is as high as 5.25%.
基金supported by the Shaanxi Sanqin Scholars Innovation Team,the Science and Technology Project of Yan’an City(No.2023-CYL-193)the Key Science Research Plan of Department of Education in Shaanxi Province(No.23JS070)the Science Research Training Project(No.CLXZ2207).
文摘Photosynthesis is a promising method for H_(2)O_(2)production,but its application in pure water is limited by slow oxidation kinetics and rapid photocarrier recombination of photocatalysts.Herein,a novel defective carbon nitride photocatalyst(D-C3-xN4)containing the C vacancies and the frustrated Lewis pairs(B and N of cyano group)is designed for H_(2)O_(2)photosynthesis,and the role of C vacancies on the electron transfer mechanism during photocatalysis is systematically investigated.The D-C_(3-x)N_(4) exhibits a H_(2)O_(2)production rate of 140.1μmol·g^(-1)·h^(-1) in pure water,which is 87.6 times that of C_(3)N_(4).Such superior performance for H_(2)O_(2)photosynthesis is found to arise from the C vacancies and frustrated Lewis pairs(FLPs).The C vacancies have strong electron-trapping ability,which greatly enhances the separation of photocarriers.The C vacancies can also effectively reduce O_(2)to*OOH via a proton-coupled process,which significantly accelerates the O_(2)reduction kinetics.Meanwhile,the FLPs show an outstanding catalytic activity for H_(2)O oxidation.This study not only provides a new structure for highly active photocatalysts,but also deepens the understanding of the electron transfer mechanism of photocatalysts with trapped sites.
基金supported by the National Natural Science Foundation of China(Nos.62004143 and 22502150)the Key Project of Scientific Research Plan of Hubei Provincial Department of Education(No.D20241501)+5 种基金the China Postdoctoral Science Foundation(No.2024M762505)the Postdoctoral Fellowship Program(Grade C)(No.GZC20250787)the China Postdoctoral Science Foundation-Hubei Joint Support Program(No.2025T032HB)the Scientific Research Fund Project of Wuhan Institute of Technology(Nos.K2024053,K2025102,and 25QD010)the Open Fund of the Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices(No.EFMD2024006Z)the Innovation Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education(No.LCX202404).
文摘While thermal air exfoliation is widely used to prepare graphitic carbon nitride(g-C_(3)N_(4))nanosheets,the effects of calcination conditions and atmosphere on their electronic structure and photocatalytic CO_(2)reduction reaction(CO_(2)RR)performance remain systematically unexplored.We prepared g-C_(3)N_(4)nanosheets with varying thickness and defects by controlling exfoliation parameters.The obtained nanosheets calcined longest in air exhibited highest CO_(2)RR activity,twice that of bulk g-C_(3)N_(4).The comprehensive analysis of structural characterizations indicates the thickness of g-C_(3)N_(4)nanosheets became thinner,and the defects increased as the calcination time increased.The N vacancies(N_(v))and O-doping caused by N_(2) and O_(2)from air,respectively,enable valence band elevation(N_(v))and conduction band depression(O-doping)that collectively redistribute the electronic structure.Nitrogen/oxygen dual-defects generated impurity levels,reduced the work function and band gap of g-C_(3)N_(4)nanosheets,and served as shallow traps for photogenerated e^(-).The results of in-situ spectroscopy indicate these increased effective e^(-)are enriched around of N atoms to react with the adsorbed CO_(2).During the CO_(2)reduction process,the N_(v) promoted the formation of*COOH,and this dual-defect co-promoted the*CO desorption,resulting in the improved CO_(2)RR activity.These results comprehensively analyze the regulatory effect of thermal air calcination on the electronic structure of g-C_(3)N_(4),providing valuable insights for designing g-C_(3)N_(4)nanosheets based photocatalysts for CO_(2)RR.
文摘Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection.
基金funded by National Natural Science Foundation of China(Grant Nos.52130504,52305577,and 52175509)the Key Research and Development Plan of Hubei Province(Grant No.2022BAA013)+4 种基金the Major Program(JD)of Hubei Province(Grant No.2023BAA008-2)the Interdisciplinary Research Program of Huazhong University of Science and Technology(2023JCYJ047)the Innovation Project of Optics Valley Laboratory(Grant No.OVL2023PY003)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(Grant No.GZB20230244)the fellowship from the China Postdoctoral Science Foundation(2024M750995)。
文摘In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing.
基金supported by the National Natural Science Foundation of China(Nos.22276117 and 22076108)the Science and Technology Innovation Talent Team Project of Shanxi Province(No.202204051002024).
文摘Phenanthrene(Phe)is one of the common polycyclic aromatic hydrocarbons in the environment,and recent studies show that it can cause cardiac developmental toxicity and immunotoxicity.However,it is still unknown whether it can affect the hematopoietic development in aquatic organisms.To address this question,zebrafish(Danio rerio)were chronically exposed to Phe at different concentrations.We found that Phe caused structural damage to the renal tubules in the kidney,induced malformed erythrocytes in peripheral blood,and decreased the proportion of myeloid cells in adult zebrafish,suggesting possible negative impacts that Phe posed to hematopoietic development.Then,using in situ hybridization technology,we found that Phe decreased the expression of primitive hematopoietic marker genes,specifically gata1 and pu.1,accompanied by an obstruction of primitive erythrocyte circulation.Furthermore,Phe impaired definitive hematopoiesis,increased aberrations of the transient hematopoietic site(PBI),and reduced the generation of hematopoietic stem cells,ultimately influencing the number of erythrocytes and myeloid cells.The findings suggested that Phe could induce hematopoietic toxicity in zebrafish embryos and pose unknown ecological risks.
基金supported by the National Natural Science Foundation of China(32171354,82222015,82171001)The National Key Research and Development Program of China2023YFC2413600Research Funding from West China School/Hospital of Stomatology,Sichuan University(No.RCDWIS2023-1).
文摘Infectious bone defects represent a substantial challenge in clinical practice,necessitating the deployment of advanced therapeutic strategies.This study presents a treatment modality that merges a mild photothermal therapy hydrogel with a pulsed drug delivery mechanism.The system is predicated on a hydrogel matrix that is thermally responsive,characteristic of bone defect sites,facilitating controlled and site-specific drug release.The cornerstone of this system is the incorporation of mild photothermal nanoparticles,which are activated within the temperature range of 40–43°C,thereby enhancing the precision and efficacy of drug delivery.Our findings demonstrate that the photothermal response significantly augments the localized delivery of therapeutic agents,mitigating systemic side effects and bolstering efficacy at the defect site.The synchronized pulsed release,cooperated with mild photothermal therapy,effectively addresses infection control,and promotes bone regeneration.This approach signifies a considerable advancement in the management of infectious bone defects,offering an effective and patient-centric alternative to traditional methods.Our research endeavors to extend its applicability to a wider spectrum of tissue regeneration scenarios,underscoring its transformative potential in the realm of regenerative medicine.
文摘The rapid progress in the construction of heavy-haul and high-speed railways has led to a surge in rail defects and unforeseen failures.Addressing this issue necessitates the implementation of more sophisticated rail inspection methods,specifically involving real-time,precise detection,and assessment of rail defects.Current applications fail to address the evolving requirements,prompting the need for advancements.This paper provides a summary of various types of rail defects and outlines both traditional and innovative non-destructive inspection techniques,examining their fundamental features,benefits,drawbacks,and practical suitability for railway track inspection.It also explores potential enhancements to equipment and software.The comprehensive review draws upon pertinent international research and review papers.Furthermore,the paper introduces a fusion of inspection methods aimed at enhancing the overall reliability of defect detection.
基金supported by the support of the National Natural Science Foundation of China(Nos.22072141,22176185 and 52304429)the National Key Research and Development Program of China(Nos.2022YFB3504200,2021YFB3501900)+4 种基金the Natural Science Foundation of Jiangxi Province for Distinguished Young Scholars(No.20232ACB213004)Jiangxi Provincial Key Research and Development Program(No.20232BBG70012)Jiangxi Provincial Natural Science Foundation(No.20212BAB213032)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2018263)the Research Projects of Ganjiang Innovation Academy,Chinese Academy of Sciences(No.E355C001).
文摘Selective catalytic reduction of NO_(x) with CO(CO-SCR)is a process that purifies both NO and CO pollutants through a catalytic reaction.Specifically,the cleavage of NO on the catalyst surface is crucial for promoting the reaction.During the reaction,the presence of oxygen vacancies can extract oxygen from NO,thereby facilitating the cleavage of NO on the catalyst surface.Thus,the formation of oxygen vacancies is key to accelerating the CO-SCR reaction,with different types of oxygen vacancies being more conducive to their generation.In this study,Rh/CeCuO_(x) catalysts were synthesized using the co-crystallization and impregnation methods,and asymmetric oxygen vacancies were induced through hydrogen thermal treatment.This structuralmodification was aimed at regulating the behavior of NO on the catalyst surface.The Rh/Ce0.95Cu0.05O_(x)-H_(2) catalyst exhibited the best performance in CO-SCR,achieving above 90%NO conversion at 162℃.Various characterization techniques showed that the H_(2) treatment effectively reduced some of the CuO and Rh_(2)O_(3),creating asymmetric oxygen vacancies that accelerated the cleavage of NO on the catalyst surface,rather than forming difficult-to-decompose nitrates.This study offers a novel approach to constructing oxygen vacancies in new CO-SCR catalysts.
基金supported by The National Key R&D Program of China(No.2021YFB3500700)National Natural Science Foundation of China(Nos.21677010 and 51808037)Special fund of Beijing Key Laboratory of Indoor Air Quality Evaluation and Control(No.BZ0344KF21-04)。
文摘Researchers have recently developed various surface engineering approaches to modify environmental catalysts and improve their catalytic activity.Defect engineering has proved to be one of the most promising modification methods.Constructing defects on the surface of catalytic materials can effectively modulate the coordination environment of the active sites,affecting and changing the electrons,geometry,and other important properties at the catalytic active sites,thus altering the catalytic activity of the catalysts.However,the conformational relationship between defects and catalytic activity remains to be clarified.This dissertation focuses on an overview of recent advances in defect engineering in environmental catalysis.Based on defining the classification of defects in catalytic materials,defect construction methods,and characterization techniques are summarized and discussed.Focusing on an overview of the characteristics of the role of defects in electrocatalytic,photocatalytic,and thermal catalytic reactions and the mechanism of catalytic reactions.An elaborate link is given between the reaction activity and the structure of catalyst defects.Finally,the existing challenges and possible future directions for the application of defect engineering in environmental catalysis are discussed,which are expected to guide the design and development of efficient environmental catalysts and mechanism studies.
基金supported by the National Natural Science Foundation of China(Nos.82160419 and 82302772)Guizhou Basic Research Project(No.ZK[2023]General 201)。
文摘As the global population ages,osteoporotic bone fractures leading to bone defects are increasingly becoming a significant challenge in the field of public health.Treating this disease faces many challenges,especially in the context of an imbalance between osteoblast and osteoclast activities.Therefore,the development of new biomaterials has become the key.This article reviews various design strategies and their advantages and disadvantages for biomaterials aimed at osteoporotic bone defects.Overall,current research progress indicates that innovative design,functionalization,and targeting of materials can significantly enhance bone regeneration under osteoporotic conditions.By comprehensively considering biocompatibility,mechanical properties,and bioactivity,these biomaterials can be further optimized,offering a range of choices and strategies for the repair of osteoporotic bone defects.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2022R1I1A3063493).
文摘Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,reduce costs,and ensure product quality.In light of the recent advancement of Industry 4.0,identifying defects has become important for ensuring the quality of products during the manufacturing process.In this research,we present an ensemble methodology for accurately classifying hot rolled steel surface defects by combining the strengths of four pre-trained convolutional neural network(CNN)architectures:VGG16,VGG19,Xception,and Mobile-Net V2,compensating for their individual weaknesses.We evaluated our methodology on the Xsteel surface defect dataset(XSDD),which comprises seven different classes.The ensemble methodology integrated the predictions of individual models through two methods:model averaging and weighted averaging.Our evaluation showed that the model averaging ensemble achieved an accuracy of 98.89%,a recall of 98.92%,a precision of 99.05%,and an F1-score of 98.97%,while the weighted averaging ensemble reached an accuracy of 99.72%,a recall of 99.74%,a precision of 99.67%,and an F1-score of 99.70%.The proposed weighted averaging ensemble model outperformed the model averaging method and the individual models in detecting defects in terms of accuracy,recall,precision,and F1-score.Comparative analysis with recent studies also showed the superior performance of our methodology.
基金supported by the National Natural Science Foundation of China(U21A20281)the Special Fund for Young Teachers from Zhengzhou University(JC23557030,JC23257011)+1 种基金the Key Research Projects of Higher Education Institutions of Henan Province(24A530009)the Project of Zhongyuan Critical Metals Laboratory(GJJSGFYQ202336).
文摘Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_4084).
文摘To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,the scSE attention mechanism is intro-duced into the backbone network of YOLOv5s.A Fusion-Block module and additional layers are added to the neck network of YOLOv5s to improve the effect of feature fusion,which is to meet the needs of complex object detection.To reduce the computation-al complexity of the model,the C3Ghost module is used to replace the CSP2_1 module in the neck network of YOLOv5s.The scSE-ASFF module is constructed and inserted between the neck network and the prediction end,which is to realize the fusion of features between the different layers.To address the issue of imbalanced sample quality in the dataset and improve the regression speed and accuracy of the loss function,the CIoU loss function in the YOLOv5s model is replaced with the Focal-EIoU loss function.Finally,ex-periments are conducted based on the collected weld defect dataset to verify the feasibility of the improved YOLOv5s for weld defects detection.The experimental results show that the precision and mAP of the improved YOLOv5s in detecting complex weld defects are as high as 83.4%and 76.1%,respectively,which are 2.5%and 7.6%higher than the traditional YOLOv5s model.The proposed weld defects detection method based on the improved YOLOv5s in this paper can effectively solve the problem of low weld defects detection accuracy.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272103 and 52072010)Beijing Natural Science Foundation(Grant Nos.2242029 and JL23004).
文摘High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.
基金supported by the Science,Technology,and Innovation Commission of Shenzhen Municipality(No.GJHZ20220913143204008)the Shccig-Qinling Program(No.SMYJY202300294C)+3 种基金National Natural Science Foundation of China(Nos.22261142666,52372225,52172237,22305191)the Shaanxi Science Fund for Distinguished Young Scholars(No.2022JC-21)the Research Fund of the State Key Laboratory of Solidification Processing(NPU)China(No.2021-QZ-02).
文摘The stability of perovskite solar cells(PSCs)is adversely affected by nonradiative recombination resulting from buried interface defects.Herein,we synthesize a polyionic liquid,poly(p-vinylbenzyl trimethylam-monium hexafluorophosphate)(PTA),and introduce it into the buried interface of PSCs.The quaternary ammonium cation(N(-CH_(3))^(3+))in PTA can fill the vacancies of organic cations within the perovskite structure and reduce shallow energy level defects.Additionally,the hexafluorophosphate(PF6−)in PTA forms a Lewis acid-base interaction with Pb^(2+)in the perovskite layer,effectively passivating deep en-ergy level defects.Furthermore,hydrogen bonding can be established between organic cations and the PF6−anion,preventing the formation of shallow energy level defects.Through this synergistic mecha-nism,the deep and shallow energy level defects are effectively mitigated,resulting in improved device performance.As a result,the resulting treated inverted PSC exhibits an impressive power conversion ef-ficiency(PCE)of 24.72%.Notably,the PTA-treated PSCs exhibit remarkable stability,with 88.5%of the original PCE retained after undergoing heat aging at 85℃ for 1078 h,and 89.1%of the initial PCE main-tained following continuous exposure to light for 1100 h at the maximum power point.Synergistically suppressing multiple defects at the buried interface through the use of polyionic liquids is a promising way to improve the commercial viability of PSCs.