This paper considers the task of evaluating micro-accelerations arising due to the temperature shock of large elastic elements when a small spacecraft leaves the Earth’s shadow.In this case, a one-dimensional model o...This paper considers the task of evaluating micro-accelerations arising due to the temperature shock of large elastic elements when a small spacecraft leaves the Earth’s shadow.In this case, a one-dimensional model of thermal conductivity is used. Its solution wasobtained by the method of direct approximation with the construction of differenceschemes. It is shown that the accuracy of estimating micro-accelerations is commensurate with the accuracy of solving by a three-dimensional model of thermal conductivity.The proposed model allows reducing the time to obtain estimates and significantly simplifies the task at hand. The results of the work can be used in the formation of thedynamic characteristics of a small spacecraft for technological purposes.展开更多
文摘This paper considers the task of evaluating micro-accelerations arising due to the temperature shock of large elastic elements when a small spacecraft leaves the Earth’s shadow.In this case, a one-dimensional model of thermal conductivity is used. Its solution wasobtained by the method of direct approximation with the construction of differenceschemes. It is shown that the accuracy of estimating micro-accelerations is commensurate with the accuracy of solving by a three-dimensional model of thermal conductivity.The proposed model allows reducing the time to obtain estimates and significantly simplifies the task at hand. The results of the work can be used in the formation of thedynamic characteristics of a small spacecraft for technological purposes.