期刊文献+
共找到757篇文章
< 1 2 38 >
每页显示 20 50 100
Automatic recognition of sonar targets using feature selection in micro-Doppler signature 被引量:2
1
作者 Abbas Saffari Seyed-Hamid Zahiri Mohammad Khishe 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期58-71,共14页
Currently,the use of intelligent systems for the automatic recognition of targets in the fields of defence and military has increased significantly.The primary advantage of these systems is that they do not need human... Currently,the use of intelligent systems for the automatic recognition of targets in the fields of defence and military has increased significantly.The primary advantage of these systems is that they do not need human participation in target recognition processes.This paper uses the particle swarm optimization(PSO)algorithm to select the optimal features in the micro-Doppler signature of sonar targets.The microDoppler effect is referred to amplitude/phase modulation on the received signal by rotating parts of a target such as propellers.Since different targets'geometric and physical properties are not the same,their micro-Doppler signature is different.This Inconsistency can be considered a practical issue(especially in the frequency domain)for sonar target recognition.Despite using 128-point fast Fourier transform(FFT)for the feature extraction step,not all extracted features contain helpful information.As a result,PSO selects the most optimum and valuable features.To evaluate the micro-Doppler signature of sonar targets and the effect of feature selection on sonar target recognition,the simplest and most popular machine learning algorithm,k-nearest neighbor(k-NN),is used,which is called k-PSO in this paper because of the use of PSO for feature selection.The parameters measured are the correct recognition rate,reliability rate,and processing time.The simulation results show that k-PSO achieved a 100%correct recognition rate and reliability rate at 19.35 s when using simulated data at a 15 dB signal-tonoise ratio(SNR)angle of 40°.Also,for the experimental dataset obtained from the cavitation tunnel,the correct recognition rate is 98.26%,and the reliability rate is 99.69%at 18.46s.Therefore,the k-PSO has an encouraging performance in automatically recognizing sonar targets when using experimental datasets and for real-world use. 展开更多
关键词 micro-doppler signature Automatic recognition Feature selection K-NN PSO
在线阅读 下载PDF
Modeling simulation and experiment of micro-Doppler signature of precession 被引量:2
2
作者 Hongwei Gao Lianggui Xie Shuliang Wen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期544-549,共6页
Spatial precession is a special micro-motion of the spinning-directional target, and the micro-Doppler signature of the cone-shaped target with precession is studied. The micro-motion model of precession is built firs... Spatial precession is a special micro-motion of the spinning-directional target, and the micro-Doppler signature of the cone-shaped target with precession is studied. The micro-motion model of precession is built first, and then the micro-Doppler model is developed based on the proposed concept of micro-motion ma- trix, by which the theoretical formula of micro-Doppler signature of precession is derived. In order to further approach to the actual case, the occlusion effect is firstly considered in micro-Doppler, and the simulated result with occlusion effect is well in accordance with the measured result in microwave anechoic chamber, which suggests that the micro-motion model and micro-Doppler model of precession are both valid. 展开更多
关键词 PRECESSION micro-doppler micro-motion matrix occlusion effect.
在线阅读 下载PDF
DETECTION ON MICRO-DOPPLER EFFECT BASED ON LASER COHERENT RADAR 被引量:3
3
作者 SunYang ZhangJun 《Journal of Electronics(China)》 2012年第1期56-61,共6页
A laser coherent detection system of 1550 nm wavelength was presented, and experimen- tal research on detecting micro-Doppler effect in a dynamic target was developed. In the study, the return signal in the time domai... A laser coherent detection system of 1550 nm wavelength was presented, and experimen- tal research on detecting micro-Doppler effect in a dynamic target was developed. In the study, the return signal in the time domain is decomposed into a set of components in different wavelet scales by multi-resolution wavelet analysis, and the components are associated with the vibrational motions in a target. Then micro-Doppler signatures are extracted by applying the reconstruction. During the course of the final data processing frequency analysis and time-frequency analysis are applied to analyze the vibrationM signals and estimate the motion parameters successfully. The experimental results indicate that the system can effectively detect micro-Doppler information in a moving target, and the tiny vibrational signatures also can be acquired effectively by wavelet multi-resolution analy- sis and time-frequency analysis. 展开更多
关键词 micro-doppler effect Laser coherent radar Multi-resolution analysis Time-frequencyanalysis
在线阅读 下载PDF
Parity recognition of blade number and manoeuvre intention classification algorithm of rotor target based on micro-Doppler features using CNN 被引量:5
4
作者 WANG Wantian TANG Ziyue +1 位作者 CHEN Yichang SUN Yongjian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期884-889,共6页
This paper proposes a parity recognition of blade number and manoeuvre intention classification algorithm of rotor target based on the convolutional neural network(CNN) using micro Doppler features. Firstly, the time-... This paper proposes a parity recognition of blade number and manoeuvre intention classification algorithm of rotor target based on the convolutional neural network(CNN) using micro Doppler features. Firstly, the time-frequency spectrograms are acquired from the radar echo by the short-time Fourier transform.Secondly, based on the obtained spectrograms, a seven-layer CNN architecture is built to recognize the blade-number parity and classify the manoeuvre intention of the rotor target. The constructed architecture contains a leaky rectified linear unit and a dropout layer to accelerate the convergence of the architecture and avoid over-fitting. Finally, the spectrograms of the datasets are divided into three different ratios, i.e., 20%, 33% and 50%,and the cross validation is used to verify the effectiveness of the constructed CNN architecture. Simulation results show that, on the one hand, as the ratio of training data increases, the recognition accuracy of parity and manoeuvre intention is improved at the same signal-to-noise ratio(SNR);on the other hand, the proposed algorithm also has a strong robustness: the accuracy can still reach 90.72% with an SNR of – 6 dB. 展开更多
关键词 micro-doppler convolutional neural network(CNN) parity recognition of blade number manoeuvre intention classification
在线阅读 下载PDF
Parameter estimation for rigid body after micro-Doppler removal based on L-statistics in the radar analysis 被引量:2
5
作者 Yong Wang Jian Kang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期457-467,共11页
In traditional inverse synthetic aperture radar (ISAR) imaging of moving targets with rotational parts, the micro-Doppler (m-D) effects caused by the rotational parts influence the quality of the radar images. Rec... In traditional inverse synthetic aperture radar (ISAR) imaging of moving targets with rotational parts, the micro-Doppler (m-D) effects caused by the rotational parts influence the quality of the radar images. Recently, L. Stankovic proposed an m-D removal method based on L-statistics, which has been proved effective and simple. The algorithm can extract the m-D effects according to different behaviors of signals induced by rotational parts and rigid bodies in time-frequency (T-F) domain. However, by removing m-D effects, some useful short time Fourier transform (STFT) samples of rigid bodies are also extracted, which induces the side lobe problem of rigid bodies. A parameter estimation method for rigid bodies after m-D removal is proposed, which can accurately re- cover rigid bodies and avoid the side lobe problem by only using m-D removal. Simulations are given to validate the effectiveness of the proposed method. 展开更多
关键词 parameter estimation L-STATISTICS micro-doppler (m-D) radar imaging.
在线阅读 下载PDF
Micro-Doppler feature extraction of micro-rotor UAV under the background of low SNR 被引量:5
6
作者 HE Weikun SUN Jingbo +1 位作者 ZHANG Xinyun LIU Zhenming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第6期1127-1139,共13页
Micro-Doppler feature extraction of unmanned aerial vehicles(UAVs)is important for their identification and classification.Noise and the motion state of the UAV are the main factors that may affect feature extraction ... Micro-Doppler feature extraction of unmanned aerial vehicles(UAVs)is important for their identification and classification.Noise and the motion state of the UAV are the main factors that may affect feature extraction and estimation precision of the micro-motion parameters.The spectrum of UAV echoes is reconstructed to strengthen the micro-motion feature and reduce the influence of the noise on the condition of low signal to noise ratio(SNR).Then considering the rotor rate variance of UAV in the complex motion state,the cepstrum method is improved to extract the rotation rate of the UAV,and the blade length can be intensively estimated.The experiment results for the simulation data and measured data show that the reconstruction of the spectrum for the UAV echoes is helpful and the relative mean square root error of the rotating speed and blade length estimated by the proposed method can be improved.However,the computation complexity is higher and the heavier computation burden is required. 展开更多
关键词 micro-rotor unmanned aerial vehicle(UAV) low signal to noise ratio(SNR) micro-doppler feature extraction parameter estimation
在线阅读 下载PDF
Micro-Doppler Parameter Estimation Method Based on Compressed Sensing 被引量:1
7
作者 Jiayun Chang Xiongjun Fu +1 位作者 Wen Jiang Min Xie 《Journal of Beijing Institute of Technology》 EI CAS 2019年第2期286-295,共10页
A micro-Doppler parameter estimation method based on compressed sensing theory is proposed in this paper.The micro-Doppler parameter estimation algorithm was improved for micro-motion targets with translation in this ... A micro-Doppler parameter estimation method based on compressed sensing theory is proposed in this paper.The micro-Doppler parameter estimation algorithm was improved for micro-motion targets with translation in this paper.Relatively ideal micro-Doppler parameter estimation results were obtained.The proposed micro-Doppler parameter estimation was compared with the traditional micro-Doppler parameter estimation algorithm.Requirements for return signal length were analyzed with this new algorithm and its performance was also analyzed in various environments with different SNR. 展开更多
关键词 FEATURE EXTRACTION compressed SENSING micro-doppler PARAMETER ESTIMATION
在线阅读 下载PDF
Particle swarm optimization for rigid body reconstruction after micro-Doppler removal in radar analysis 被引量:2
8
作者 LI Hongzhi WANG Yong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第3期488-499,共12页
The rotating micro-motion parts produce micro-Doppler(m-D)effects which severely influence the quality of inverse synthetic aperture radar(ISAR)imaging for complex moving targets.Recently,a method based on short-time ... The rotating micro-motion parts produce micro-Doppler(m-D)effects which severely influence the quality of inverse synthetic aperture radar(ISAR)imaging for complex moving targets.Recently,a method based on short-time Fourier transform(STFT)and L-statistics to remove m-D effects is proposed,which can separate the rigid body parts from interferences introduced by rotating parts.However,during the procedure of removing m-D parts,the useful data of the rigid body parts are also removed together with the m-D interferences.After summing the rest STFT samples,the result will be affected.A novel method is proposed to recover the missing values of the rigid body parts by the particle swarm optimization(PSO)algorithm.For PSO,each particle corresponds to a possible phase estimation of the missing values.The best particle is selected which has the minimal energy of the side lobes according to the best fitness value of particles.The simulation and measured data results demonstrate the effectiveness of the proposed method. 展开更多
关键词 micro-doppler(m-D) inverse synthetic aperture radar(ISAR) L-STATISTICS particle swarm optimization(PSO)
在线阅读 下载PDF
Micro-Doppler effect testing technique for attitude of projectile in space flight
9
作者 张万君 吴晓颖 +2 位作者 张晓炜 牛敏杰 冷雪冰 《Journal of Beijing Institute of Technology》 EI CAS 2013年第3期350-353,共4页
To measure projectile attitude in space flight, based on continuous wave (CW) radar, a new micro-Doppler effect testing technique is developed in this paper. It also establishes radar testing model for attitude of f... To measure projectile attitude in space flight, based on continuous wave (CW) radar, a new micro-Doppler effect testing technique is developed in this paper. It also establishes radar testing model for attitude of flying projectile and resolve micro-Doppler effect of projectile motion attitude. By distinguishing and geting attitude parameters such as micro-motion period, this technique can in- tuitively estimate the flight stability of projectile, and the validity of this technique is proved accord- ing to flight tests. 展开更多
关键词 attitude of projectile micro-doppler radar testing target micro-motion
在线阅读 下载PDF
Convex Optimization-Based Rotation Parameter Estimation Using Micro-Doppler
10
作者 Kyungwoo Yoo Joohwan Chun +1 位作者 Seungoh Yoo Chungho Ryu 《Journal of Electrical Engineering》 2016年第4期157-164,共8页
We present a novel algorithm that can determine rotation-related parameters of a target using FMCW (frequency modulated continuous wave) radars, not utilizing inertia information of the target. More specifically, th... We present a novel algorithm that can determine rotation-related parameters of a target using FMCW (frequency modulated continuous wave) radars, not utilizing inertia information of the target. More specifically, the proposed algorithm estimates the angular velocity vector of a target as a function of time, as well as the distances of scattering points in the wing tip from the rotation axis, just by analyzing Doppler spectrograms obtained from three or more radars. The obtained parameter values will be useful to classify targets such as hostile warheads or missiles for real-time operation, or to analyze the trajectory of targets under test for the instrumentation radar operation. The proposed algorithm is based on the convex optimization to obtain the rotation-related parameters. The performance of the proposed algorithm is assessed through Monte Carlo simulations. Estimation performance of the proposed algorithm depends on the target and radar geometry and improves as the number of iterations of the convex optimization steps increases. 展开更多
关键词 micro-doppler FMCW radar STFT (short-time Fourier transform) convex optimization rotation parameter.
在线阅读 下载PDF
Detection of Abnormal Cardiac Rhythms Using Feature Fusion Technique with Heart Sound Spectrograms
11
作者 Saif Ur Rehman Khan Zia Khan 《Journal of Bionic Engineering》 2025年第4期2030-2049,共20页
A heart attack disrupts the normal flow of blood to the heart muscle,potentially causing severe damage or death if not treated promptly.It can lead to long-term health complications,reduce quality of life,and signific... A heart attack disrupts the normal flow of blood to the heart muscle,potentially causing severe damage or death if not treated promptly.It can lead to long-term health complications,reduce quality of life,and significantly impact daily activities and overall well-being.Despite the growing popularity of deep learning,several drawbacks persist,such as complexity and the limitation of single-model learning.In this paper,we introduce a residual learning-based feature fusion technique to achieve high accuracy in differentiating abnormal cardiac rhythms heart sound.Combining MobileNet with DenseNet201 for feature fusion leverages MobileNet lightweight,efficient architecture with DenseNet201,dense connections,resulting in enhanced feature extraction and improved model performance with reduced computational cost.To further enhance the fusion,we employed residual learning to optimize the hierarchical features of heart abnormal sounds during training.The experimental results demonstrate that the proposed fusion method achieved an accuracy of 95.67%on the benchmark PhysioNet-2016 Spectrogram dataset.To further validate the performance,we applied it to the BreakHis dataset with a magnification level of 100X.The results indicate that the model maintains robust performance on the second dataset,achieving an accuracy of 96.55%.it highlights its consistent performance,making it a suitable for various applications. 展开更多
关键词 Cardiac rhythms Feature fusion Residual learning BreakHis spectrogram sound
在线阅读 下载PDF
Research on data diagnosis method of acoustic array sensor device based on spectrogram 被引量:4
12
作者 Xing Lei Hang Ji +3 位作者 Qiang Xu Ting Ye Shengfu Zhang Chengjun Huang 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期418-433,共16页
Acoustic array sensor device for partial discharge detection is widely used in power equipment inspection with the advantages of non-contact and precise positioning compared with partial discharge detection methods su... Acoustic array sensor device for partial discharge detection is widely used in power equipment inspection with the advantages of non-contact and precise positioning compared with partial discharge detection methods such as ultrasonic method and pulse current method.However,due to the sensitivity of the acoustic array sensor and the influence of the equipment operation site interference,the acoustic array sensor device for partial discharge type diagnosis by phase resolved partial discharge(PRPD)map might occasionally presents incorrect results,thus affecting the power equipment operation and maintenance strategy.The acoustic array sensor detection device for power equipment developed in this paper applies the array design model of equal-area multi-arm spiral with machine learning fast fourier transform clean(FFT-CLEAN)sound source localization identification algorithm to avoid the interference factors in the noise acquisition system using a single microphone and conventional beam forming algorithm,improves the spatial resolution of the acoustic array sensor device,and proposes an acoustic array sensor device based on the acoustic spectrogram.The analysis and diagnosis method of discharge type of acoustic array sensor device can effectively reduce the system misjudgment caused by factors such as the resolution of the acoustic imaging device and the time domain pulse of the digital signal,and reduce the false alarm rate of the acoustic array sensor device.The proposed method is tested by selecting power cables as the object,and its effectiveness is proved by laboratory verification and field verification. 展开更多
关键词 Acoustic array sensor device Acoustic spectrogram Partial discharge Power equipment False alarm rate
在线阅读 下载PDF
User Recognition System Based on Spectrogram Image Conversion Using EMG Signals 被引量:2
13
作者 Jae Myung Kim Gyu Ho Choi +1 位作者 Min-Gu Kim Sung Bum Pan 《Computers, Materials & Continua》 SCIE EI 2022年第7期1213-1227,共15页
Recently,user recognitionmethods to authenticate personal identity has attracted significant attention especially with increased availability of various internet of things(IoT)services through fifth-generation technol... Recently,user recognitionmethods to authenticate personal identity has attracted significant attention especially with increased availability of various internet of things(IoT)services through fifth-generation technology(5G)based mobile devices.The EMG signals generated inside the body with unique individual characteristics are being studied as a part of nextgeneration user recognition methods.However,there is a limitation when applying EMG signals to user recognition systems as the same operation needs to be repeated while maintaining a constant strength of muscle over time.Hence,it is necessary to conduct research on multidimensional feature transformation that includes changes in frequency features over time.In this paper,we propose a user recognition system that applies EMG signals to the short-time fourier transform(STFT),and converts the signals into EMG spectrogram images while adjusting the time-frequency resolution to extract multidimensional features.The proposed system is composed of a data pre-processing and normalization process,spectrogram image conversion process,and final classification process.The experimental results revealed that the proposed EMG spectrogram image-based user recognition system has a 95.4%accuracy performance,which is 13%higher than the EMGsignal-based system.Such a user recognition accuracy improvement was achieved by using multidimensional features,in the time-frequency domain. 展开更多
关键词 EMG user recognition spectrogram CNN
在线阅读 下载PDF
Continuous frequency and phase spectrograms: a study of their 2D and 3D capabilities and application to musical signal analysis 被引量:1
14
作者 Laurent NAVARRO Guy COURBEBAISSE Jean-Charles PINOLI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第2期199-206,共8页
A new lighting and enlargement on phase spectrogram (PS) and frequency spectrogram (FS) is presented in this paper. These representations result from the coupling of power spectrogram and short time Fourier transf... A new lighting and enlargement on phase spectrogram (PS) and frequency spectrogram (FS) is presented in this paper. These representations result from the coupling of power spectrogram and short time Fourier transform (STFT). The main contribution is the construction of the 3D phase spectrogram (3DPS) and the 3D frequency spectrogram (3DFS). These new tools allow such specific test signals as small slope linear chirp, phase jump case of musical signal analysis is reported. The main objective is to and small frequency jump to be analyzed. An application detect small frequency and phase variations in order to characterize each type of sound attack without losing the amplitude information given by power spectrogram 展开更多
关键词 Frequency spectrogram (FS) Phase spectrogram (PS) Time-frequency representations Musical signals
在线阅读 下载PDF
Health Monitoring of Milling Tool Inserts Using CNN Architectures Trained by Vibration Spectrograms 被引量:2
15
作者 Sonali S.Patil Sujit S.Pardeshi Abhishek D.Patange 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期177-199,共23页
In-process damage to a cutting tool degrades the surface􀀀nish of the job shaped by machining and causes a signi􀀀cant􀀀nancial loss.This stimulates the need for Tool Condition Monitoring(TCM)t... In-process damage to a cutting tool degrades the surface􀀀nish of the job shaped by machining and causes a signi􀀀cant􀀀nancial loss.This stimulates the need for Tool Condition Monitoring(TCM)to assist detection of failure before it extends to the worse phase.Machine Learning(ML)based TCM has been extensively explored in the last decade.However,most of the research is now directed toward Deep Learning(DL).The“Deep”formulation,hierarchical compositionality,distributed representation and end-to-end learning of Neural Nets need to be explored to create a generalized TCM framework to perform eciently in a high-noise environment of cross-domain machining.With this motivation,the design of dierent CNN(Convolutional Neural Network)architectures such as AlexNet,ResNet-50,LeNet-5,and VGG-16 is presented in this paper.Real-time spindle vibrations corresponding to healthy and various faulty con􀀀gurations of milling cutter were acquired.This data was transformed into the time-frequency domain and further processed by proposed architectures in graphical form,i.e.,spectrogram.The model is trained,tested,and validated considering dierent datasets and showcased promising results. 展开更多
关键词 Milling tool inserts health monitoring vibration spectrograms deep learning convolutional neural network
在线阅读 下载PDF
基于WGAN-div和CNN的毫米波雷达人体动作识别方法
16
作者 李秋生 钟滢洁 《贵州师范大学学报(自然科学版)》 北大核心 2025年第5期23-33,共11页
针对基于毫米波雷达的人体动作识别数据集规模小导致的模型过拟合问题,提出一种基于Wasserstein散度生成对抗网络(WGAN-div)与卷积神经网络(CNN)的联合识别方法。首先,通过搭建毫米波雷达平台采集人体动作的雷达回波数据,经预处理生成... 针对基于毫米波雷达的人体动作识别数据集规模小导致的模型过拟合问题,提出一种基于Wasserstein散度生成对抗网络(WGAN-div)与卷积神经网络(CNN)的联合识别方法。首先,通过搭建毫米波雷达平台采集人体动作的雷达回波数据,经预处理生成微多普勒时频谱图;其次,利用WGAN-div模型学习时频谱图特征分布,生成高质量扩充数据以缓解数据不足;最后,构建浅层CNN模型实现动作分类。实验结果表明,所提方法在6类人体动作识别任务中准确率达98.17%,较深度卷积生成对抗网络(DCGAN)和带梯度惩罚的Wasserstein生成对抗网络(WGAN-gp)分别提升1.67%和0.87%。该方法通过取消Lipschitz约束优化生成质量,有效解决了小样本场景下的识别性能下降问题,为雷达数据增强与动作识别提供了一种新思路。 展开更多
关键词 毫米波雷达 人体动作识别 Wasserstein散度生成对抗网络 卷积神经网络 小样本学习 微多普勒时频谱 雷达数据增强
在线阅读 下载PDF
基于改进EfficientNet的煤矸音频分类方法 被引量:1
17
作者 宋庆军 焦守悦 +2 位作者 姜海燕 宋庆辉 郝文超 《工矿自动化》 北大核心 2025年第1期138-144,共7页
针对煤矸音频特征提取过程中设备运行噪声干扰严重及单一提取方法易导致信息丢失的问题,提出了一种基于改进EfficientNet的煤矸音频分类方法。采用基于Mel频谱和Gammatone倒谱系数的特征提取方法,有效捕捉矸石声音中的低频信息和细节特... 针对煤矸音频特征提取过程中设备运行噪声干扰严重及单一提取方法易导致信息丢失的问题,提出了一种基于改进EfficientNet的煤矸音频分类方法。采用基于Mel频谱和Gammatone倒谱系数的特征提取方法,有效捕捉矸石声音中的低频信息和细节特征。选择EfficientNet-B0作为骨干网络,并对其进行以下改进:将原有的多尺度通道注意力模块换成卷积块注意力模块,得到卷积注意力特征融合(CAFF)模块,通过网络自学习为不同空间位置的特征分配不同的权重信息,生成新的有效特征;在原有的MBConv模块中并行嵌入频域通道注意力(FCA)模块,加强特征图的表达能力,从而提高整个网络的性能。实验结果表明:引入CAFF模块后,模型准确率提升了0.61%,F1得分提升了0.52%,且模型收敛更快,说明CAFF模块有效提升了模型对频谱特征的捕捉能力;引入FCA模块后,准确率提升了0.45%,F1得分提升了0.62%,说明模块的叠加可以进一步提高模型的泛化能力和处理复杂特征的能力;改进EfficientNe模型的准确率为91.90%,标准差为0.108,显著优于同类对比音频分类模型。 展开更多
关键词 综放开采 煤矸识别 音频特征提取 EfficientNet Mel频谱特征 Gammatone倒谱系数 注意力机制
在线阅读 下载PDF
Omnidirectional Human Behavior Recognition Method Based on Frequency-Modulated Continuous-Wave Radar
18
作者 SUN Chang WANG Shaohong LIN Yanping 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期637-645,共9页
Frequency-modulated continuous-wave radar enables the non-contact and privacy-preserving recognition of human behavior.However,the accuracy of behavior recognition is directly influenced by the spatial relationship be... Frequency-modulated continuous-wave radar enables the non-contact and privacy-preserving recognition of human behavior.However,the accuracy of behavior recognition is directly influenced by the spatial relationship between human posture and the radar.To address the issue of low accuracy in behavior recognition when the human body is not directly facing the radar,a method combining local outlier factor with Doppler information is proposed for the correction of multi-classifier recognition results.Initially,the information such as distance,velocity,and micro-Doppler spectrogram of the target is obtained using the fast Fourier transform and histogram of oriented gradients-support vector machine methods,followed by preliminary recognition.Subsequently,Platt scaling is employed to transform recognition results into confidence scores,and finally,the Doppler-local outlier factor method is utilized to calibrate the confidence scores,with the highest confidence classifier result considered as the recognition outcome.Experimental results demonstrate that this approach achieves an average recognition accuracy of 96.23%for comprehensive human behavior recognition in various orientations. 展开更多
关键词 frequency-modulated continuous-wave radar omnidirectional human behavior recognition histogram of oriented gradients support vector machine micro-doppler spectrogram Doppler-local outlier factor
原文传递
基于声纹脊线化和元学习的变压器故障诊断方法
19
作者 曲朝阳 刘谊豪 +2 位作者 曲楠 姜涛 徐晓宇 《电力系统保护与控制》 北大核心 2025年第13期163-174,共12页
针对变压器声纹检测中信号易受干扰且足量样本获取困难的问题,提出一种融合声纹脊线化与元学习的变压器声纹诊断方法。首先,基于脊线化特征处理,对优化后的变压器声纹时频谱图进行物理特征筛选与形态特征压缩。然后,搭建选择性编码器(se... 针对变压器声纹检测中信号易受干扰且足量样本获取困难的问题,提出一种融合声纹脊线化与元学习的变压器声纹诊断方法。首先,基于脊线化特征处理,对优化后的变压器声纹时频谱图进行物理特征筛选与形态特征压缩。然后,搭建选择性编码器(selective encoder, SE)加深时频与形态表征的关联度,提升模型收敛速度。最后,构造元学习网络评估变压器状态,并引入基于OD-Reptile的一阶梯度更新策略,通过内外循环优化机制增强参数泛化性,从而实现少样本、信息干扰条件下的高精度声纹诊断。相较于R-WDCNN、LSTM、CNN等传统深度学习信号诊断方法,该方法在低样本、高噪声环境下(SNR为-12 dB),收敛轮数减少10轮以上。同时,准确率分别提高6.35%,12.1%和16.93%。实验结果显示,所提方法在准确性、抗噪性、鲁棒性以及泛化性方面均有显著提升。 展开更多
关键词 声纹 小样本 脊线化 时频谱图 选择性编码 元学习 故障诊断
在线阅读 下载PDF
基于声谱图和卷积神经网络的磁暴图像识别
20
作者 李鸿宇 孙君嵩 +2 位作者 王丽 杨杰 赵雨馨 《空间科学学报》 北大核心 2025年第4期943-949,共7页
磁暴是一种重要的地磁场扰动类型,影响着通信、电力和航空航天等领域,因此对磁暴识别技术进行研究与创新有助于磁暴信息的应用.基于2010-2023年12个定点地磁观测水平分量分钟值数据,采用声谱图成像技术,运用VGG19卷积神经网络模型开展... 磁暴是一种重要的地磁场扰动类型,影响着通信、电力和航空航天等领域,因此对磁暴识别技术进行研究与创新有助于磁暴信息的应用.基于2010-2023年12个定点地磁观测水平分量分钟值数据,采用声谱图成像技术,运用VGG19卷积神经网络模型开展磁暴日和磁静日人工智能图像分类研究.实验结果显示,模型的准确率为97.41%,精确率为98.00%,召回率为96.80%,模型的预测能力较好,这表明声谱图成像技术在图像识别分类问题中具有较高的实用性,且VGG19卷积神经网络模型用于磁暴日和磁静日地磁分类的可行性较高,研究结果为磁暴预警与监测提供了新的思路. 展开更多
关键词 地磁 磁暴 声谱图 卷积神经网络 图像分类
在线阅读 下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部