期刊文献+
共找到125,910篇文章
< 1 2 250 >
每页显示 20 50 100
Optimizing Magnetic Performance and Microstructure of CoPt Nanoparticles by Sol-Gel Synthesis
1
作者 WANG Xinchi WANG Wei +2 位作者 LIU Shuai WANG Yun LI Baohe 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期8-14,共7页
We prepared Co_(x)Pt_(100-x)(x=40,45,50,55,60)nanoparticles by the sol-gel method.The phase composition and crystal structure,morphology and microstructure,and magnetic properties of the samples were characterized and... We prepared Co_(x)Pt_(100-x)(x=40,45,50,55,60)nanoparticles by the sol-gel method.The phase composition and crystal structure,morphology and microstructure,and magnetic properties of the samples were characterized and tested using X-ray diffraction(XRD),transmission electron microscopy(TEM),and vibrating sample magnetometer(VSM),respectively.The results demonstrate that the coercivity of CoPt nanoparticles can be effectively controlled by adjusting the atomic ratio of Co and Pt in the samples.Among the compositions studied,the Co_(45)Pt_(55)sample synthesized by the sol-gel method exhibits smaller grain size and a coercivity as high as 6.65×10^(5) A/m is achieved.The morphology and microstructure of the nanoparticles were analyzed by TEM images,indicating that a slight excess of Pt can effectively enhance the coercivity of CoPt nanoparticles. 展开更多
关键词 COPT sol-gel method atomic ratio magnetic nanoparticles COERCIVITY
原文传递
Cerium oxide-coated mesoporous silica nanoparticles delivering short-chain fatty acids: Regulating gut microbiota and JUNB expression for preventing and treating preeclampsia
2
作者 Xue Ying Zhi Li +5 位作者 Weidong Fei Yao Yao Jia Xu Hetong Li Lujiao Chen Peiyue Jiang 《Nano Research》 2026年第1期780-798,共19页
Preeclampsia(PE)poses a significant threat to maternal and fetal health,characterized by hypertension during pregnancy.This study investigates a promising approach to combat PE utilizing nanotechnology for the targete... Preeclampsia(PE)poses a significant threat to maternal and fetal health,characterized by hypertension during pregnancy.This study investigates a promising approach to combat PE utilizing nanotechnology for the targeted delivery of short-chain fatty acids.By leveraging a sol-gel method and chemical deposition,cerium oxide-coated mesoporous silica nanoparticles loaded with sodium butyrate(CeO_(2)@MSN@SB)were synthesized.The innovative strategy focuses on modulating gut microbiota and JunB proto-oncogene(JUNB)gene expression to induce macrophage M2 polarization and facilitate vascular remodeling.Evaluation in PE mouse models revealed that CeO_(2)@MSN@SB effectively improved blood pressure,urinary protein levels,placental function,and gut microbiota composition.Furthermore,the nanoparticles exhibited the ability to regulate key genes related to angiogenesis and inflammation,notably JUNB,leading to enhanced macrophage M2 polarization,trophoblast functionality,and vascular restructuring.These findings highlight that the application of nanotechnology holds potential to advance PE prevention and therapy. 展开更多
关键词 PREECLAMPSIA short-chain fatty acids macrophage polarization vascular remodeling mesoporous silica nanoparticles
原文传递
Improving Efficiency of Light Pressure Electric Generator Using Graphene Oxide Nanospacer Between Ag Nanoparticles
3
作者 Ha Young Lee Sung-Hyun Kim +3 位作者 Sun-Lyeong Hwang Hyung Soo Ahn Heedae Kim Sam Nyung Yi 《Carbon Energy》 2026年第1期38-47,共10页
Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic struct... Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic structure light pressure electric generator(Basic-LPEG),which utilized a layered configuration of Ag/Pb(Zr,Ti)O_(3)(PZT)/Pt/GaAs to generate electricity based on light-induced pressure on the PZT.In this study,we sought to enhance the performance of this Basic-LPEG by introducing Ag nanoparticles/graphene oxide(AgNPs/GO)composite units(NP-LPEG),creating upgraded harvesting device.Specifically,by depositing the AgNPs/GO units twice onto the Basic-LPEG,we observed an increase in output voltage and current from 241 mV and 3.1μA to 310 mV and 9.3μA,respectively,under a solar simulator.The increase in electrical output directly correlated with the intensity of the light pressure impacting the PZT,as well as matched the Raman measurements,finite-difference time-domain simulations,and COMSOL Multiphysics Simulation.Experimental data revealed that the enhancement in electrical output was proportional to the number of hot spots generated between Ag nanoparticles,where the electric field experienced substantial amplification.These results underline the effectiveness of AgNPs/GO units in boosting the light-induced electric generation capacity,thereby providing a promising pathway for high-efficiency energy harvesting devices. 展开更多
关键词 Ag nanoparticles energy harvesting graphene oxide light pressure PIEZOELECTRIC
在线阅读 下载PDF
A Promising Strategy for Solvent-Regulated Selective Hydrogenation of 5-Hydroxymethylfurfural over Porous Carbon-Supported Ni-ZnO Nanoparticles
4
作者 Rulu Huang Chao Liu +4 位作者 Kaili Zhang Jianchun Jiang Ziqi Tian Yongming Chai Kui Wang 《Nano-Micro Letters》 2026年第1期130-143,共14页
Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via lo... Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via low-temperature coprecipitation,exhibiting excellent performance for the selective hydrogenation of 5-hydroxymethylfurfural(HMF).A linear correlation is first observed between solvent polarity(E_(T)(30))and product selectivity within both polar aprotic and protic solvent classes,suggesting that solvent properties play a vital role in directing reaction pathways.Among these,1,4-dioxane(aprotic)favors the formation of 2,5-bis(hydroxymethyl)furan(BHMF)with 97.5%selectivity,while isopropanol(iPrOH,protic)promotes 2,5-dimethylfuran production with up to 99.5%selectivity.Mechanistic investigations further reveal that beyond polarity,proton-donating ability is critical in facilitating hydrodeoxygenation.iPrOH enables a hydrogen shuttle mechanism where protons assist in hydroxyl group removal,lowering the activation barrier.In contrast,1,4-dioxane,lacking hydrogen bond donors,stabilizes BHMF and hinders further conversion.Density functional theory calculations confirm a lower activation energy in iPrOH(0.60 eV)compared to 1,4-dioxane(1.07 eV).This work offers mechanistic insights and a practical strategy for solvent-mediated control of product selectivity in biomass hydrogenation,highlighting the decisive role of solvent-catalyst-substrate interactions. 展开更多
关键词 Porous carbon-supported Ni-ZnO nanoparticles catalyst Selective hydrogenation 5-HYDROXYMETHYLFURFURAL SOLVENT Proton-donating ability
在线阅读 下载PDF
Reduction of iron oxide nanoparticles by Geobacter sulfurreducens PCA involves outer membrane proteins and secreted redox-active substances
5
作者 Yifan Cui Xiaoyan Zhang +7 位作者 Peijie Yang Yanwei Liu Maoyong Song Yingying Guo Wentao Jiao Yongguang Yin Yong Cai Guibin Jiang 《Journal of Environmental Sciences》 2026年第1期767-774,共8页
Fe reducing bacteria(FRB),through extracellular electron transfer(EET)pathway,can reduce Fe(III)nanoparticles,thereby affecting the migration,transformation,and degradation of pollutants.However,the interaction of Fe(... Fe reducing bacteria(FRB),through extracellular electron transfer(EET)pathway,can reduce Fe(III)nanoparticles,thereby affecting the migration,transformation,and degradation of pollutants.However,the interaction of Fe(III)nanoparticles with the most commonly identified FRB,Geobacter sulfurreducens PCA,remains poorly understood.Herein,we demonstrated that the synergistic role of outer membrane proteins and periplasmic proteins in the EET process for-Fe_(2)O_(3),Fe3O4,and𝛽α-FeOOH nanoparticles by construction of multiple gene knockout strain.oxpG(involved in the type II secretion system)and omcST(outer membrane c-type cytochrome)medi-ated pathways accounted for approximately 67%of the total reduction of𝛼α-Fe_(2)O_(3) nanoparticles.The residual reduction of𝛼α-Fe_(2)O_(3) nanoparticles in∆oxpG-omcST strain was likely caused by redox-active substances in cell supernatant.Conversely,the reduction of dissolved Fe(III)was almost unaffected in∆oxpG-omcST strain at the same concentration.However,at high dissolved Fe(III)concentration,the reduction significantly decreased due to the formation of Fe(III)nanoparticles,suggesting that this EET process is specific to Fe(III)nanoparticles.Overall,our study provided a more comprehensive understanding for the EET pathways between G.sulfurreducens PCA and different Fe(III)species,enriching our knowledge on the role of microorganisms in iron biogeochemical cycles and remediation strategies of pollutants. 展开更多
关键词 microbial Fe(III)reduction Fe(III)nanoparticles Extracellular electron transfer Redox-active substances Geobacter sulfurreducens PCA
原文传递
A neural network-inspired electric field mediated by piezoelectric nanoparticles repolarizes macrophages to potentiate anticancer immunotherapy
6
作者 Fuyu Qi Xiaohong Li +6 位作者 Qi Hu Ruizhu Zheng Hao Wang Maoxu Zhang Xuebin Hu Zhijun Shi Guang Yang 《Nano Research》 2026年第1期938-951,共14页
Repolarizing tumor-associated macrophages(TAMs)toward the proinflammatory M1 phenotype represents a promising strategy to reverse the immunosuppressive tumor microenvironment(TME)and enhance antitumor immunotherapy.Re... Repolarizing tumor-associated macrophages(TAMs)toward the proinflammatory M1 phenotype represents a promising strategy to reverse the immunosuppressive tumor microenvironment(TME)and enhance antitumor immunotherapy.Recent studies have demonstrated that exogenous electrical stimulation can effectively repolarize TAMs toward the M1 phenotype.However,conventional electrical stimulation methods,relying on invasive implanted electrodes,are restricted to targeting localized tumor regions and pose inherent risks to patients.Notably,biological neural networks,distributed systems of interconnected neurons,can naturally permeate tissues and orchestrate cellular activities with high spatial efficiency.Inspired by this natural system,we developed a global in situ electric field network using piezoelectric BaTiO_(3)nanoparticles.Upon ultrasound stimulation,the nanoparticles generate a wireless electric field throughout the TME.In addtion,their nanoscale size enables them to function as synthetic“neurons”,allowing for uniform penetration throughout the tumor tissue and inducing significant repolarization of TAMs via the Ca^(2+)influx-activated nuclear factor-kappa B(NF-κB)signaling pathway.The repolarized M1 TAMs restore anti-tumor immunostimulatory functions and secrete key proinflammatory cytokines(e.g.,tumor necrosis factor-alpha(TNF-α)and interleukin-1 beta(IL-1β)),which enhance immunostimulation within the TME and directly contribute to tumor cell elimination.Remarkably,this strategy achieved robust in vivo tumor growth inhibition with excellent biosafety in a 4T1 breast tumor model.Overall,this work establishes a non-invasive,wireless electric field platform capable of globally repolarizing TAMs,offering a safe and efficient strategy to advance cancer immunotherapy and accelerate the clinical translation of bioelectronic therapies. 展开更多
关键词 piezoelectric nanoparticles wireless electric field macrophages polarization Ca^(2+)influx-activated NF-κB signaling pathway antitumor immunotherapy
原文传递
Microplastics enhance the adsorption capacity of zinc oxide nanoparticles:Interactive mechanisms and influence factors
7
作者 Weiping Xiong Min Hu +8 位作者 Siying He Yuhang Ye Yinping Xiang Haihao Peng Zhaomeng Chen Zhengyong Xu Honglin Zhang Weixiang Li Shudian Peng 《Journal of Environmental Sciences》 2025年第1期665-676,共12页
Microplastics(MPs)are of particular concern due to their ubiquitous occurrence and propensity to interact and concentrate various waterborne contaminants from aqueous surroundings.Studies on the interaction and joint ... Microplastics(MPs)are of particular concern due to their ubiquitous occurrence and propensity to interact and concentrate various waterborne contaminants from aqueous surroundings.Studies on the interaction and joint toxicity of MPs on engineered nanoparticles(ENPs)are exhaustive,but limited research on the effect of MPs on the properties of ENPs in multisolute systems.Here,the effect of MPs on adsorption ability of ENPs to antibiotics was investigated for the first time.The results demonstrated that MPs enhanced the adsorption affinity of ENPs to antibiotics and MPs before and after aging showed different effects on ENPs.Aged polyamide prevented aggregation of ZnONPs by introducing negative charges,whereas virgin polyamide affected ZnONPs with the help of electrostatic attraction.FT-IR and XPS analyses were used to probe the physicochemical interactions between ENPs and MPs.The results showed no chemical interaction and electrostatic interactionwas the dominant force between them.Furthermore,the adsorption rate of antibiotics positively correlated with pH and humic acid but exhibited a negative correlation with ionic strength.Our study highlights that ENPs are highly capable of accumulating and transporting antibiotics in the presence of MPs,which could result in a widespread distribution of antibiotics and an expansion of their environmental risks and toxic effects on biota.It also improves our understanding of the mutual interaction of various co-existing contaminants in aqueous environments. 展开更多
关键词 microplastics Engineered nanoparticles ADSORPTION TETRACYCLINE
原文传递
Nanoparticles-incorporated hydrogel microneedle for biomedical applications:Fabrication strategies,emerging trends and future prospects
8
作者 Zejun Xu Jiaying Chi +12 位作者 Fei Qin Dongyan Liu Yecai Lai Yingxia Bao Ruizhi Guo Yiqiu liao Zhoufan Xie Jieqiong Jiang Juyan Liu Jianfeng Cai Chao Lu Jiansong Wang Chuanbin Wu 《Asian Journal of Pharmaceutical Sciences》 2025年第4期80-100,共21页
Nanoparticles-incorporated hydrogel microneedles(NPs-HMN)have attracted significant attention due to their exceptional biomedical applications.The arrayed needle tips of NPsHMN effectively penetrate the skin or tissue... Nanoparticles-incorporated hydrogel microneedles(NPs-HMN)have attracted significant attention due to their exceptional biomedical applications.The arrayed needle tips of NPsHMN effectively penetrate the skin or tissue,enabling minimally invasive and painless delivery of therapeutic molecules into the tissue microenvironment.This approach has shown significant improvements in bioavailability and patient compliance.Moreover,the functionalized hydrogel materials of NPs-HMN exhibit a three-dimensional network structure resembling the extracellular matrix,along with controllable drug release,exceptional swelling ability,hydrophilicity,and biocompatibility.These characteristics broaden the potential applications of HMN in therapeutic and biosensing contexts.In addition,the incorporation of nanoparticles(NPs)has been shown to improve the solubility of hydrophobic drugs,enhance mechanical properties,enable intelligent drug release,and facilitate precise targeting of HMN.The versatility and diversity of treatment options afforded by NPs-HMN contribute to significant advancements in animal models and clinical settings,as well as offer valuable insights for biomaterial development.This review provides a comprehensive examination of the fabrication strategies of NPs-HMN and their recent advancements in biomedical applications.We also analyze the mechanisms,advantages,challenges,and future prospects of this system in enhancing drug delivery efficiency to provide theoretical references for further breakthroughs in novel delivery platforms. 展开更多
关键词 Hydrogel microneedle nanoparticles Drug delivery BIOSENSING
在线阅读 下载PDF
Intelligent Point‑of‑Care Biosensing Platform Based on Luminescent Nanoparticles and Microfluidic Biochip with Machine Vision Algorithm Analysis
9
作者 Yuan Liu Xinyue Lao +5 位作者 Man‑Chung Wong Menglin Song Yifei Zhao Yingjin Ma Qianqian Bai Jianhua Hao 《Nano-Micro Letters》 2025年第9期237-250,共14页
Realizing the point-of-care tumor markers biodetection with good convenience and high sensitivity possesses great significance for prompting cancer monitoring and screening in biomedical study field.Herein,the quantum... Realizing the point-of-care tumor markers biodetection with good convenience and high sensitivity possesses great significance for prompting cancer monitoring and screening in biomedical study field.Herein,the quantum dots luminescence and microfluidic biochip with machine vision algorithm-based intelligent biosensing platform have been designed and manufactured for point-of-care tumor markers diagnostics.The employed quantum dots with excellent photoluminescent performance are modified with specific antibody as the optical labeling agents for the designed sandwich structure immunoassay.The corresponding biosensing investigations of the designed biodetection platform illustrate several advantages involving high sensitivity(~0.021 ng mL^(−1)),outstanding accessibility,and great integrability.Moreover,related test results of human-sourced artificial saliva samples demonstrate better detection capabilities compared with commercially utilized rapid test strips.Combining these infusive abilities,our elaborate biosensing platform is expected to exhibit potential applications for the future point-of-care tumor markers diagnostic area. 展开更多
关键词 POINT-OF-CARE Luminescent nanoparticles BIOCHIP Machine vision BIOSENSING
在线阅读 下载PDF
Chitosan nanoparticles act as promising carriers of microRNAs to brain cells in neurodegenerative diseases
10
作者 Lian Jin Juan Zhang +3 位作者 Libo Nie Yan Deng Ghulam Jilany Khana Nongyue He 《Chinese Chemical Letters》 2025年第10期397-400,共4页
MicroRNAs(miRNAs)are abundant in the brain and mounting evidence suggests their involvement in the critical processes such as neurodevelopment,synaptic plasticity,and the development of neurodegenerative diseases.Thus... MicroRNAs(miRNAs)are abundant in the brain and mounting evidence suggests their involvement in the critical processes such as neurodevelopment,synaptic plasticity,and the development of neurodegenerative diseases.Thus,miRNAs may be promising therapeutic drugs for the treatment of neurodegenerative disorders.However,naked miRNAs are not able to enter cells directly,especially brain cells.Therefore,suitable carriers for safe and efficient miRNA delivery to brain cells are of great importance.Chitosan nanoparticles,with the excellent properties such as good compatibility and brilliant degradability,may act as a promising carrier for miRNA drug delivery.In this study,chitosan nanoparticles were prepared and their properties such as particle size,zeta potential and encapsulation efficiency were optimized to encapsulate miRNAs.The delivery efficiency of miRNA-loaded nanoparticles was then evaluated in both neuronal and microglia cells.The results demonstrated chitosan nanoparticles encapsulated miRNAs efficiently and showed excellent sustained releasing in vitro.Moreover,chitosan nanoparticles delivered miRNA to both neurons and microglia with very low toxicity and high efficiency.In conclusion,chitosan nanoparticles are promising carriers for the delivery of miRNAs to brain cells,which may be used for the early intervention and treatment of neurodegenerative disorders. 展开更多
关键词 CHITOSAN nanoparticles Drug delivery microRNA Neurodegenerative diseases NEURON microGLIA
原文传递
Long-Term Synergistic Antimicrobial Tannic Acid-Silver Nanoparticles Coating
11
作者 Irina Postnova Valeria Kurilenko Yury Shchipunov 《Journal of Renewable Materials》 2025年第7期1293-1313,共21页
The main objective of the study was to prepare a highly active antimicrobial remedy by combining active agents such as tannic acid and silver nanoparticles,which are usually used separately.This was achieved by applyi... The main objective of the study was to prepare a highly active antimicrobial remedy by combining active agents such as tannic acid and silver nanoparticles,which are usually used separately.This was achieved by applying a coating of 11 alternating layers of an insoluble complex of tannic acid with polyvinyl alcohol on paper by the layerby-layer approach,on the surface of which uniformly distributed spherical silver nanoparticles of uniform size,mainly 20–30 nm,were synthesized by in situ reduction using tannic acid,which also acts as a stabilizer,or an external reducing agent,which prevented polyphenol oxidation.This gave an insight into which form-oxidized or reduced-ismore active against microorganisms.It was shown that sterilization was not required after the coating of the paper with tannic acid and silver nanoparticles.When combined,their activity against the studied bacteria-gram-negative Escherichia coli and gram-positive Staphylococcus aureus,as well as yeast Candida albicans was higher and lasting up to 7 days than when tannic acid and silver nanoparticles were used separately,indicating possible synergism in their action. 展开更多
关键词 Tannic acid PVA silver nanoparticles layer-by-layer COATING paper ANTImicroBIAL
在线阅读 下载PDF
Efficient magnetic capture of PE microplastic from water by PEG modified Fe_(3)O_(4)nanoparticles:Performance,kinetics,isotherms and influence factors
12
作者 Yifan Zhang Jingjing Duan +5 位作者 Ruiqian Liu Evangelos Petropoulos Yanfang Feng Lihong Xue Linzhang Yang Shiying He 《Journal of Environmental Sciences》 2025年第1期677-687,共11页
Due to their resistance to degradation,wide distribution,easy diffusion and potential uptake by organisms,microplastics(MPs)pollution has become a major environmental concern.In this study,PEG-modified Fe_(3)O_(4)magn... Due to their resistance to degradation,wide distribution,easy diffusion and potential uptake by organisms,microplastics(MPs)pollution has become a major environmental concern.In this study,PEG-modified Fe_(3)O_(4)magnetic nanoparticles demonstrated superior adsorption efficiency against polyethylene(PE)microspheres compared to other adsorbents(bare Fe_(3)O_(4),PEI/Fe_(3)O_(4)and CA/Fe_(3)O_(4)).Themaximumadsorption capacity of PEwas found to be 2203 mg/g by adsorption isotherm analysis.PEG/Fe_(3)O_(4)maintained a high adsorption capacity even at low temperature(5℃,2163 mg/g),while neutral pH was favorable for MP adsorption.The presence of anions(Cl^(-),SO_(4)^(2-),HCO_(3)^(-),NO_(3)^(-))and of humic acids inhibited the adsorption of MPs.It is proposed that the adsorption process was mainly driven by intermolecular hydrogen bonding.Overall,the study demonstrated that PEG/Fe_(3)O_(4)can potentially be used as an efficient control against MPs,thus improving the quality of the aquatic environment and of our water resources. 展开更多
关键词 microplastic removal ADSORPTION Magnetic nanoparticles WASTEWATER Surface modification
原文传递
Recyclable thermoplastic armed with copper nanoparticles as integrated sustainable materials for waste recycling and microbial control
13
作者 Liang Zou Nan Du +11 位作者 Cheng-Hao Li Kun-Tong Song Dan-Yang Li Zhi-Qiang Wang Yan-Fang Liu Ji-Li Hou Yuan-Hao Xiao Xiao-Jie Wu Saren Gerile Jing Kang Alideertu Dong Run Xu 《Rare Metals》 2025年第8期5566-5579,共14页
The past several decades witnessed tremendous success in controlling global plastic pollution,but most of these achievements do not involve recycling the plastic waste.Herein,we propose a recycling strategy of using p... The past several decades witnessed tremendous success in controlling global plastic pollution,but most of these achievements do not involve recycling the plastic waste.Herein,we propose a recycling strategy of using polyvinyl chloride(PVC) wastes to remove copper ions(Cu_(2+)) from electroplating wastewater for microbial control during wound healing and food preservation.The PVC wastes were recovered and crosslinked by the assistance of diethylenetriamine(DETA),which offered multiple active sites to extract Cu_(2+)ions from electroplating wastewater and in situ reduce to copper nanoparticles(CuNPs) containing crystalline Cu and Cu_(2)O.The obtained composites(i.e.,PVC-DETA@CuNPs) performed excellent antibacterial efficacies(99.999%) against Escherichia coli(E.coli) by disrupting bacterial cell membranes through contact-killing action and oxidative stress.After a series of biological evaluations on wound mice,PVC-DETA@-CuNPs exhibited promising potential in resisting wound bacterial infection,accelerating the healing process,and promoting epithelial regeneration.Interestingly,PVCDETA@CuNPs film was evidenced to delay the spoilage process of strawberries and extend their shelf life by combating with food-borne pathogens.This study presents a recycling approach towards waste reuse and the development of innovative antibacterial materials for microbial control. 展开更多
关键词 Plastic waste Electroplating wastewater Copper nanoparticles Wound healing Food preservation
原文传递
Selenium nanoparticles biosynthesized by Eurotium cristatum with antimicrobial activity
14
作者 Nanyang Li Yanru Yang +5 位作者 Jianrui Qi Jiahui Li Yifan Cheng Zhao Li Tianli Yue Yahong Yuan 《Food Science and Human Wellness》 2025年第7期2613-2624,共12页
Selenium nanoparticles(SeNPs)are increasingly recognized for their exceptional antibacterial properties.This study aimed to develop a green,safe,and efficient method for the biosynthesis of SeNPs using the fungus Euro... Selenium nanoparticles(SeNPs)are increasingly recognized for their exceptional antibacterial properties.This study aimed to develop a green,safe,and efficient method for the biosynthesis of SeNPs using the fungus Eurotium cristatum,a novel approach in SeNP synthesis.The process yielded(36.40±4.22)mg of SeNPs per liter of 1.2 mmol/L sodium selenite supplementation.These SeNPs exhibited an average diameter of 231.7 nm and a negative charge,and they remained stable when stored at 4℃.Ultraviolet and visible spectrophotometry revealed a maximum absorption peak at 212 nm,suggesting effective nanoparticle formation.Fourier transform infrared spectrometry indicated that proteins and carbohydrates in the mycelium contributed to the SeNP synthesis.Concentrations of SeNPs below 50μg Se/mL did not exhibit cytotoxic effects on the growth and proliferation of human hepatocyte L-02 cells.The minimum inhibitory concentration of SeNPs was found to be 2 mg/mL against both methicillin-resistant Staphylococcus aureus(Gram-positive)and Escherichia coli(Gram-negative).The SeNPs compromised the cellular integrity of test strains,causing leakage of intracellular contents and disruption of the oxidative stress system,leading to irreversible damage.Our results demonstrate the potential of SeNPs biosynthesized by E.cristatum to act as effective antibacterial agents,signifying a novel and promising approach to developing natural antimicrobial solutions. 展开更多
关键词 Eurotium cristatum Selenium nanoparticles Antibacterial mechanism Methicillin-resistant Staphylococcus aureus Escherichia coli
暂未订购
Simultaneous improvement of wear and corrosion resistance of microarc oxidation coatings on ZK61 Mg alloy by doping with ZrO_(2)nanoparticles
15
作者 Chao Yang Chenyu Wang +8 位作者 Zhao Shen Liping Zhou Liyuan Sheng Daokui Xu Yufeng Zheng Paul KChu Shu Xiao Tao Ying Xiaoqin Zeng 《Journal of Materials Science & Technology》 2025年第21期312-327,共16页
The poor corrosion resistance of magnesium(Mg)and its alloys limits their application in various fields.Micro arc oxidation(MAO)coatings can improve the corrosion resistance,but the pore defects and low surface hardne... The poor corrosion resistance of magnesium(Mg)and its alloys limits their application in various fields.Micro arc oxidation(MAO)coatings can improve the corrosion resistance,but the pore defects and low surface hardness make them susceptible to wear and accelerated corrosion during usage.In this study,a ZrO_(2)nanoparticles doped-MAO coating is prepared on the ZK61 Mg alloy by utilizing an MgF_(2)passivation layer to prevent ablation.The ZrO_(2)nanoparticles re-melt and precipitate due to local discharging,which produces evenly dispersed nanocrystals in the MAO coating.As a result,the hardness of the MAO coating with the appropriate ZrO_(2)concentration increases by over 10 times,while the wear rate decreases and corrosion resistance increases.With increasing ZrO_(2)concentrations,the corrosion potentials increase from−1.528 V of the bare ZK61 Mg alloy to−1.184 V,the corrosion current density decreases from 1.065×10^(–4)A cm^(–2)to 3.960×10^(–8)A cm^(–2),and the charge transfer resistance increases from 3.41×10^(2)Ωcm^(2)to 6.782×10^(5)Ωcm^(2).Immersion tests conducted in a salt solution for 28 d reveal minimal corrosion in contrast to severe corrosion on the untreated ZK61 Mg alloy.ZrO_(2)nanoparticles improve the corrosion resistance of MAO coatings by sealing pores and secondary strengthening of the corrosion product layer. 展开更多
关键词 ZK61 Mg alloy micro arc oxidation ZrO_(2)doping MGF2 Wear resistance Corrosion resistance
原文传递
Micropattern of core-shell Ag@MCS/PEGDA nanoparticles fabricated by femtosecond laser maskless optical projection lithography
16
作者 Fan-Chun Bin Xin-Yi Wu +6 位作者 Jie Liu Xian-Zi Dong Teng Li Qi Duan Jian-Miao Zhang Katsumasa Fujita Mei-Ling Zheng 《International Journal of Extreme Manufacturing》 2025年第3期290-302,共13页
Chitosan(CS)-based nanocomposites have been studied in various fields,requiring a more facile and efficient technique to fabricate nanoparticles with customized structures.In this study,Ag@methacrylamide CS/poly(ethyl... Chitosan(CS)-based nanocomposites have been studied in various fields,requiring a more facile and efficient technique to fabricate nanoparticles with customized structures.In this study,Ag@methacrylamide CS/poly(ethylene glycol)diacrylate(Ag@MP)micropatterns are successfully fabricated by femtosecond laser maskless optical projection lithography(Fs-MOPL)for the first time.The formation mechanism of core-shell nanomaterial is demonstrated by the local surface plasmon resonances and the nucleation and growth theory.Amino and hydroxyl groups greatly affect the number of Ag@MP nanocomposites,which is further verified by replacing MCS with methacrylated bovine serum albumin and hyaluronic acid methacryloyl,respectively.Besides,the performance of the surface-enhanced Raman scattering,cytotoxicity,cell proliferation,and antibacterial was investigated on Ag@MP micropatterns.Therefore,the proposed protocol to prepare hydrogel core-shell micropattern by the home-built Fs-MOPL technique is prospective for potential applications in the biomedical and biotechnological fields,such as biosensors,cell imaging,and antimicrobial. 展开更多
关键词 femtosecond laser maskless optical projection lithography micropatterns Ag@MCS/PEGDA nanoparticles core-shell nanomaterials
在线阅读 下载PDF
Magnetic/fluorescent multi-functional PGMA@Fe_(3)O_(4)@SiO_(2)@SiO_(2)-Eu microspheres:A strategy of partitioning europium complex and Fe_(3)O_(4)nanoparticles
17
作者 Tianhao Xia Yuwen Yuan +6 位作者 Yunpeng Wang Pragati Awasthi Wenkun Dong Xusheng Qiao Dong Chen Shisheng Ling Xianping Fan 《Journal of Rare Earths》 2025年第12期2722-2731,I0005,共11页
This study aims to advance the development of magnetic fluorescent polymer microspheres for biomedical detection applications.Conventionally,dopants have utilized europium(Ⅲ)(Eu(Ⅲ))organic complexes due to their hig... This study aims to advance the development of magnetic fluorescent polymer microspheres for biomedical detection applications.Conventionally,dopants have utilized europium(Ⅲ)(Eu(Ⅲ))organic complexes due to their high compatibility with polymers and strong fluorescence.However,as the common magnetic material Fe_(3)O_(4)can quench their fluorescence,it is hard to synthesize Eu complexdoped magnetic fluorescent materials.To maintain fluorescence in the presence of magnetic parts,in this work,we synthesized Eu-doped magnetic microspheres with multi-layered structure.Firstly,poly-(glycidyl methacrylate)(PGMA)microspheres were prepared as templates and subsequently coated with layers of Fe_(3)O_(4)and SiO_(2).Then,the synthesized Eu(TTA)_(3)(TPPO)_(2)were added into PGMA@Fe_(3)O_(4)@SiO_(2)microspheres in either basic or acidic conditions,and covered them with an extra sol-gel layer of silica at the same time.The microspheres exhibit a core-shell structure with sub-micron dimensions(580 nm)and possess favorable superparamagnetic properties(M_(s)=22.02 A·m^(2)/kg,Mr=1.37 A·m^(2)/kg,H_(c)=0.242 A/m).But the fluorescence of Eu^(3+)are significantly quenched by Fe_(3)O_(4),O-H oscillators,and N-H oscillators.Finally,to exclude the quenching mentioned above,the first pure SiO_(2)shielding layer and the second Eu(TTA)_(3)(TPPO)_(2)-dispersed SiO_(2)layer were coated onto PGMA@Fe_(3)O_(4)microspheres to prevent the energy transfer due to the quenching centers and hold the fluorescence of Eu^(3+).These findings underscore the considerable potential of these microspheres exhibiting rapid magnetic separation and stable fluorescence for bioimaging and biosensing applications. 展开更多
关键词 Magnetic fluorescent microspheres Rare earths Eu complex Core—shell structure Polymer compatibility Multifunctional nanoparticles
原文传递
Pickering multiphase materials using plant-based cellulosic micro/nanoparticles 被引量:3
18
作者 Wei Liu Bo Pang +7 位作者 Meng Zhang Jiayi Lv Ting Xu Long Bai Xu-Min Cai Shuangquan Yao Siqi Huan Chuanling Si 《Aggregate》 EI CAS 2024年第2期130-145,共16页
Pickering multiphase systems stabilized by solid particles have recently attracted increasing attention due to their excellent stability.Among various solid stabilizers,natural and renewable cellulosic micro/nanoparti... Pickering multiphase systems stabilized by solid particles have recently attracted increasing attention due to their excellent stability.Among various solid stabilizers,natural and renewable cellulosic micro/nanoparticles that are derived from agricultural and forestry sources have become promising candidates for Pickering stabilization due to their unique morphological features and tunable surface properties.In this review,recent progress on forming and stabilizing Pickering multiphase systems using cellulosic colloidal particles is summarized,including the physicochemical factors affecting their assembly at the interfaces and the preparation methods suitable for producing Pickering emulsions.In addition,relevant application prospects of corresponding Pickering multiphase materials are outlined.Finally,current challenges and future perspectives of such renewable Pickering multiphase systems are presented.This review aims to encourage the utilization of cellulosic micro/nanoparticles as key components in the development of Pickering systems,leading to enhanced performance and unique functionalities. 展开更多
关键词 cellulose nanocrystals cellulose nanofibrils cellulosic micro/nanoparticles Pickering emulsions Pickering foams
在线阅读 下载PDF
Advances in micro/nanoparticle-enhanced Sn-based composite solders
19
作者 Kaiming Liang Wenqiang Wan +4 位作者 Yifei Li Xin Zhang Xiangdong Ding Peng He Shuye Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2043-2064,共22页
Sn-based solder is a widely used interconnection material in the field of electronic packaging;however,the performance requirements for these solders are becoming increasingly demanding owing to the rapid development ... Sn-based solder is a widely used interconnection material in the field of electronic packaging;however,the performance requirements for these solders are becoming increasingly demanding owing to the rapid development in this area.In recent years,the addition of micro/nanoreinforcement phases to Sn-based solders has provided a solution to improve the intrinsic properties of the solders.This paper reviews the progress in Sn-based micro/nanoreinforced composite solders over the past decade.The types of reinforcement particles,preparation methods of the composite solders,and strengthening effects on the microstructure,wettability,melting point,mechanical properties,and corrosion resistance under different particle-addition levels are discussed and summarized.The mechanisms of performance enhancement are summarized based on material-strengthening effects such as grain refinement and second-phase dispersion strengthening.In addition,we discuss the current shortcomings of such composite solders and possible future improvements,thereby establishing a theoretical foundation for the future development of Sn-based solders. 展开更多
关键词 Sn-based composite solder micro/nanoparticles properties electronic packaging microstructure corrosion resistance
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部