The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materia...The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing.展开更多
Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hie...Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs.展开更多
Controllable fabrication of surface micro/nano structures is the key to realizing surface functionalization for various applications.As a versatile approach,ultrafast laser ablation has been widely studied for surface...Controllable fabrication of surface micro/nano structures is the key to realizing surface functionalization for various applications.As a versatile approach,ultrafast laser ablation has been widely studied for surface micro/nano structuring.Increasing research eforts in this feld have been devoted to gaining more control over the fabrication processes to meet the increasing need for creation of complex structures.In this paper,we focus on the in-situ deposition process following the plasma formation under ultrafast laser ablation.From an overview perspective,we frstly summarize the diferent roles that plasma plumes,from pulsed laser ablation of solids,play in diferent laser processing approaches.Then,the distinctive in-situ deposition process within surface micro/nano structuring is highlighted.Our experimental work demonstrated that the in-situ deposition during ultrafast laser surface structuring can be controlled as a localized micro-additive process to pile up secondary ordered structures,through which a unique kind of hierarchical structure with fort-like bodies sitting on top of micro cone arrays were fabricated as a showcase.The revealed laser-matter interaction mechanism can be inspiring for the development of new ultrafast laser fabrication approaches,adding a new dimension and more fexibility in controlling the fabrication of functional surface micro/nano structures.展开更多
Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step...Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step and controllable fabrication.Accordingly,based on tip-based fabrication techniques,this study proposed a micro-amplitude vibration-assisted scratching method by introducing a periodic backward displacement into the conventional scratching process,which enabled the synchronous creation of the microscale V-groove and nanoscale ripples,i.e.a typical micro/nano hierarchical structure.The experiments and finite element modeling were employed to explore the formation process and mechanism of the micro/nano hierarchical structures.Being different from conventional cutting,this method was mainly based on the plow mechanism,and it could accurately replicate the shape of the indenter on the material surface.The microscale V-groove was formed due to the scratching action,and the nanoscale ripple was formed due to the extrusion action of the indenter on the microscale V-groove’s surface.Furthermore,the relationships between the processing parameters and the dimensions of the micro/nano hierarchical structures were established through experiments,and optimized processing parameters were determined to achieve regular micro/nano hierarchical structures.By this method,complex patterns constructed by various micro/nano hierarchical structures were fabricated on both flat and curved surfaces,achieving diverse surface structural colors.展开更多
The rapid evolution of laser micro/nano-manufacturing techniques has transformed precision manufacturing,enabling the creation of complex micro/nano-structures.These techniques are crucial for multiple industries,incl...The rapid evolution of laser micro/nano-manufacturing techniques has transformed precision manufacturing,enabling the creation of complex micro/nano-structures.These techniques are crucial for multiple industries,including electronics,photonics,and biomedical engineering,owing to their unmatched precision and versatility.The ability to manipulate materials at such scales has unlocked new possibilities for innovation,thereby facilitating the development of advanced components and devices with enhanced performance and functionalities.展开更多
Over the past three decades,micro/nano science and technology have experienced rapid advancements as new materials and advanced devices have increasingly evolved towards high levels of integration and miniaturization....Over the past three decades,micro/nano science and technology have experienced rapid advancements as new materials and advanced devices have increasingly evolved towards high levels of integration and miniaturization.In this context,mechanical properties have emerged as critical parameters for evaluating the operational performance and longevity of materials and devices at the micro/nanoscale.展开更多
Micro(nano)plastics,as an emerging environmental pollutant,are gradually discovered in hyporheic zones and groundwaterworldwide.Recent studies have focused on the origin and spatial/temporal distribution of micro(nano...Micro(nano)plastics,as an emerging environmental pollutant,are gradually discovered in hyporheic zones and groundwaterworldwide.Recent studies have focused on the origin and spatial/temporal distribution of micro(nano)plastics in regional groundwater,together with the influence of their properties and effects of environmental factors on their transport.However,the transport of micro(nano)plastics in the whole hyporheic zone-groundwater system and the behavior of co-existing substances still lack a complete theoretical interpretation.To provide systematic theoretical support for that,this review summarizes the current pollution status of micro(nano)plastics in the hyporheic zone-groundwater system,provides a comprehensive introduction of their sources and fate,and classifies the transport mechanisms into mechanical transport,physicochemical transport and biological processes assisted transport fromthe perspectives ofmechanical stress,physicochemical reactions,and bioturbation,respectively.Ultimately,this review proposes to advance the understanding of the multi-dimensional hydrosphere transport of micro(nano)plastics centered on groundwater,themicroorganisms-mediated synergistic transformation and co-transport involving the intertidal circulation.Overall,this review systematically dissects the presence and transport cycles of micro(nano)plastics within the hyporheic zone-groundwater system and proposes prospects for future studies based on the limitations of current studies.展开更多
Able to precisely control and manipulate materials'states at micro/nano-scale level,femtosecond(fs)laser micro/nano processing technology has undergone tremendous development over the past three decades.Free-formi...Able to precisely control and manipulate materials'states at micro/nano-scale level,femtosecond(fs)laser micro/nano processing technology has undergone tremendous development over the past three decades.Free-forming three-dimensional(3D)microscale functional devices and inducing fascinating and unique physical or chemical phenomena have granted this technology powerful versatility that no other technology can match.As this technology advances rapidly in various fields of application,some key challenges have emerged and remain to be urgently addressed.This review firstly introduces the fundamental principles for understanding how fs laser pulses interact with materials and the associated unique phenomena in section 2.Then micro/nano-fabrication in transparent materials by fs laser processing is presented in section 3.Thereafter,several high efficiency/throughput fabrication methods as well as pulse-shaping techniques are listed in sections 4 and 5 reviews four-dimensional(4D)and nanoscale printing realized by fs laser processing technology.Special attention is paid to the heterogeneous integration(HI)of functional materials enabled by fs laser processing in section 6.Several intriguing examples of 3D functional micro-devices created by fs laser-based manufacturing methods such as microfluidics,lab-on-chip,micro-optics,micro-mechanics,micro-electronics,micro-bots and micro-biodevices are reviewed in section 7.Finally,a summary of the review and a perspective are proposed to explore the challenges and future opportunities for further betterment of fs laser micro/nano processing technology.展开更多
Scientists and engineers are looking forward to new manufacturing technologies to realize the integrated fabrication of macro shape and microstructure for the components with a short production chain, which can also s...Scientists and engineers are looking forward to new manufacturing technologies to realize the integrated fabrication of macro shape and microstructure for the components with a short production chain, which can also save materials and reduce energy consumption. Additive manufacturing (AM) technology is a new fabrication pattern with a character of a lay-by-lay material deposition. The components are fabricated in a bottom-up way, from points, lines, to layers and volume, which provided a capability to solve the impossible integrated fabrication problem for micro- and macro-structure by using conventional manufacturing technologies. Thus, based on integrated fabrication of micro- and macro- structures, research team in Xi’an Jiaotong University has been focusing on technological innovations and applications of advanced additive manufacturing technologies. Novel additive manufacturing principles have been proposed and explored, by which new AM processes and equipment for met- als, composites, ceramics, and biomaterials have been developed to support the industrial applications. Additive manufacturing and cutting-edge applications of advanced composite structure, metamaterials, bio-implants, and monocrystal alloy components have been investigated to push the new development of integrated fabrication of micro- and macro- structures.展开更多
Excellent fluid sealing performance is crucial to ensuring the safety of important equipment,especially in aerospace field,such as space capsule and fuel chamber.The frequently opening and closing of the sealing devic...Excellent fluid sealing performance is crucial to ensuring the safety of important equipment,especially in aerospace field,such as space capsule and fuel chamber.The frequently opening and closing of the sealing devices is particularly important.Driven by this background,clams(Mactra chinensis)which can open and close their double shells with superior sealing performance,are studied in this work.Here,we show that the clam’s sealing ability is the result of its unique multilevel intermeshing microstructures,including hinge teeth and micro-blocks.These microstructures,which resemble gear teeth,engage with each other when the shell closes,forming a tight structure that prevents the infiltration of water from the outside.Furthermore,the presence of micron blocks prevents the penetration of finer liquids.The simulation results of the bionic end seal components show that the multilevel microstructure has a superior sealing effect.This research is expected to be applied to undersea vehicles that require frequent door opening and closing.展开更多
The micro/nano structures of the wing scales in Morpho butterfly are responsible for the structural coloration,with a major part ascribed to interference and diffraction of light.The optical properties of the butterfl...The micro/nano structures of the wing scales in Morpho butterfly are responsible for the structural coloration,with a major part ascribed to interference and diffraction of light.The optical properties of the butterfly wings were investigated by simulating a two-dimensional model using rigorous coupled-wave analysis technique.It is proved that they depend strongly on the structural parameters,incidence angle and refractive index.The peak value and the peak wavelength of the reflection efficiency increase as the vertical periodic thickness increases.The peak value decreases observably,while both of the bandwidth and the peak wavelength increase when the number of the vertical periods decreases.Increase of the horizontal periodic width causes a decrease of the peak value and an increase of the peak wavelength,although the variations are small.The peak value decreases distinctly and the peak wavelength increases as the ambient refractive index increases,which corresponds to the variation in ambient conditions.The research reveals the mechanisms of the brilliant structural color in Morpho butterfly,and is of great significance to the design,manufacture and applications of the bionic micro/nano structures for gas detection.展开更多
The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flamm...The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics.展开更多
The polycrystalline Si3N4/TiN ceramic nano-multilayer films have been synthesized on Si substrates by a reactive magnetron Sputtering technique, aiming at investigating the effects of modulation ratio and modulation p...The polycrystalline Si3N4/TiN ceramic nano-multilayer films have been synthesized on Si substrates by a reactive magnetron Sputtering technique, aiming at investigating the effects of modulation ratio and modulation period on the microhardness and to elucidate the hardening mechanisms of the synthesized nanomultilayer films. The results showed that the hardness of Si3N4/TiN nano-multilayers is affected not only by modulation period, but also by modulation ratio. The hardness reaches its maximum value when modulation period equa1s a critical value λ0, which is about 12 nm with a modulation ratio of 3: 1. The maximum hardness value is about 40% higher than the value calculated from the rule of mixtures. The hardness of nano-multilayer thin films was found to decrease rapidly with increasing or decreasing modulation period from the Point of λ0. The microstructures of the nano-multilayer films have been investigated using XRD and TEM. Based on experimental results, the mechanism of the superhardness in this system was proposed.展开更多
This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure d...This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure design and manufacturing technology in the petroleum industry. The functional micro-nano structure is the structure and device with special functions prepared to achieve a specific goal. New functional micro-nano structures are classified into mobile type(e.g. micro-nano motors) and fixed type(e.g. metamaterials), and 3 D printing technology is a developed method of manufacturing. Combining the demand for exploration and development in oil and gas fields and the research status of intelligent micro-nano structures, we believe that there are 3 potential application directions:(1) The intelligent micro-nano structures represented by metamaterials and smart coatings can be applied to the oil recovery engineering technology and equipment to improve the stability and reliability of petroleum equipment.(2) The smart micro-nano robots represented by micro-motors and smart microspheres can be applied to the development of new materials for enhanced oil recovery, effectively improving the development efficiency of heavy oil, shale oil and other resources.(3) The intelligent structure manufacturing technology represented by 3 D printing technology can be applied to the field of microfluidics in reservoir fluids to guide the selection of mine flooding agents and improve the efficiency of mining.展开更多
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result...In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.展开更多
The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets.However,the accumulation of Co ele ment at the grain b...The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets.However,the accumulation of Co ele ment at the grain boundaries(GBs) changes the GBs from nonmagnetic to ferromagnetic and causes the thinlayer GBs to become rare,In this paper,the method of diffusing Tb element was chosen to improve the microstructure and temperature stability of high-Co magnets.Three original sintered Nd_(28.5)Dy_(3)-CO_(x)e_(bal)M_(0.6)B_(i)(x=0,6 wt%,12 wt%;M = Cu,Al,Zr) magnets with different Co contents were diffused with Tb by grain boundary diffusion(GBD).After GBD,high-Co magnets exhibit more continuously distributed thin-layer GBs,and their thermal stability is significantly improved.In high-Co magnets(x=6 wt%),the absolute value of the temperature coefficient of coercivity decreases from 0.603%/K to0.508%/K in the temperature range of 293-413 K,that of remanence decreases from 0.099%/K to 0.091%/K,and the coercivity increases from 18.44 to 25.04 kOe.Transmission electron microscopy(TEM)characterization reveals that there are both the 1:2 phase and the amorphous phase in the high-Co magnet before and after GBD,EDS elemental analysis shows that Tb element is more likely to preferentially replace the rare earth elements in the 2:14:1 main phase than in the 1:2 phase and the amorphous phase.The concentration of Tb at the edge of the main phase is much higher than that in the 1:2phase and amorphous phase,which is beneficial to the improvement of the microstructure.The preferential replacement of Tb elements at the edge of the 2:14:1 phase and thin-layer GBs with a more continuous distribution are synergistically responsible for improving the thermal stability of high-Co magnets.The study indicates that GBD is an effective method to improve the microstructure and thermal stability of high-Co magnets.展开更多
Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity ...Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.展开更多
In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)proce...In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF.展开更多
A simple composite Sr_(1-x)Nd_(x)MnO_(3)(x=0,0.05,0.1,0.15,0.2) nano powders were successfully prepared by the sol-gel method as a light-weight broadband electromagnetic wave absorber.The effect of Nd^(3+)doping on th...A simple composite Sr_(1-x)Nd_(x)MnO_(3)(x=0,0.05,0.1,0.15,0.2) nano powders were successfully prepared by the sol-gel method as a light-weight broadband electromagnetic wave absorber.The effect of Nd^(3+)doping on the structure,microstructure and properties of SrMnO_(3) was investigated.It is found that with the doping of Nd^(3+),the space group of the SrMnO_(3) changes from p63/mmc to pm3m,and the crystalline shape starts to change from hexagonal to cubic crystalline.Scanning electron microscopy(SEM) and Brunauer-Emmett-Teller(BET) tests confirm that the particle sizes of the sample decrease and the specific surface area increases,which are attributed to the inhibition of grain growth after Nd^(3+)is doped.X-ray photoelectron spectroscopy(XPS) shows that after Nd^(3+)doping,the content of oxygen vacancy increases,and Mn^(4+) converts to Mn^(3+).Due to the defects of the materials,the polarization effect is enhanced,thus,the dielectric and magnetic properties of the doped samples are improved.The maximum reflection loss of the Sr_(0.85)Nd_(0.15)MnO_(3) is-33.41 dB at 7.84 GHz for a thickness of 2.4 mm,while Sr_(0.9)Nd_(0.1)MnO_(3) has the best bandwidth performance at 2.32 GHz with a reflection loss below-10dB.展开更多
Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two diffe...Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.展开更多
基金Projects(51134007,21003161,21250110060) supported by the National Natural Science Foundation of ChinaProject(11MX10) supported by Central South University Annual Mittal-Founded Innovation ProjectProject(2011ssxt086) supported by Fundamental Research Funds for the Central Universities,China
文摘The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing.
基金Supported by National Natural Science Foundation of China(Grant Nos.52035004,52105434).
文摘Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs.
基金support by the National Key Research and Development Program of China(No.2017YFB1104300)the National Natural Science Foundation of China(Nos.51575309 and 51210009)the Tsinghua University Initiative Scientifc Research Program(No.2018Z05JZY009).
文摘Controllable fabrication of surface micro/nano structures is the key to realizing surface functionalization for various applications.As a versatile approach,ultrafast laser ablation has been widely studied for surface micro/nano structuring.Increasing research eforts in this feld have been devoted to gaining more control over the fabrication processes to meet the increasing need for creation of complex structures.In this paper,we focus on the in-situ deposition process following the plasma formation under ultrafast laser ablation.From an overview perspective,we frstly summarize the diferent roles that plasma plumes,from pulsed laser ablation of solids,play in diferent laser processing approaches.Then,the distinctive in-situ deposition process within surface micro/nano structuring is highlighted.Our experimental work demonstrated that the in-situ deposition during ultrafast laser surface structuring can be controlled as a localized micro-additive process to pile up secondary ordered structures,through which a unique kind of hierarchical structure with fort-like bodies sitting on top of micro cone arrays were fabricated as a showcase.The revealed laser-matter interaction mechanism can be inspiring for the development of new ultrafast laser fabrication approaches,adding a new dimension and more fexibility in controlling the fabrication of functional surface micro/nano structures.
基金supported by the Jilin Province Key Research and Development Plan Project(20240302066GX)the National Natural Science Foundation of China(Grant No.52075221)the Fundamental Research Funds for the Central Universities(2023-JCXK-02)。
文摘Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step and controllable fabrication.Accordingly,based on tip-based fabrication techniques,this study proposed a micro-amplitude vibration-assisted scratching method by introducing a periodic backward displacement into the conventional scratching process,which enabled the synchronous creation of the microscale V-groove and nanoscale ripples,i.e.a typical micro/nano hierarchical structure.The experiments and finite element modeling were employed to explore the formation process and mechanism of the micro/nano hierarchical structures.Being different from conventional cutting,this method was mainly based on the plow mechanism,and it could accurately replicate the shape of the indenter on the material surface.The microscale V-groove was formed due to the scratching action,and the nanoscale ripple was formed due to the extrusion action of the indenter on the microscale V-groove’s surface.Furthermore,the relationships between the processing parameters and the dimensions of the micro/nano hierarchical structures were established through experiments,and optimized processing parameters were determined to achieve regular micro/nano hierarchical structures.By this method,complex patterns constructed by various micro/nano hierarchical structures were fabricated on both flat and curved surfaces,achieving diverse surface structural colors.
文摘The rapid evolution of laser micro/nano-manufacturing techniques has transformed precision manufacturing,enabling the creation of complex micro/nano-structures.These techniques are crucial for multiple industries,including electronics,photonics,and biomedical engineering,owing to their unmatched precision and versatility.The ability to manipulate materials at such scales has unlocked new possibilities for innovation,thereby facilitating the development of advanced components and devices with enhanced performance and functionalities.
文摘Over the past three decades,micro/nano science and technology have experienced rapid advancements as new materials and advanced devices have increasingly evolved towards high levels of integration and miniaturization.In this context,mechanical properties have emerged as critical parameters for evaluating the operational performance and longevity of materials and devices at the micro/nanoscale.
基金supported by the National Natural Science Foundation of China(Nos.22036001,42342057,and 22236006).
文摘Micro(nano)plastics,as an emerging environmental pollutant,are gradually discovered in hyporheic zones and groundwaterworldwide.Recent studies have focused on the origin and spatial/temporal distribution of micro(nano)plastics in regional groundwater,together with the influence of their properties and effects of environmental factors on their transport.However,the transport of micro(nano)plastics in the whole hyporheic zone-groundwater system and the behavior of co-existing substances still lack a complete theoretical interpretation.To provide systematic theoretical support for that,this review summarizes the current pollution status of micro(nano)plastics in the hyporheic zone-groundwater system,provides a comprehensive introduction of their sources and fate,and classifies the transport mechanisms into mechanical transport,physicochemical transport and biological processes assisted transport fromthe perspectives ofmechanical stress,physicochemical reactions,and bioturbation,respectively.Ultimately,this review proposes to advance the understanding of the multi-dimensional hydrosphere transport of micro(nano)plastics centered on groundwater,themicroorganisms-mediated synergistic transformation and co-transport involving the intertidal circulation.Overall,this review systematically dissects the presence and transport cycles of micro(nano)plastics within the hyporheic zone-groundwater system and proposes prospects for future studies based on the limitations of current studies.
基金supported by National Key R&D Program of China(Grant Nos.2021YFB2802000 and 2022YFB2804300)Science and Technology Commission of Shanghai Municipality(Grant No.21DZ1100500)+3 种基金Shanghai Municipal Science and Technology Major Projectthe Shanghai Frontiers Science Center Program(2021-2025 No.20)National Natural Science Foundation of China(Grant No.61975123)Shanghai Scienceand Technology Innovation Action Plan(Grant No.23JC1403100)。
文摘Able to precisely control and manipulate materials'states at micro/nano-scale level,femtosecond(fs)laser micro/nano processing technology has undergone tremendous development over the past three decades.Free-forming three-dimensional(3D)microscale functional devices and inducing fascinating and unique physical or chemical phenomena have granted this technology powerful versatility that no other technology can match.As this technology advances rapidly in various fields of application,some key challenges have emerged and remain to be urgently addressed.This review firstly introduces the fundamental principles for understanding how fs laser pulses interact with materials and the associated unique phenomena in section 2.Then micro/nano-fabrication in transparent materials by fs laser processing is presented in section 3.Thereafter,several high efficiency/throughput fabrication methods as well as pulse-shaping techniques are listed in sections 4 and 5 reviews four-dimensional(4D)and nanoscale printing realized by fs laser processing technology.Special attention is paid to the heterogeneous integration(HI)of functional materials enabled by fs laser processing in section 6.Several intriguing examples of 3D functional micro-devices created by fs laser-based manufacturing methods such as microfluidics,lab-on-chip,micro-optics,micro-mechanics,micro-electronics,micro-bots and micro-biodevices are reviewed in section 7.Finally,a summary of the review and a perspective are proposed to explore the challenges and future opportunities for further betterment of fs laser micro/nano processing technology.
文摘Scientists and engineers are looking forward to new manufacturing technologies to realize the integrated fabrication of macro shape and microstructure for the components with a short production chain, which can also save materials and reduce energy consumption. Additive manufacturing (AM) technology is a new fabrication pattern with a character of a lay-by-lay material deposition. The components are fabricated in a bottom-up way, from points, lines, to layers and volume, which provided a capability to solve the impossible integrated fabrication problem for micro- and macro-structure by using conventional manufacturing technologies. Thus, based on integrated fabrication of micro- and macro- structures, research team in Xi’an Jiaotong University has been focusing on technological innovations and applications of advanced additive manufacturing technologies. Novel additive manufacturing principles have been proposed and explored, by which new AM processes and equipment for met- als, composites, ceramics, and biomaterials have been developed to support the industrial applications. Additive manufacturing and cutting-edge applications of advanced composite structure, metamaterials, bio-implants, and monocrystal alloy components have been investigated to push the new development of integrated fabrication of micro- and macro- structures.
基金supported by the National Natural Science Foundation of China(52105296,51973165 and 62161160311)the Fundamental Research Funds for the Central Universities(2042022kf1220)+1 种基金Open Fund of Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration(Wuhan University)(EMPI2023020)Large-scale Instrument And Equipment Sharing Foundation of Wuhan University.
文摘Excellent fluid sealing performance is crucial to ensuring the safety of important equipment,especially in aerospace field,such as space capsule and fuel chamber.The frequently opening and closing of the sealing devices is particularly important.Driven by this background,clams(Mactra chinensis)which can open and close their double shells with superior sealing performance,are studied in this work.Here,we show that the clam’s sealing ability is the result of its unique multilevel intermeshing microstructures,including hinge teeth and micro-blocks.These microstructures,which resemble gear teeth,engage with each other when the shell closes,forming a tight structure that prevents the infiltration of water from the outside.Furthermore,the presence of micron blocks prevents the penetration of finer liquids.The simulation results of the bionic end seal components show that the multilevel microstructure has a superior sealing effect.This research is expected to be applied to undersea vehicles that require frequent door opening and closing.
文摘The micro/nano structures of the wing scales in Morpho butterfly are responsible for the structural coloration,with a major part ascribed to interference and diffraction of light.The optical properties of the butterfly wings were investigated by simulating a two-dimensional model using rigorous coupled-wave analysis technique.It is proved that they depend strongly on the structural parameters,incidence angle and refractive index.The peak value and the peak wavelength of the reflection efficiency increase as the vertical periodic thickness increases.The peak value decreases observably,while both of the bandwidth and the peak wavelength increase when the number of the vertical periods decreases.Increase of the horizontal periodic width causes a decrease of the peak value and an increase of the peak wavelength,although the variations are small.The peak value decreases distinctly and the peak wavelength increases as the ambient refractive index increases,which corresponds to the variation in ambient conditions.The research reveals the mechanisms of the brilliant structural color in Morpho butterfly,and is of great significance to the design,manufacture and applications of the bionic micro/nano structures for gas detection.
基金supported by the Special Actions for Developing High-performance Manufacturing of Ministry of Industry and Information Technology(Grant No.:TC200H02J)the Research Grants Council of the Hong Kong Special Ad-ministrative Region,China(Project No.:PolyU 152125/18E)+1 种基金the National Natural Science Foundation of China(Project No.:U19A20104)the Research Committee of The Hong Kong Polytechnic University(Project Code G-RK2V).
文摘The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics.
文摘The polycrystalline Si3N4/TiN ceramic nano-multilayer films have been synthesized on Si substrates by a reactive magnetron Sputtering technique, aiming at investigating the effects of modulation ratio and modulation period on the microhardness and to elucidate the hardening mechanisms of the synthesized nanomultilayer films. The results showed that the hardness of Si3N4/TiN nano-multilayers is affected not only by modulation period, but also by modulation ratio. The hardness reaches its maximum value when modulation period equa1s a critical value λ0, which is about 12 nm with a modulation ratio of 3: 1. The maximum hardness value is about 40% higher than the value calculated from the rule of mixtures. The hardness of nano-multilayer thin films was found to decrease rapidly with increasing or decreasing modulation period from the Point of λ0. The microstructures of the nano-multilayer films have been investigated using XRD and TEM. Based on experimental results, the mechanism of the superhardness in this system was proposed.
基金Supported by the National Natural Science Foundation of China(41602159)
文摘This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure design and manufacturing technology in the petroleum industry. The functional micro-nano structure is the structure and device with special functions prepared to achieve a specific goal. New functional micro-nano structures are classified into mobile type(e.g. micro-nano motors) and fixed type(e.g. metamaterials), and 3 D printing technology is a developed method of manufacturing. Combining the demand for exploration and development in oil and gas fields and the research status of intelligent micro-nano structures, we believe that there are 3 potential application directions:(1) The intelligent micro-nano structures represented by metamaterials and smart coatings can be applied to the oil recovery engineering technology and equipment to improve the stability and reliability of petroleum equipment.(2) The smart micro-nano robots represented by micro-motors and smart microspheres can be applied to the development of new materials for enhanced oil recovery, effectively improving the development efficiency of heavy oil, shale oil and other resources.(3) The intelligent structure manufacturing technology represented by 3 D printing technology can be applied to the field of microfluidics in reservoir fluids to guide the selection of mine flooding agents and improve the efficiency of mining.
基金Project(2013AA050901)supported by the National High-tech Research and Development Program of China
文摘In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.
基金supported by the National Key R&D Program of China (2021YFB3502902,2021YFB3503100,2022YFB3503300,2022YFB3505200)。
文摘The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets.However,the accumulation of Co ele ment at the grain boundaries(GBs) changes the GBs from nonmagnetic to ferromagnetic and causes the thinlayer GBs to become rare,In this paper,the method of diffusing Tb element was chosen to improve the microstructure and temperature stability of high-Co magnets.Three original sintered Nd_(28.5)Dy_(3)-CO_(x)e_(bal)M_(0.6)B_(i)(x=0,6 wt%,12 wt%;M = Cu,Al,Zr) magnets with different Co contents were diffused with Tb by grain boundary diffusion(GBD).After GBD,high-Co magnets exhibit more continuously distributed thin-layer GBs,and their thermal stability is significantly improved.In high-Co magnets(x=6 wt%),the absolute value of the temperature coefficient of coercivity decreases from 0.603%/K to0.508%/K in the temperature range of 293-413 K,that of remanence decreases from 0.099%/K to 0.091%/K,and the coercivity increases from 18.44 to 25.04 kOe.Transmission electron microscopy(TEM)characterization reveals that there are both the 1:2 phase and the amorphous phase in the high-Co magnet before and after GBD,EDS elemental analysis shows that Tb element is more likely to preferentially replace the rare earth elements in the 2:14:1 main phase than in the 1:2 phase and the amorphous phase.The concentration of Tb at the edge of the main phase is much higher than that in the 1:2phase and amorphous phase,which is beneficial to the improvement of the microstructure.The preferential replacement of Tb elements at the edge of the 2:14:1 phase and thin-layer GBs with a more continuous distribution are synergistically responsible for improving the thermal stability of high-Co magnets.The study indicates that GBD is an effective method to improve the microstructure and thermal stability of high-Co magnets.
基金The authors thank D.Berger,D.Hofmann and C.Kupka in IFW Dresden for helpful technical support.H.R.acknowledges funding from the DFG(Deutsche Forschungsgemeinschaft)within grant number RE3973/1-1.Q.J.,H.R.and K.N.conceived the work.With the support from N.Y.and X.J.,Q.J.and T.G.fabricated the thermoelectric films and conducted the structural and compositional characterizations.Q.J.prepared microchips and fabricated the on-chip micro temperature controllers.Q.J.and N.P.carried out the temperature-dependent material and device performance measurements.Q.J.and H.R.performed the simulation and analytical calculations.Q.J.,H.R.and K.N.wrote the manuscript with input from the other coauthors.All the authors discussed the results and commented on the manuscript.
文摘Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.
文摘In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF.
基金Project supported by the National Natural Science Foundation of China(51861006)Guangxi Science and Technology Project(AD19110010)。
文摘A simple composite Sr_(1-x)Nd_(x)MnO_(3)(x=0,0.05,0.1,0.15,0.2) nano powders were successfully prepared by the sol-gel method as a light-weight broadband electromagnetic wave absorber.The effect of Nd^(3+)doping on the structure,microstructure and properties of SrMnO_(3) was investigated.It is found that with the doping of Nd^(3+),the space group of the SrMnO_(3) changes from p63/mmc to pm3m,and the crystalline shape starts to change from hexagonal to cubic crystalline.Scanning electron microscopy(SEM) and Brunauer-Emmett-Teller(BET) tests confirm that the particle sizes of the sample decrease and the specific surface area increases,which are attributed to the inhibition of grain growth after Nd^(3+)is doped.X-ray photoelectron spectroscopy(XPS) shows that after Nd^(3+)doping,the content of oxygen vacancy increases,and Mn^(4+) converts to Mn^(3+).Due to the defects of the materials,the polarization effect is enhanced,thus,the dielectric and magnetic properties of the doped samples are improved.The maximum reflection loss of the Sr_(0.85)Nd_(0.15)MnO_(3) is-33.41 dB at 7.84 GHz for a thickness of 2.4 mm,while Sr_(0.9)Nd_(0.1)MnO_(3) has the best bandwidth performance at 2.32 GHz with a reflection loss below-10dB.
文摘Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.