A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods....A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite.展开更多
Preeclampsia(PE)poses a significant threat to maternal and fetal health,characterized by hypertension during pregnancy.This study investigates a promising approach to combat PE utilizing nanotechnology for the targete...Preeclampsia(PE)poses a significant threat to maternal and fetal health,characterized by hypertension during pregnancy.This study investigates a promising approach to combat PE utilizing nanotechnology for the targeted delivery of short-chain fatty acids.By leveraging a sol-gel method and chemical deposition,cerium oxide-coated mesoporous silica nanoparticles loaded with sodium butyrate(CeO_(2)@MSN@SB)were synthesized.The innovative strategy focuses on modulating gut microbiota and JunB proto-oncogene(JUNB)gene expression to induce macrophage M2 polarization and facilitate vascular remodeling.Evaluation in PE mouse models revealed that CeO_(2)@MSN@SB effectively improved blood pressure,urinary protein levels,placental function,and gut microbiota composition.Furthermore,the nanoparticles exhibited the ability to regulate key genes related to angiogenesis and inflammation,notably JUNB,leading to enhanced macrophage M2 polarization,trophoblast functionality,and vascular restructuring.These findings highlight that the application of nanotechnology holds potential to advance PE prevention and therapy.展开更多
Structural modification of three dimensional(3D)materials for the application of dielectric loss-based microwave absorbing materials(MAMs)usually relies on intricate synthesis process and can pose challenges in terms ...Structural modification of three dimensional(3D)materials for the application of dielectric loss-based microwave absorbing materials(MAMs)usually relies on intricate synthesis process and can pose challenges in terms of scalability and mass production for practical application.In this work,we reported a successful attempt in modifying the 3D structure of mesoporous lanthanum oxide(La_(2)O_(3))for effective broadband MAMs candidate via simple co-precipitation process.The inclusion of cetyltrimethylammonium bromide(CTAB)and hydrothermal aging treatment result in a significant transformation of La_(2)O_(3)particles from their original polygonal form to a 3D coral-like and nano needle-like structure.The utilization of CTAB and hydrothermal aging results in the increase of surface area and a two-fold increase in pore volume of the resulting La_(2)O_(3).Due to its unique 3D structure,the 3D coral-like and nano needle-like La_(2)O_(3)materials possess a broadband electromagnetic(EM)wave absorption characteristic with the effective absorption bandwidth(EAB)covering the C-band frequency range.Specifically,in the La_(2)O_(3)C-H sample(with CTAB-with hydrothermal),it exhibits strong EM wave absorption with a reflection loss(RL)value of-33.07 dB which equals to 99.95%EM wave absorption at a thickness of only 1.50 mm.The detailed analysis of EM wave absorption properties reveals that the improvement of La_(2)O_(3)materials to attenuate EM wave energy arises from the dielectric loss phenomenon,the enhanced interfacial polarization,multiple reflections mechanism,and conduction loss mechanism induced by the 3D structural formation of the La_(2)O_(3)structure.This work proposes a novel and efficient approach in synthesizing and modifying 3D materials for effective broadband EM wave absorption.展开更多
Adsorption of pure CO_(2) and N2 and separation of CO_(2)/N2 mixture in MFI zeolite and MFI/MCM-41 micro/mesoporous composite have been studied by using atomistic simulations.Fully atomistic models of MFI and MFI/MCM-...Adsorption of pure CO_(2) and N2 and separation of CO_(2)/N2 mixture in MFI zeolite and MFI/MCM-41 micro/mesoporous composite have been studied by using atomistic simulations.Fully atomistic models of MFI and MFI/MCM-41 are constructed and characterized.A bimodal pore size distribution is observed in MFI/MCM-41 from simulated small-and broad-angle X-ray diffrac-tion patterns.The density of MFI/MCM-41 is lower than MFI,while its free volume and specific surface area are greater than MFI due to the presence of mesopores.CO_(2) is preferentially adsorbed than N2,and thus,the loading and isosteric heat of CO_(2) are greater than N2 in both MFI and MFI/MCM-41.CO_(2) isotherm in MFI/MCM-41 is similar to that in MFI at low pressures,but resembles that in MCM-41 at high pressures.N2 shows similar amount of loading in MFI,MCM-41 and MFI/MCM-41.The selectivity of CO_(2) over N2 in the three adsorbents decreases in the order of MFI>MFI/MCM-41>MCM-41.With increasing pressure,the selectivity increases in MFI and MFI/MCM-41,but decreases in MCM-41.The self-diffusivity of CO_(2) and N2 in MFI decreases as loading increases,while in MFI/MCM-41,itfirst increases and then drops.展开更多
Amino-functionalized Fe3O4@mesoporous SiO/ core-shell composite microspheres NH2-MS in created in multiple synthesis steps have been investigated for Pb(Ⅱ) and Cd(Ⅱ) adsorption. The microspheres were characteriz...Amino-functionalized Fe3O4@mesoporous SiO/ core-shell composite microspheres NH2-MS in created in multiple synthesis steps have been investigated for Pb(Ⅱ) and Cd(Ⅱ) adsorption. The microspheres were characterized by transmission electron microscope (TEM), scanning electron microscope (SEM), N2 adsorption-desorption, zeta potential measurements and vibrating sample magnetometer. Batch adsorption tests indicated that NH2-MS exhibited higher adsorption affinity toward Pb(Ⅱ) and Cd(Ⅱ) than MS did. The Langmuir model could fit the adsorption isotherm very well with maximum adsorption capacity of 128.21 and 51.81 mg/g for Pb(Ⅱ) and Cd(Ⅱ), respectively, implying that adsorption processes involved monolayer adsorption. Pb(Ⅱ) and Cd(Ⅱ) adsorption could be well described by the pseudo second-order kinetics model, and was found to be strongly dependent on pH and humic acid. The Pb(Ⅱ)- and Cd(Ⅱ)-loaded microspheres were effectively desorbed using 0.01 mol/L HC1 or EDTA solution. NH2-MS have promise for use as adsorbents in the removal of Pb(Ⅱ) and Cd(Ⅱ) in wastewater treatment processes.展开更多
Developing an efficient approach of transforming biomass waste to functional carbon-based electrode materials applied in supercapacitor offers an important and high value-added practical application due to the abundan...Developing an efficient approach of transforming biomass waste to functional carbon-based electrode materials applied in supercapacitor offers an important and high value-added practical application due to the abundance and considerable low price of biomass wastes.Herein,a hierarchical carbon functionalized with electrochemical-active oxygen-containing groups was fabricated by microwave treatment from the biomass waste of camellia oleifera.The obtained mesoporous carbon(MAC)owns nanosheet morphology,rich mesoporosity,large surface area(1726 m2/g)and very high oxygenic functionalities(16.2 wt%)with pseudocapacitive activity.Prepared electrode of supercapacitor and tested in 2.0 M H2 SO4,the MAC exhibits an obvious pseudocapacitive activity and achieved a superior supercapacitive performance to that of directly activated carbon(DAC-800)including high specific capacitance(367 F/g vs.298 F/g)and better rate performance(66%vs.44%).The symmetrical supercapacitor based on MAC shows a high capacity of275 F/g,large energy density of 9.55 Wh/kg(at power density of 478 W/kg)and excellent cycling stability with 99%capacitance retention after 10000 continuous charge-discharge,endowing the obtained MAC a promising functional material for electrochemical energy storage.展开更多
Mesoporous silica has been widely explored for biomedical applications due to its unique structure and good biocompatibility.In particular it exhibits superior properties as micro/nano-carriers in the biomedical field...Mesoporous silica has been widely explored for biomedical applications due to its unique structure and good biocompatibility.In particular it exhibits superior properties as micro/nano-carriers in the biomedical field.We explore their potentials in controlled drug/gene co-delivery and photodynamic therapy for cancer treatment both in vitro and in vivo.By incorporating mesoporous silica nanoparticles(MSNP)with two-dimensional nanomaterial,graphene oxide nano-sheet,we utilize MSNP in cellular bio-imaging with squaraine dye.Meanwhile,through delicate combination between mesoporous silica micro/nano carriers with catalytic/bio-catalytic reactions,we manage to achieve self-propelled micro/nano-motors based on mesoporous silica that are capable of transporting cargos in an active manner.Especially,enzyme powered mesoporous silica motors can be powered by physiologically available fuels such as glucose and urea,which are advantageous for future biomedical use.Motion control on both velocity and movement direction provides a powerful tool for targeted drug delivery.Therefore,such mesoporous silica based active carriers pave way to the solution of targeted drug delivery for cancer treatment in future nano-medicine field.展开更多
Highly dispersed carbon microspheres(CMSs)derived from D-xylose were successfully synthesized under hydrothermal conditions and followed by further carbonization,in which F127 was used as a soft template.As-synthesize...Highly dispersed carbon microspheres(CMSs)derived from D-xylose were successfully synthesized under hydrothermal conditions and followed by further carbonization,in which F127 was used as a soft template.As-synthesized products were characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),flourier transform infrared spectroscopy(FT-IR),thermal gravimetric(TG)and X-ray diffraction(XRD).The results showed that the morphology and structure of the CMSs prominently depended on the stirring speed during hydrothermal reaction.The resultant CMSs principally had non-porous structure without stirring and had a very smooth surface.When the stirring speed increased to 200 rpm,the synthesized mesoporous carbon microspheres at 220?C for 24 h(CMSs-5)had a uniform size distribution of 1–1.4μm and a specific surface area of 452 m^2/g.Nevertheless,with further increasing to 400 rpm,as-fabricated carbon products were mostly amorphous with a low degree of sphericity.Results demonstrated that the diameter of the products decreased with the increase of stirring speed.Furthermore,the sphericity product yield of CMSs reduced with the increase of stirring speed.XRD result showed that all the obtained samples contained partial graphite phase.In addition,a formation mechanism was proposed that involved polymerization product as the precursors for microsphere formation.The controllable and green strategy may provide a great convenience to study properties and applications of carbon microspheres.展开更多
Partially graphitic micro- and mesoporous carbon microspheres (GMMCMs) were synthesized using hydrotbermal emulsion polymerization followed by KOH activation and catalytic graphitization. The resulting GMMCMs show m...Partially graphitic micro- and mesoporous carbon microspheres (GMMCMs) were synthesized using hydrotbermal emulsion polymerization followed by KOH activation and catalytic graphitization. The resulting GMMCMs show micro- and mesopores with a specific surface area of 1113 m2/g, regular spherical shape with diameters of 0.5-1.0 μm and a partially graphitic structure with a low internal resistance of 0.34 Ω. The graphitic carbons as electrode for supercapacitor exhibit a fast ion-transport and rapid charge-discharge feature, and a high-rate electrochemical performance. The typical GMMCM electrode shows a specific capacitance of 220 F/g at 1.0 A/g, and 185 F/g under a high current density of 20.0 A/g in a 6 mol/L KOH electrolyte.展开更多
Magnetically separated and N, S co-doped mesoporous carbon microspheres (NIS-MCMs/Fe304) are fabricated by encapsulating Si02 nanoparticles within N, S-containing polymer microspheres which were prepared using resor...Magnetically separated and N, S co-doped mesoporous carbon microspheres (NIS-MCMs/Fe304) are fabricated by encapsulating Si02 nanoparticles within N, S-containing polymer microspheres which were prepared using resorcinol/formaldehyde as the carbon source and cysteine as the nitrogen and sulfur co-precursors, followed by the carbonization process, silica template removal, and the introduction of Fe3O4 into the carbon mesopores. N/S-MCMs/Fe3O4 exhibits an enhanced Hg2+ adsorption capacity of 74.5 rag/g, and the adsorbent can be conveniently and rapidly separated from wastewater using an external magnetic field. This study opens up new opportunities to synthesize well- developed, carbon-based materials as an adsorbent for potential applications in the removal of mercury ions from wastewater.展开更多
Photocatalysis and Fenton process are two primary and promising advanced oxidation processes to degrade organic pollutants.However,the practical applications of single photocatalysis and Fenton process are still limit...Photocatalysis and Fenton process are two primary and promising advanced oxidation processes to degrade organic pollutants.However,the practical applications of single photocatalysis and Fenton process are still limited.Introducing one of them into another to form a combined photocatalytic Fentonlike system has shown great potential but still faces challenges in designing a well-tailored catalyst.Herein,a confined photocatalytic Fenton-like micro-reactor catalyst with a movable Fe_(3) O_(4) core and a mesoporous TiO_(2) shell has been constructed via a successive Stober coating strategy,followed by an ultrasound assisted etching method.The resulting micro-reactor possesses well-defined yolk-shell structures with unifo rm mesopores(~4 nm),a large Brunauer-Emmett-Teller(BET) surface area(~166.7 m^(2)/g),a high pore volume(~0.56 cm^(3)/g) and a strong magnetization(~51 emu/g),as well as tunable reactor sizes(20-90 nm).When evaluated for degrading bisphenol A under solar light in the presence of peroxymo no sulfate,the micro-reactor exhibits a superior catalytic degradation perfo rmance with a high magnetic separation efficiency and an excellent recycle ability.The outstanding performance can be attributed to its unique textual structure,which leads to a great syne rgistic effect from the photocatalytic and Fenton-like process.This study gives an important insight into the design and synthesis of an advanced micro-reactor for a combined advanced oxidation processes(AOPs).展开更多
Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in ...Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in the material research field.Herein,a kind of ultrafine zinc oxide(ZnO)nanoparticles(NPs)supported on three-dimensional(3D)ordered mesoporous carbon spheres(ZnO/OMCS)is prepared from silica inverse opal by using phenolic resol precursor as carbon source.The prepared lightweight ZnO/OMCS nanocomposites exhibit 3D ordered carbon sphere array and highly dispersed ultrafine ZnO NPs on the mesoporous cell walls of carbon spheres.ZnO/OMCS-30 shows microwave absorbing ability with a strong absorption(−39.3 dB at 10.4 GHz with a small thickness of 2 mm)and a broad effective absorption bandwidth(9.1 GHz).The outstanding microwave absorbing ability benefits to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure.This work opened up a unique way for developing lightweight and high-efficient carbon-based microwave absorbing materials.展开更多
Rational design and precise regulation over the morphology, structure, and pore size of functional conducting mesoporous polymers with enriched active sites and shorten electron–ion transport pathway are extremely im...Rational design and precise regulation over the morphology, structure, and pore size of functional conducting mesoporous polymers with enriched active sites and shorten electron–ion transport pathway are extremely important for developing high-performance micro-supercapacitors (MSCs), but still remain a great challenge. Herein, a general dual-colloid interface co-assembly strategy is proposed to fabricate hollow mesoporous polypyrrole nano-bowls (mPPy-nbs) for high-energy-density solid-state planar MSCs. By simply adjusting the size of block copolymer micelles, the diameter of polystyrene nanospheres and the amount of pyrrole monomer, mesopore size of the shell, void and shell thickness of mPPy-nbs can be simultaneously controlled. Importantly, this strategy can be further utilized to synthesize other hollow mesoporous polymers, including poly(tris(4-aminophenyl)amine), poly(1,3,5-triaminobenzene) and their copolymers, demonstrative of excellent universality. The structurally optimized mPPy-nb exhibits high specific surface area of 122 m^(2) g^(−1)and large capacitance of 225 F g^(−1) at 1 mV s^(−1). Furthermore, the MSCs assembled by mPPy-nbs deliver impressive volumetric capacitance of 90 F cm^(−3) and energy density of 2.0 mWh cm^(−3), superior to the most reported polymers-based MSCs. Also, the fabricated MSCs present excellent flexibility with almost no capacitance decay under varying bending states, and robust serial/parallel self-integration for boosting voltage and capacitance output. Therefore, this work will inspire the new design of mesoporous conducting polymer materials toward high-performance microscale supercapacitive devices.展开更多
Carbon materials are considered as prospective anode candidates for potassium ion batteries(PIBs).However,the low-rate capability is hampered by slow K+diffusion kinetics and obstructed electron transport of carbon-ba...Carbon materials are considered as prospective anode candidates for potassium ion batteries(PIBs).However,the low-rate capability is hampered by slow K+diffusion kinetics and obstructed electron transport of carbon-based anodes.In this work,calcium D-gluconate derived mesoporous carbon nanosheets(CGC)were interpenetrated into the architecture of reduced graphene oxides(RGO)to form the composites of two-dimensional(2D)/2D graphene/mesoporous carbon nanosheets(RGO@CGC).CGC as a rigid skeleton can prevent the graphene layers from restacking and maintain the structural stability of the 2D/2D carbon composites of RGO@CGC.The mesopores in CGC can shorten the path of ion diffusion and facilitate the penetration of electrolytes.RGO possesses the high surface-to-volume ratio and superior electron transport capability in the honeycomb-like 2D network consisting of sp^(2)-hybridized carbon atoms.Especially,theπ-πstacking interaction between CGC and RGO enhances stable composite structure formation,expedites interlayer-electron transfer,and establishes three-dimensional(3D)ion transportation pathways.Owing to these unique structure,RGO@CGC exhibits fast and stable potassium storage capability.Furthermore,the effects of binders and electrolytes on the electrochemical performance of RGO@CGC were investigated.Finally,Prussian blue was synthesized as a positive electrode to explore the possibility of RGO@CGC as a full battery application.展开更多
Mesoporous silica (MS), 3-aminopropyltriethoxysilane (APTES) modified mesoporous silica (AMS), bis(3- trimethoxysilylpropyl)amine modified mesoporous silica (BAMS) and APTES modified solid spherical silica ...Mesoporous silica (MS), 3-aminopropyltriethoxysilane (APTES) modified mesoporous silica (AMS), bis(3- trimethoxysilylpropyl)amine modified mesoporous silica (BAMS) and APTES modified solid spherical silica (AS) were prepared and used to immobilize metallocene catalysts for ethylene polymerization. Gel permeation chromatography results showed that polyethylenes (PEs) catalyzed by AMS (or BAMS) supported metallocene catalysts at the molar ratios of Al/Zr = 100, 300 and 500 were of bimodal molecular weight distribution (BMWD); while PEs catalyzed by the above catalysts at the molar ratios of Al/Zr 〉 800 were of monomodal molecular weight distribution (MMWD). However, MS (or AS) supported metallocene catalysts could only produce PEs with MMWD in spite of the molar ratio of Al/Zr. It was because that AMS (or BAMS) supported catalysts possessed two active sites for ethylene polymerization at low molar ratios of Al/Zr due to the combination effects of mesopore geometrical constraint and amino groups of the supports, which was confirmed by X-ray photoelectron spectroscopy. This brings forward a novel and easy method for the synthesis of polyolefin with BMWD.展开更多
Developing high-capacity carbon-based anode materials is crucial for enhancing the performance of lithium-ion batteries(LIBs).In this study,we presented a nitrogen-doped lignin mesoporous carbon/nickel/nickel oxide(NH...Developing high-capacity carbon-based anode materials is crucial for enhancing the performance of lithium-ion batteries(LIBs).In this study,we presented a nitrogen-doped lignin mesoporous carbon/nickel/nickel oxide(NHMC/Ni/NiO)nanocomposite for developing high-capacity LIBs anode materials through carbonization and selective etching strategies.The synthesized NMHC/Ni/NiO-0.33 composite exhibited a highly regular microstructure with well-dispersed Ni/NiO particles.The composite had a surface area of 408 m^(2)·g^(−1),a mesopore ratio of 75.0%,and a pyridine–nitrogen ratio of 58.9%.The introduction of nitrogen atoms reduced the disordered structure of lignin mesoporous carbon and enhanced its electrical conductivity,thus improving the lithium storage capabilities of the composite.Following 100 cycles at a current density of 0.2 A·g^(−1),the composite demonstrated enhanced Coulomb efficiency and rate performance,achieving a specific discharge capacity of 1230.9 mAh·g^(−1).At a high-current density of 1 A·g^(−1),the composite exhibited an excellent specific discharge capacity of 714.6 mAh·g^(−1).This study presents an innovative method for synthesizing high-performance anode materials of LIBs.展开更多
Obesity has become a global threat to health;however,the available drugs for treating obesity are limited.We investigated the anti-obesity effect of hydroxy-α-sanshool(HAS),an amide derived from the fruit of Zanthoxy...Obesity has become a global threat to health;however,the available drugs for treating obesity are limited.We investigated the anti-obesity effect of hydroxy-α-sanshool(HAS),an amide derived from the fruit of Zanthoxylum bungeanum,which promotes the management of obesity by triggering the browning of white adipose tissue(WAT)targeting the membrane receptor of transient receptor potential vanilloid 1(TRPV1).However,HAS easily undergoes configuration transformation and oxidative degradation.The short peptide CKGGRAKDC or adipose-targeting sequence(ATS)binds specifically to prohibitin on the surface of WAT cells and can be used as recognition assembly to enhance adipocyte targetability.Furthermore,mesoporous silica nanoparticles(MSNs)are widely used in drug delivery systems because of their large specific surface area and pore volume.Therefore,HAS-loaded adipose-targeted MSNs(MSNs-ATS)were developed to enhance the adipocyte targetability,safety,and efficacy of HAS,and tested on mature 3T3-L1 cells and obese mouse models.MSNs-ATS showed higher specificity for adipocyte targetability without obvious toxicity.HAS-loaded MSNs-ATS showed anti-obesity effects superior to those of HAS alone.In conclusion,we successfully developed adipocyte-targeted,HAS-loaded MSNs with good safety and anti-obesity effects.展开更多
Hierarchical mesoporous MoO2/Mo2C/C microspheres,which are composed of primary nanoparticles with a size of about 30 nm,have been designed and synthesized through polymer regulation and subsequent carbonization proces...Hierarchical mesoporous MoO2/Mo2C/C microspheres,which are composed of primary nanoparticles with a size of about 30 nm,have been designed and synthesized through polymer regulation and subsequent carbonization processes.The as-synthesized microspheres were characterized by XRD,Raman,SEM,TEM,XPS measurements and so on.It was found that polyethylene glycol acted as a structure-directing agent,mild reducing agent and carbon source in the formation of these hierarchical mesoporous Mo O2/Mo2C/C microspheres.Moreover,the electrochemical property of the microspheres was also investigated in this work.Evaluated as an anode material for lithium ion batteries,the hierarchical mesoporous Mo O2/Mo2C/C electrode delivered the discharge specific capacities of 665 and 588 m Ah/g after 100 cycles at current densities of 100 and 200 m A/g,respectively.The satisfactory cycling performance and controllable process facilitate the practical applications of the hierarchical mesoporous Mo O2/Mo2C/C as a potential anode material in high-energy density lithium-ion batteries.展开更多
Herein,we report the self-sacrificial template strategy to design mesoporous layered CeVWO_(x)/TiO_(2)catalysts for the selective catalytic reduction of NO by NH_(3)(NH_(3)-SCR).As-fabricated CeVWO_(x)/TiO_(2)catalyst...Herein,we report the self-sacrificial template strategy to design mesoporous layered CeVWO_(x)/TiO_(2)catalysts for the selective catalytic reduction of NO by NH_(3)(NH_(3)-SCR).As-fabricated CeVWO_(x)/TiO_(2)catalysts with unique mesoporous and layered structure were successfully prepared through the synthesis of Ce,Ti-MOFs by solvothermal method,the impregnation of vanadium and tungsten in Ce,Ti-MOFs and high temperature calcination process.As NH_(3)-SCR catalysts,well-designed CeVWO_(x)/TiO_(2)catalysts exhibit excellent SCR activity with the NO_(x)conversion of over 90%between 210 and 470℃.Meanwhile,CeVWO_(x)/TiO_(2)shows superior tolerance to water vapor and SO_(2).The features of unique mesoporous layered nanostructure,surface acidity,tunable reducibility,active and the strong interaction of active metal oxide and support in CeVWO_(x)/TiO_(2)nanosheets should contribute to the improved SCR performance.In situ diffuse reflection infrared Fourier transform spectroscopy(DRIFTS)analysis indicates that both Langmuir-Hinshelwood(L-H)and Eley-Rideal(E-R)mechanisms are present on the surface of CeVWO_(x)/TiO_(2)at low temperature.This work offers a facile strategy to design and fabricate efficient 2D deNO_x catalyst.展开更多
文摘A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite.
基金supported by the 2025 National Health Commission Scientific Research Fund-Major Science and Technology Plan Project of Zhejiang Province(No:WKJ-ZJ-2533)the National Key Research and Development Program of China(No.SQ2022YFC2700013.2022YFC2704601).
文摘Preeclampsia(PE)poses a significant threat to maternal and fetal health,characterized by hypertension during pregnancy.This study investigates a promising approach to combat PE utilizing nanotechnology for the targeted delivery of short-chain fatty acids.By leveraging a sol-gel method and chemical deposition,cerium oxide-coated mesoporous silica nanoparticles loaded with sodium butyrate(CeO_(2)@MSN@SB)were synthesized.The innovative strategy focuses on modulating gut microbiota and JunB proto-oncogene(JUNB)gene expression to induce macrophage M2 polarization and facilitate vascular remodeling.Evaluation in PE mouse models revealed that CeO_(2)@MSN@SB effectively improved blood pressure,urinary protein levels,placental function,and gut microbiota composition.Furthermore,the nanoparticles exhibited the ability to regulate key genes related to angiogenesis and inflammation,notably JUNB,leading to enhanced macrophage M2 polarization,trophoblast functionality,and vascular restructuring.These findings highlight that the application of nanotechnology holds potential to advance PE prevention and therapy.
基金Project supported by National Research and Innovation Agency through Rumah Program Organisasi Riset Nanoteknologi dan Material Maj u(ORNM)2024Indonesia Ministry of Finance through the competitive research program of RISPRO Kompetisi(PRJ-68/LPDP/2023)。
文摘Structural modification of three dimensional(3D)materials for the application of dielectric loss-based microwave absorbing materials(MAMs)usually relies on intricate synthesis process and can pose challenges in terms of scalability and mass production for practical application.In this work,we reported a successful attempt in modifying the 3D structure of mesoporous lanthanum oxide(La_(2)O_(3))for effective broadband MAMs candidate via simple co-precipitation process.The inclusion of cetyltrimethylammonium bromide(CTAB)and hydrothermal aging treatment result in a significant transformation of La_(2)O_(3)particles from their original polygonal form to a 3D coral-like and nano needle-like structure.The utilization of CTAB and hydrothermal aging results in the increase of surface area and a two-fold increase in pore volume of the resulting La_(2)O_(3).Due to its unique 3D structure,the 3D coral-like and nano needle-like La_(2)O_(3)materials possess a broadband electromagnetic(EM)wave absorption characteristic with the effective absorption bandwidth(EAB)covering the C-band frequency range.Specifically,in the La_(2)O_(3)C-H sample(with CTAB-with hydrothermal),it exhibits strong EM wave absorption with a reflection loss(RL)value of-33.07 dB which equals to 99.95%EM wave absorption at a thickness of only 1.50 mm.The detailed analysis of EM wave absorption properties reveals that the improvement of La_(2)O_(3)materials to attenuate EM wave energy arises from the dielectric loss phenomenon,the enhanced interfacial polarization,multiple reflections mechanism,and conduction loss mechanism induced by the 3D structural formation of the La_(2)O_(3)structure.This work proposes a novel and efficient approach in synthesizing and modifying 3D materials for effective broadband EM wave absorption.
基金supported by the National Natural Science Foundation of China(Grant Nos.20736002,20776045)the National High Technology Research and Development Program of China(No.2008AA062302)+1 种基金Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT0721)the 111 Project of China(No.B08021).
文摘Adsorption of pure CO_(2) and N2 and separation of CO_(2)/N2 mixture in MFI zeolite and MFI/MCM-41 micro/mesoporous composite have been studied by using atomistic simulations.Fully atomistic models of MFI and MFI/MCM-41 are constructed and characterized.A bimodal pore size distribution is observed in MFI/MCM-41 from simulated small-and broad-angle X-ray diffrac-tion patterns.The density of MFI/MCM-41 is lower than MFI,while its free volume and specific surface area are greater than MFI due to the presence of mesopores.CO_(2) is preferentially adsorbed than N2,and thus,the loading and isosteric heat of CO_(2) are greater than N2 in both MFI and MFI/MCM-41.CO_(2) isotherm in MFI/MCM-41 is similar to that in MFI at low pressures,but resembles that in MCM-41 at high pressures.N2 shows similar amount of loading in MFI,MCM-41 and MFI/MCM-41.The selectivity of CO_(2) over N2 in the three adsorbents decreases in the order of MFI>MFI/MCM-41>MCM-41.With increasing pressure,the selectivity increases in MFI and MFI/MCM-41,but decreases in MCM-41.The self-diffusivity of CO_(2) and N2 in MFI decreases as loading increases,while in MFI/MCM-41,itfirst increases and then drops.
基金supported by the National Natural Science Foundation of China (No. 21007048)the Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (No. 2012BAF03B06,2012BAJ25B06)partial fund of the State Key Laboratory of Pollution Control and Resource Reuse Foundation(No. PCRRY11011,PCRRF11003)
文摘Amino-functionalized Fe3O4@mesoporous SiO/ core-shell composite microspheres NH2-MS in created in multiple synthesis steps have been investigated for Pb(Ⅱ) and Cd(Ⅱ) adsorption. The microspheres were characterized by transmission electron microscope (TEM), scanning electron microscope (SEM), N2 adsorption-desorption, zeta potential measurements and vibrating sample magnetometer. Batch adsorption tests indicated that NH2-MS exhibited higher adsorption affinity toward Pb(Ⅱ) and Cd(Ⅱ) than MS did. The Langmuir model could fit the adsorption isotherm very well with maximum adsorption capacity of 128.21 and 51.81 mg/g for Pb(Ⅱ) and Cd(Ⅱ), respectively, implying that adsorption processes involved monolayer adsorption. Pb(Ⅱ) and Cd(Ⅱ) adsorption could be well described by the pseudo second-order kinetics model, and was found to be strongly dependent on pH and humic acid. The Pb(Ⅱ)- and Cd(Ⅱ)-loaded microspheres were effectively desorbed using 0.01 mol/L HC1 or EDTA solution. NH2-MS have promise for use as adsorbents in the removal of Pb(Ⅱ) and Cd(Ⅱ) in wastewater treatment processes.
基金financially supported by the National Key Technology R&D Program of China(2017YFB0310704)the National Natural Science Foundation of China(21773112 and 21173119)the Fundamental Research Funds for the Central Universities
文摘Developing an efficient approach of transforming biomass waste to functional carbon-based electrode materials applied in supercapacitor offers an important and high value-added practical application due to the abundance and considerable low price of biomass wastes.Herein,a hierarchical carbon functionalized with electrochemical-active oxygen-containing groups was fabricated by microwave treatment from the biomass waste of camellia oleifera.The obtained mesoporous carbon(MAC)owns nanosheet morphology,rich mesoporosity,large surface area(1726 m2/g)and very high oxygenic functionalities(16.2 wt%)with pseudocapacitive activity.Prepared electrode of supercapacitor and tested in 2.0 M H2 SO4,the MAC exhibits an obvious pseudocapacitive activity and achieved a superior supercapacitive performance to that of directly activated carbon(DAC-800)including high specific capacitance(367 F/g vs.298 F/g)and better rate performance(66%vs.44%).The symmetrical supercapacitor based on MAC shows a high capacity of275 F/g,large energy density of 9.55 Wh/kg(at power density of 478 W/kg)and excellent cycling stability with 99%capacitance retention after 10000 continuous charge-discharge,endowing the obtained MAC a promising functional material for electrochemical energy storage.
基金the financial support from Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education,Harbin Institute of Technology(2016KM007)
文摘Mesoporous silica has been widely explored for biomedical applications due to its unique structure and good biocompatibility.In particular it exhibits superior properties as micro/nano-carriers in the biomedical field.We explore their potentials in controlled drug/gene co-delivery and photodynamic therapy for cancer treatment both in vitro and in vivo.By incorporating mesoporous silica nanoparticles(MSNP)with two-dimensional nanomaterial,graphene oxide nano-sheet,we utilize MSNP in cellular bio-imaging with squaraine dye.Meanwhile,through delicate combination between mesoporous silica micro/nano carriers with catalytic/bio-catalytic reactions,we manage to achieve self-propelled micro/nano-motors based on mesoporous silica that are capable of transporting cargos in an active manner.Especially,enzyme powered mesoporous silica motors can be powered by physiologically available fuels such as glucose and urea,which are advantageous for future biomedical use.Motion control on both velocity and movement direction provides a powerful tool for targeted drug delivery.Therefore,such mesoporous silica based active carriers pave way to the solution of targeted drug delivery for cancer treatment in future nano-medicine field.
基金supported financially by the Outstanding Youth Science Fund of Shaanxi Province(No.2018JC-028)the fund of Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics,Beijing Technology and Business University(No.51772243)+1 种基金the Innovation Team Plan of Shaanxi Province(No.2017KCT-17)the National Natural Science Foundation of China(No.51772243).
文摘Highly dispersed carbon microspheres(CMSs)derived from D-xylose were successfully synthesized under hydrothermal conditions and followed by further carbonization,in which F127 was used as a soft template.As-synthesized products were characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),flourier transform infrared spectroscopy(FT-IR),thermal gravimetric(TG)and X-ray diffraction(XRD).The results showed that the morphology and structure of the CMSs prominently depended on the stirring speed during hydrothermal reaction.The resultant CMSs principally had non-porous structure without stirring and had a very smooth surface.When the stirring speed increased to 200 rpm,the synthesized mesoporous carbon microspheres at 220?C for 24 h(CMSs-5)had a uniform size distribution of 1–1.4μm and a specific surface area of 452 m^2/g.Nevertheless,with further increasing to 400 rpm,as-fabricated carbon products were mostly amorphous with a low degree of sphericity.Results demonstrated that the diameter of the products decreased with the increase of stirring speed.Furthermore,the sphericity product yield of CMSs reduced with the increase of stirring speed.XRD result showed that all the obtained samples contained partial graphite phase.In addition,a formation mechanism was proposed that involved polymerization product as the precursors for microsphere formation.The controllable and green strategy may provide a great convenience to study properties and applications of carbon microspheres.
基金supported by the National Natural Science Foundation of China (Nos. 21207099, 21273162)Science and Technology Commission of Shanghai Municipality, China (Nos. 11nm0501000, 12ZR1451100)+1 种基金Key Subject of Shanghai Municipal Education Commission (No. J50102)Fundamental Research Funds for the Central Universities (No. 2011KJ023)
文摘Partially graphitic micro- and mesoporous carbon microspheres (GMMCMs) were synthesized using hydrotbermal emulsion polymerization followed by KOH activation and catalytic graphitization. The resulting GMMCMs show micro- and mesopores with a specific surface area of 1113 m2/g, regular spherical shape with diameters of 0.5-1.0 μm and a partially graphitic structure with a low internal resistance of 0.34 Ω. The graphitic carbons as electrode for supercapacitor exhibit a fast ion-transport and rapid charge-discharge feature, and a high-rate electrochemical performance. The typical GMMCM electrode shows a specific capacitance of 220 F/g at 1.0 A/g, and 185 F/g under a high current density of 20.0 A/g in a 6 mol/L KOH electrolyte.
基金financially supported by the National Natural Science Foundation of China (Nos. 21207099, 21273162, and 21473122)the Science and Technology Commission of Shanghai Municipality, China (No. 14DZ2261100)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Large Equipment Test Foundation of Tongji University
文摘Magnetically separated and N, S co-doped mesoporous carbon microspheres (NIS-MCMs/Fe304) are fabricated by encapsulating Si02 nanoparticles within N, S-containing polymer microspheres which were prepared using resorcinol/formaldehyde as the carbon source and cysteine as the nitrogen and sulfur co-precursors, followed by the carbonization process, silica template removal, and the introduction of Fe3O4 into the carbon mesopores. N/S-MCMs/Fe3O4 exhibits an enhanced Hg2+ adsorption capacity of 74.5 rag/g, and the adsorbent can be conveniently and rapidly separated from wastewater using an external magnetic field. This study opens up new opportunities to synthesize well- developed, carbon-based materials as an adsorbent for potential applications in the removal of mercury ions from wastewater.
基金supported by the National Natural Science Foundation of China (Nos.5182220221972163 and 51772050)the Fundamental Research Funds for the Central Universities (No. 2232020D-02)+7 种基金Shanghai Sailing Program (No.20YF1400500)Shanghai Natural Science Foundation (No.20ZR1401500)Shanghai Rising-Star Program (No.18QA1400100)Youth Top-notch Talent Support Program of Shanghai,Science and Technology Commission of Shanghai Municipality (No.19520713200)Shanghai Scientific and Technological Innovation Project (No. 19JC1410400)Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (No. 20JC1415300)DHU Distinguished Young Professor ProgramFundamental Research Funds for the Central Universities。
文摘Photocatalysis and Fenton process are two primary and promising advanced oxidation processes to degrade organic pollutants.However,the practical applications of single photocatalysis and Fenton process are still limited.Introducing one of them into another to form a combined photocatalytic Fentonlike system has shown great potential but still faces challenges in designing a well-tailored catalyst.Herein,a confined photocatalytic Fenton-like micro-reactor catalyst with a movable Fe_(3) O_(4) core and a mesoporous TiO_(2) shell has been constructed via a successive Stober coating strategy,followed by an ultrasound assisted etching method.The resulting micro-reactor possesses well-defined yolk-shell structures with unifo rm mesopores(~4 nm),a large Brunauer-Emmett-Teller(BET) surface area(~166.7 m^(2)/g),a high pore volume(~0.56 cm^(3)/g) and a strong magnetization(~51 emu/g),as well as tunable reactor sizes(20-90 nm).When evaluated for degrading bisphenol A under solar light in the presence of peroxymo no sulfate,the micro-reactor exhibits a superior catalytic degradation perfo rmance with a high magnetic separation efficiency and an excellent recycle ability.The outstanding performance can be attributed to its unique textual structure,which leads to a great syne rgistic effect from the photocatalytic and Fenton-like process.This study gives an important insight into the design and synthesis of an advanced micro-reactor for a combined advanced oxidation processes(AOPs).
基金The authors are grateful of the financial support by the National Natural Science Foundation of China(51902083 and 21606068)the Foundation Strengthening Program(2019-JCJQ-142-00)the Higher Education Science and Technology Research Project of Hebei Province(ZD2019087).
文摘Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in the material research field.Herein,a kind of ultrafine zinc oxide(ZnO)nanoparticles(NPs)supported on three-dimensional(3D)ordered mesoporous carbon spheres(ZnO/OMCS)is prepared from silica inverse opal by using phenolic resol precursor as carbon source.The prepared lightweight ZnO/OMCS nanocomposites exhibit 3D ordered carbon sphere array and highly dispersed ultrafine ZnO NPs on the mesoporous cell walls of carbon spheres.ZnO/OMCS-30 shows microwave absorbing ability with a strong absorption(−39.3 dB at 10.4 GHz with a small thickness of 2 mm)and a broad effective absorption bandwidth(9.1 GHz).The outstanding microwave absorbing ability benefits to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure.This work opened up a unique way for developing lightweight and high-efficient carbon-based microwave absorbing materials.
基金This work was financially supported by the Natural Science Foundation of China(Grant No.51773062,61831021,51872283,21805273,22075279,22005297,22005298)the China Postdoctoral Science Foundation(Project No.2019M661421)+9 种基金the National Key R@D Program of China(Grants 2016YBF0100100,2016YFA0200200)the Liaoning BaiQianWan Talents Program,Liaoning Revitalization Talents Program(Grant XLYC1807153)the Natural Science Foundation of Liaoning Province,Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science(Grant 20180510038)the Dalian Innovation Support Plan for High Level Talents(2019RT09)DICP(DICP ZZBS201708,DICP ZZBS201802,and DICP 1202032)the DICP&QIBEBT(Grant DICP&QjBEBT UN201702)the Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL180310,DNL180308,DNL201912,and DNL201915)We thank Yucen Li and Prof.Ming Hu(East China Normal University,China)for the kind help in nitrogen absorption-desorption isotherms measurementalso thank the Material structure analysis center and Multifunctional Platform for Innovation of East China Normal University(003,004,006)the Center for Advanced Electronic Materials and Devices(AEMD)of Shanghai Jiao Tong University.
文摘Rational design and precise regulation over the morphology, structure, and pore size of functional conducting mesoporous polymers with enriched active sites and shorten electron–ion transport pathway are extremely important for developing high-performance micro-supercapacitors (MSCs), but still remain a great challenge. Herein, a general dual-colloid interface co-assembly strategy is proposed to fabricate hollow mesoporous polypyrrole nano-bowls (mPPy-nbs) for high-energy-density solid-state planar MSCs. By simply adjusting the size of block copolymer micelles, the diameter of polystyrene nanospheres and the amount of pyrrole monomer, mesopore size of the shell, void and shell thickness of mPPy-nbs can be simultaneously controlled. Importantly, this strategy can be further utilized to synthesize other hollow mesoporous polymers, including poly(tris(4-aminophenyl)amine), poly(1,3,5-triaminobenzene) and their copolymers, demonstrative of excellent universality. The structurally optimized mPPy-nb exhibits high specific surface area of 122 m^(2) g^(−1)and large capacitance of 225 F g^(−1) at 1 mV s^(−1). Furthermore, the MSCs assembled by mPPy-nbs deliver impressive volumetric capacitance of 90 F cm^(−3) and energy density of 2.0 mWh cm^(−3), superior to the most reported polymers-based MSCs. Also, the fabricated MSCs present excellent flexibility with almost no capacitance decay under varying bending states, and robust serial/parallel self-integration for boosting voltage and capacitance output. Therefore, this work will inspire the new design of mesoporous conducting polymer materials toward high-performance microscale supercapacitive devices.
基金the financial support from the National Natural Science Foundation of China(No.92163124)Foundation for the Sichuan University and Zigong City Joint research project(No.2021CDZG-2)+1 种基金Foundation for the Sichuan University and Yibin City Strategic Cooperation Project(No.2020CDYB-32)Guangxi Key Laboratory of Low Carbon Energy Material(No.2020GKLLCEM02)。
文摘Carbon materials are considered as prospective anode candidates for potassium ion batteries(PIBs).However,the low-rate capability is hampered by slow K+diffusion kinetics and obstructed electron transport of carbon-based anodes.In this work,calcium D-gluconate derived mesoporous carbon nanosheets(CGC)were interpenetrated into the architecture of reduced graphene oxides(RGO)to form the composites of two-dimensional(2D)/2D graphene/mesoporous carbon nanosheets(RGO@CGC).CGC as a rigid skeleton can prevent the graphene layers from restacking and maintain the structural stability of the 2D/2D carbon composites of RGO@CGC.The mesopores in CGC can shorten the path of ion diffusion and facilitate the penetration of electrolytes.RGO possesses the high surface-to-volume ratio and superior electron transport capability in the honeycomb-like 2D network consisting of sp^(2)-hybridized carbon atoms.Especially,theπ-πstacking interaction between CGC and RGO enhances stable composite structure formation,expedites interlayer-electron transfer,and establishes three-dimensional(3D)ion transportation pathways.Owing to these unique structure,RGO@CGC exhibits fast and stable potassium storage capability.Furthermore,the effects of binders and electrolytes on the electrochemical performance of RGO@CGC were investigated.Finally,Prussian blue was synthesized as a positive electrode to explore the possibility of RGO@CGC as a full battery application.
基金supported by the National Natural Science Foundation of China(Nos.50525311,20734006 and 50621302)
文摘Mesoporous silica (MS), 3-aminopropyltriethoxysilane (APTES) modified mesoporous silica (AMS), bis(3- trimethoxysilylpropyl)amine modified mesoporous silica (BAMS) and APTES modified solid spherical silica (AS) were prepared and used to immobilize metallocene catalysts for ethylene polymerization. Gel permeation chromatography results showed that polyethylenes (PEs) catalyzed by AMS (or BAMS) supported metallocene catalysts at the molar ratios of Al/Zr = 100, 300 and 500 were of bimodal molecular weight distribution (BMWD); while PEs catalyzed by the above catalysts at the molar ratios of Al/Zr 〉 800 were of monomodal molecular weight distribution (MMWD). However, MS (or AS) supported metallocene catalysts could only produce PEs with MMWD in spite of the molar ratio of Al/Zr. It was because that AMS (or BAMS) supported catalysts possessed two active sites for ethylene polymerization at low molar ratios of Al/Zr due to the combination effects of mesopore geometrical constraint and amino groups of the supports, which was confirmed by X-ray photoelectron spectroscopy. This brings forward a novel and easy method for the synthesis of polyolefin with BMWD.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.22278092,22078116 and 22222805)Guangdong Provincial Key Research and Development Program(No.2020B1111380002)+2 种基金Science and Technology Research Project of Guangzhou(Nos.2023A03J0034,2023A04J0077 and 202102020467)State Key Laboratory of Pulp and Paper Engineering(No.202313)Key Discipline of Materials Science and Engineering,Bureau of Education of Guangzhou(No.202255464).
文摘Developing high-capacity carbon-based anode materials is crucial for enhancing the performance of lithium-ion batteries(LIBs).In this study,we presented a nitrogen-doped lignin mesoporous carbon/nickel/nickel oxide(NHMC/Ni/NiO)nanocomposite for developing high-capacity LIBs anode materials through carbonization and selective etching strategies.The synthesized NMHC/Ni/NiO-0.33 composite exhibited a highly regular microstructure with well-dispersed Ni/NiO particles.The composite had a surface area of 408 m^(2)·g^(−1),a mesopore ratio of 75.0%,and a pyridine–nitrogen ratio of 58.9%.The introduction of nitrogen atoms reduced the disordered structure of lignin mesoporous carbon and enhanced its electrical conductivity,thus improving the lithium storage capabilities of the composite.Following 100 cycles at a current density of 0.2 A·g^(−1),the composite demonstrated enhanced Coulomb efficiency and rate performance,achieving a specific discharge capacity of 1230.9 mAh·g^(−1).At a high-current density of 1 A·g^(−1),the composite exhibited an excellent specific discharge capacity of 714.6 mAh·g^(−1).This study presents an innovative method for synthesizing high-performance anode materials of LIBs.
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC0720)Research Center for the Development of the Comprehensive Health Industry and Rural Revitalization of Sichuan TCM(No.DJKYB202306)State Administration of Traditional Chinese Medicine of Sichuan Province of China(No.2020HJZX001).
文摘Obesity has become a global threat to health;however,the available drugs for treating obesity are limited.We investigated the anti-obesity effect of hydroxy-α-sanshool(HAS),an amide derived from the fruit of Zanthoxylum bungeanum,which promotes the management of obesity by triggering the browning of white adipose tissue(WAT)targeting the membrane receptor of transient receptor potential vanilloid 1(TRPV1).However,HAS easily undergoes configuration transformation and oxidative degradation.The short peptide CKGGRAKDC or adipose-targeting sequence(ATS)binds specifically to prohibitin on the surface of WAT cells and can be used as recognition assembly to enhance adipocyte targetability.Furthermore,mesoporous silica nanoparticles(MSNs)are widely used in drug delivery systems because of their large specific surface area and pore volume.Therefore,HAS-loaded adipose-targeted MSNs(MSNs-ATS)were developed to enhance the adipocyte targetability,safety,and efficacy of HAS,and tested on mature 3T3-L1 cells and obese mouse models.MSNs-ATS showed higher specificity for adipocyte targetability without obvious toxicity.HAS-loaded MSNs-ATS showed anti-obesity effects superior to those of HAS alone.In conclusion,we successfully developed adipocyte-targeted,HAS-loaded MSNs with good safety and anti-obesity effects.
基金supported by the National Natural Science Foundation of China(No.21376251 and 21406233)the National Basic Research Development Program of China(2013CB632600)
文摘Hierarchical mesoporous MoO2/Mo2C/C microspheres,which are composed of primary nanoparticles with a size of about 30 nm,have been designed and synthesized through polymer regulation and subsequent carbonization processes.The as-synthesized microspheres were characterized by XRD,Raman,SEM,TEM,XPS measurements and so on.It was found that polyethylene glycol acted as a structure-directing agent,mild reducing agent and carbon source in the formation of these hierarchical mesoporous Mo O2/Mo2C/C microspheres.Moreover,the electrochemical property of the microspheres was also investigated in this work.Evaluated as an anode material for lithium ion batteries,the hierarchical mesoporous Mo O2/Mo2C/C electrode delivered the discharge specific capacities of 665 and 588 m Ah/g after 100 cycles at current densities of 100 and 200 m A/g,respectively.The satisfactory cycling performance and controllable process facilitate the practical applications of the hierarchical mesoporous Mo O2/Mo2C/C as a potential anode material in high-energy density lithium-ion batteries.
基金Project supported by National Key Research and Development Plan of China(2021YFB3802003,2022YFB3504102)the Key Research and Development Plan of Jiangsu Province(Social Development,BE2021713)+1 种基金the Six Talent Peaks Project of Jiangsu Province(JNHB-044)the Natural Science Foundation of Jiangsu Province of China(BK20160982)。
文摘Herein,we report the self-sacrificial template strategy to design mesoporous layered CeVWO_(x)/TiO_(2)catalysts for the selective catalytic reduction of NO by NH_(3)(NH_(3)-SCR).As-fabricated CeVWO_(x)/TiO_(2)catalysts with unique mesoporous and layered structure were successfully prepared through the synthesis of Ce,Ti-MOFs by solvothermal method,the impregnation of vanadium and tungsten in Ce,Ti-MOFs and high temperature calcination process.As NH_(3)-SCR catalysts,well-designed CeVWO_(x)/TiO_(2)catalysts exhibit excellent SCR activity with the NO_(x)conversion of over 90%between 210 and 470℃.Meanwhile,CeVWO_(x)/TiO_(2)shows superior tolerance to water vapor and SO_(2).The features of unique mesoporous layered nanostructure,surface acidity,tunable reducibility,active and the strong interaction of active metal oxide and support in CeVWO_(x)/TiO_(2)nanosheets should contribute to the improved SCR performance.In situ diffuse reflection infrared Fourier transform spectroscopy(DRIFTS)analysis indicates that both Langmuir-Hinshelwood(L-H)and Eley-Rideal(E-R)mechanisms are present on the surface of CeVWO_(x)/TiO_(2)at low temperature.This work offers a facile strategy to design and fabricate efficient 2D deNO_x catalyst.