Excellent fluid sealing performance is crucial to ensuring the safety of important equipment,especially in aerospace field,such as space capsule and fuel chamber.The frequently opening and closing of the sealing devic...Excellent fluid sealing performance is crucial to ensuring the safety of important equipment,especially in aerospace field,such as space capsule and fuel chamber.The frequently opening and closing of the sealing devices is particularly important.Driven by this background,clams(Mactra chinensis)which can open and close their double shells with superior sealing performance,are studied in this work.Here,we show that the clam’s sealing ability is the result of its unique multilevel intermeshing microstructures,including hinge teeth and micro-blocks.These microstructures,which resemble gear teeth,engage with each other when the shell closes,forming a tight structure that prevents the infiltration of water from the outside.Furthermore,the presence of micron blocks prevents the penetration of finer liquids.The simulation results of the bionic end seal components show that the multilevel microstructure has a superior sealing effect.This research is expected to be applied to undersea vehicles that require frequent door opening and closing.展开更多
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result...In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.展开更多
Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hie...Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs.展开更多
The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets.However,the accumulation of Co ele ment at the grain b...The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets.However,the accumulation of Co ele ment at the grain boundaries(GBs) changes the GBs from nonmagnetic to ferromagnetic and causes the thinlayer GBs to become rare,In this paper,the method of diffusing Tb element was chosen to improve the microstructure and temperature stability of high-Co magnets.Three original sintered Nd_(28.5)Dy_(3)-CO_(x)e_(bal)M_(0.6)B_(i)(x=0,6 wt%,12 wt%;M = Cu,Al,Zr) magnets with different Co contents were diffused with Tb by grain boundary diffusion(GBD).After GBD,high-Co magnets exhibit more continuously distributed thin-layer GBs,and their thermal stability is significantly improved.In high-Co magnets(x=6 wt%),the absolute value of the temperature coefficient of coercivity decreases from 0.603%/K to0.508%/K in the temperature range of 293-413 K,that of remanence decreases from 0.099%/K to 0.091%/K,and the coercivity increases from 18.44 to 25.04 kOe.Transmission electron microscopy(TEM)characterization reveals that there are both the 1:2 phase and the amorphous phase in the high-Co magnet before and after GBD,EDS elemental analysis shows that Tb element is more likely to preferentially replace the rare earth elements in the 2:14:1 main phase than in the 1:2 phase and the amorphous phase.The concentration of Tb at the edge of the main phase is much higher than that in the 1:2phase and amorphous phase,which is beneficial to the improvement of the microstructure.The preferential replacement of Tb elements at the edge of the 2:14:1 phase and thin-layer GBs with a more continuous distribution are synergistically responsible for improving the thermal stability of high-Co magnets.The study indicates that GBD is an effective method to improve the microstructure and thermal stability of high-Co magnets.展开更多
Scientists and engineers are looking forward to new manufacturing technologies to realize the integrated fabrication of macro shape and microstructure for the components with a short production chain, which can also s...Scientists and engineers are looking forward to new manufacturing technologies to realize the integrated fabrication of macro shape and microstructure for the components with a short production chain, which can also save materials and reduce energy consumption. Additive manufacturing (AM) technology is a new fabrication pattern with a character of a lay-by-lay material deposition. The components are fabricated in a bottom-up way, from points, lines, to layers and volume, which provided a capability to solve the impossible integrated fabrication problem for micro- and macro-structure by using conventional manufacturing technologies. Thus, based on integrated fabrication of micro- and macro- structures, research team in Xi’an Jiaotong University has been focusing on technological innovations and applications of advanced additive manufacturing technologies. Novel additive manufacturing principles have been proposed and explored, by which new AM processes and equipment for met- als, composites, ceramics, and biomaterials have been developed to support the industrial applications. Additive manufacturing and cutting-edge applications of advanced composite structure, metamaterials, bio-implants, and monocrystal alloy components have been investigated to push the new development of integrated fabrication of micro- and macro- structures.展开更多
The rapid evolution of laser micro/nano-manufacturing techniques has transformed precision manufacturing,enabling the creation of complex micro/nano-structures.These techniques are crucial for multiple industries,incl...The rapid evolution of laser micro/nano-manufacturing techniques has transformed precision manufacturing,enabling the creation of complex micro/nano-structures.These techniques are crucial for multiple industries,including electronics,photonics,and biomedical engineering,owing to their unmatched precision and versatility.The ability to manipulate materials at such scales has unlocked new possibilities for innovation,thereby facilitating the development of advanced components and devices with enhanced performance and functionalities.展开更多
Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step...Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step and controllable fabrication.Accordingly,based on tip-based fabrication techniques,this study proposed a micro-amplitude vibration-assisted scratching method by introducing a periodic backward displacement into the conventional scratching process,which enabled the synchronous creation of the microscale V-groove and nanoscale ripples,i.e.a typical micro/nano hierarchical structure.The experiments and finite element modeling were employed to explore the formation process and mechanism of the micro/nano hierarchical structures.Being different from conventional cutting,this method was mainly based on the plow mechanism,and it could accurately replicate the shape of the indenter on the material surface.The microscale V-groove was formed due to the scratching action,and the nanoscale ripple was formed due to the extrusion action of the indenter on the microscale V-groove’s surface.Furthermore,the relationships between the processing parameters and the dimensions of the micro/nano hierarchical structures were established through experiments,and optimized processing parameters were determined to achieve regular micro/nano hierarchical structures.By this method,complex patterns constructed by various micro/nano hierarchical structures were fabricated on both flat and curved surfaces,achieving diverse surface structural colors.展开更多
The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materia...The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing.展开更多
In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investig...In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investigated, then the reheating microstructures were investigated. Results show that: the difference of temperature between the outer and center is small and the difference of their microstructures are also small. During reheating at 576℃ the spheroidization of grains is significant after 5min and no rosettes are visible after 20min by optical microscopy. Similar observations were madeon materials reheated at 596℃, but the ripening process is faster. The grains growup to 30-60μm, fine enough for thixoforming.展开更多
[ Objective] Correlation of microstructure of leaf sheath epidermis and nutrient composition of palm plants with the damage degree of red palm fiber elephant in four kinds of plants in Nanning were analyzed in order t...[ Objective] Correlation of microstructure of leaf sheath epidermis and nutrient composition of palm plants with the damage degree of red palm fiber elephant in four kinds of plants in Nanning were analyzed in order to control the occurrence and damage of this insect in Nanning. [Method] Taken 4 kinds of Palmae plants in Nanning including Ravenea fivulafis, Washingtonia filifera, Phoenix canafiensis, Roystonea regia (HBK.)O. F. Cook as materials, damage situation of the red palm fiber elephant was investigated, microstructure of leaf sheath epidermis and nutrient composition of palm plants were analyzed and determined. [ Result] The results showed that there was direct correlation between the microstructure of leaf sheath epidermis and nutrient composition with the physical resistance of palm plant against red palm fiber elephant. The extend of damage from red palm fiber elephant had negatively relation with the thickness of corneum and leaf epidermis. The damage degree caused by red palm fiber elephant increased with the content of crude protein, crude ash and nitrogen free extract increasing, also increased with the content of rude fiber decreasing. [Condusion] The damage degree of red palm fiber elephant had a relationship with microstructure of leaf sheath epidermis and nutrient composition of palm plants.展开更多
A new type of light fiehl display is proposed using a head-mounted display (HMD) and a micro structure array (MSA, lens array or pinhole array). Each rendering point emits abundant rays from different directions i...A new type of light fiehl display is proposed using a head-mounted display (HMD) and a micro structure array (MSA, lens array or pinhole array). Each rendering point emits abundant rays from different directions into the viewer's pupil, and at one time the dense light field is generated inside the exit pupil of the HMD through the eyepiece. Therefore, the proposed method not only solves the problem of accommodation and convergence conflict in a traditional HMD, but also drastically reduces the huge data in real three-dimensional (3D) display. To demonstrate the proposed method, a prototype is developed, which is capable of giving the observer a real perception of depth.展开更多
[Objective] The paper was to study the effect of microporous structure of ac- tivated carbon on adsorption performance of n-butane. [Method] Using 8 activated car- bons prepared from different materials and technologi...[Objective] The paper was to study the effect of microporous structure of ac- tivated carbon on adsorption performance of n-butane. [Method] Using 8 activated car- bons prepared from different materials and technologies, the effects of physical prop- erties of activated carbon on butane adsorption performance were investigated. [Result] Specific surface area, pore volume and pore size distribution of activated carbon exert- ed remarkable effects on butane adsorption. The activated carbon with high percent- age of micropore volume within the range of 1.2-2 nm possessed high butane activity. The level of butane retentivity rose with the increase of the volume of pore within the range of 0.5-0,9 nm, which led to smaller butan working capacity (BWC). [Conclusion] The study provided reference for the adsorption research for activated carbon.展开更多
INCONEL725 is a highly corrosion resistant nickel based alloy capable of being age-hardened to high strength levels. The micro structure observations and the phase identification after a standard heat treatment were i...INCONEL725 is a highly corrosion resistant nickel based alloy capable of being age-hardened to high strength levels. The micro structure observations and the phase identification after a standard heat treatment were investigated. The results show that the precipitation phases include the strengthening phasesγ', γ', and 8 phase, primary carbide phase TiC, as well as M6 C carbide and a little extent MC (mainly TiC) precipitates which nucleate mainly at grain boundaries. An isothermal aging study was carried out on this alloy for up to 10 000 hours at 593℃. This additional aging did not affect the tensile strength. However, micro structures show that the thermal exposure has a little additional effect. With increasing the exposure time, the size of γ' phase slightly increases, almost no change for γ' phase, while M6C carbides precipitated at grain boundaries have an increased and complex tendency on a few grain boundaries. The experimental results illustrate the excellent structure stability of the age-hardenable IN725 at 593℃.展开更多
The phase transformation behavior and micro structure of Nb-Ru alloys have been studied by DSC, X-ray diffraction, optical microscopy, transmission electron microscopy (TEM) and high-resolution electron microscopy (HR...The phase transformation behavior and micro structure of Nb-Ru alloys have been studied by DSC, X-ray diffraction, optical microscopy, transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). Two-step phase transformation of CsCl (β) →face-centered tetragonal (β)→ monoclinic (β') occurs during cooling from high temperature to room temperature. The lattice parameters of marten-sites of Nb-Ru alloys were found to increase with the increase of Nb content. The martensite variants exhibit triangular self-accommodating morphology, with alternating regular bands inside. The twinning relationship between the sub structural bands was found to be (101) type I mode, and this kind of twinning interface was straight, well-defined and coherent.展开更多
The macro and micro cloud physics structures and their evolution with time are the core of describing cloud fields in essence.They are necessary atmospheric environment not only in aviation and spaceflight activities ...The macro and micro cloud physics structures and their evolution with time are the core of describing cloud fields in essence.They are necessary atmospheric environment not only in aviation and spaceflight activities but also for atmos- pheric radiation transfer and acid rain formation research.Unfortunately it is difficult to obtain an entire environmental cloud field by using observation methods directly.Thus,by use of computation physics method to build a cloud-system model may be an indispensable way for this topic.This paper presented a cloud-system model for this goal,and simu- lated a real case.The results of computation showed that the macro structure of the cloud field was better consistent with real observation,and the micro structure was fairly reasonable.The output of model could provide all the information about the cloud field:(1)size-distribution spectrum of hydrometeor particles (point),(2)vertical profile (line),(3)hori- zontal or vertical section of macro and micro parameters (surface),and (4)cloud cover,pattern of cloud and configura- tion of cloud,etc.(body).展开更多
O<span>steoporosis is an increasingly prevalent malady of the elderly that is associated with bone fragility and increased risk of fractures. Osteoporosis treatments focus on restoring bone strength and quality....O<span>steoporosis is an increasingly prevalent malady of the elderly that is associated with bone fragility and increased risk of fractures. Osteoporosis treatments focus on restoring bone strength and quality. Teriparatide (TPTD) is </span><span>a therapeutic agent that has been shown to increase bone strength by improving the volume and connectivity of trabecular bone. Exercise is also known to have pro-osteogenic effects. Here we used a rat model of severe osteoporosis (ovariectomized and tail-suspension) to evaluate th</span><span>e effects of TPTD, exercise and a combination of TPTD and exercise on the microstructure of trabecular </span><span>bone. TPTD mono-therapy and TPTD combined with exercise treatment significantly increased bone mineral density (BMD) in the whole body</span><span>. </span><span>Micro-computed tomography analysis revealed that </span><span>a combination of exercise and TPTD treatment significantly decreased bone surface to volume and trab</span><span>ecular separation compared with those of the control and exercise groups. Node-strut analysis indicated that exercise or TPTD alone did not affect trabecular bone connectivity. However, the combination of exercise and TPTD treatment significantly decreased measures of tra</span><span>becular bone connectivity (node number) that are consistent with a transition from rod-like to plate-like of trabecular bone microstructures. The combination treatment with exercise and TPTD improved microstructure of trabecular bone in the OVX and tail-suspended rats. These results indicate that combining exercise with TPTD represents a viable means to improve cancellous bone strength in osteoporosis populations.</span>展开更多
In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)proce...In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF.展开更多
Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the m...Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metallographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures.展开更多
Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two diffe...Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.展开更多
A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods....A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite.展开更多
基金supported by the National Natural Science Foundation of China(52105296,51973165 and 62161160311)the Fundamental Research Funds for the Central Universities(2042022kf1220)+1 种基金Open Fund of Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration(Wuhan University)(EMPI2023020)Large-scale Instrument And Equipment Sharing Foundation of Wuhan University.
文摘Excellent fluid sealing performance is crucial to ensuring the safety of important equipment,especially in aerospace field,such as space capsule and fuel chamber.The frequently opening and closing of the sealing devices is particularly important.Driven by this background,clams(Mactra chinensis)which can open and close their double shells with superior sealing performance,are studied in this work.Here,we show that the clam’s sealing ability is the result of its unique multilevel intermeshing microstructures,including hinge teeth and micro-blocks.These microstructures,which resemble gear teeth,engage with each other when the shell closes,forming a tight structure that prevents the infiltration of water from the outside.Furthermore,the presence of micron blocks prevents the penetration of finer liquids.The simulation results of the bionic end seal components show that the multilevel microstructure has a superior sealing effect.This research is expected to be applied to undersea vehicles that require frequent door opening and closing.
基金Project(2013AA050901)supported by the National High-tech Research and Development Program of China
文摘In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.
基金Supported by National Natural Science Foundation of China(Grant Nos.52035004,52105434).
文摘Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs.
基金supported by the National Key R&D Program of China (2021YFB3502902,2021YFB3503100,2022YFB3503300,2022YFB3505200)。
文摘The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets.However,the accumulation of Co ele ment at the grain boundaries(GBs) changes the GBs from nonmagnetic to ferromagnetic and causes the thinlayer GBs to become rare,In this paper,the method of diffusing Tb element was chosen to improve the microstructure and temperature stability of high-Co magnets.Three original sintered Nd_(28.5)Dy_(3)-CO_(x)e_(bal)M_(0.6)B_(i)(x=0,6 wt%,12 wt%;M = Cu,Al,Zr) magnets with different Co contents were diffused with Tb by grain boundary diffusion(GBD).After GBD,high-Co magnets exhibit more continuously distributed thin-layer GBs,and their thermal stability is significantly improved.In high-Co magnets(x=6 wt%),the absolute value of the temperature coefficient of coercivity decreases from 0.603%/K to0.508%/K in the temperature range of 293-413 K,that of remanence decreases from 0.099%/K to 0.091%/K,and the coercivity increases from 18.44 to 25.04 kOe.Transmission electron microscopy(TEM)characterization reveals that there are both the 1:2 phase and the amorphous phase in the high-Co magnet before and after GBD,EDS elemental analysis shows that Tb element is more likely to preferentially replace the rare earth elements in the 2:14:1 main phase than in the 1:2 phase and the amorphous phase.The concentration of Tb at the edge of the main phase is much higher than that in the 1:2phase and amorphous phase,which is beneficial to the improvement of the microstructure.The preferential replacement of Tb elements at the edge of the 2:14:1 phase and thin-layer GBs with a more continuous distribution are synergistically responsible for improving the thermal stability of high-Co magnets.The study indicates that GBD is an effective method to improve the microstructure and thermal stability of high-Co magnets.
文摘Scientists and engineers are looking forward to new manufacturing technologies to realize the integrated fabrication of macro shape and microstructure for the components with a short production chain, which can also save materials and reduce energy consumption. Additive manufacturing (AM) technology is a new fabrication pattern with a character of a lay-by-lay material deposition. The components are fabricated in a bottom-up way, from points, lines, to layers and volume, which provided a capability to solve the impossible integrated fabrication problem for micro- and macro-structure by using conventional manufacturing technologies. Thus, based on integrated fabrication of micro- and macro- structures, research team in Xi’an Jiaotong University has been focusing on technological innovations and applications of advanced additive manufacturing technologies. Novel additive manufacturing principles have been proposed and explored, by which new AM processes and equipment for met- als, composites, ceramics, and biomaterials have been developed to support the industrial applications. Additive manufacturing and cutting-edge applications of advanced composite structure, metamaterials, bio-implants, and monocrystal alloy components have been investigated to push the new development of integrated fabrication of micro- and macro- structures.
文摘The rapid evolution of laser micro/nano-manufacturing techniques has transformed precision manufacturing,enabling the creation of complex micro/nano-structures.These techniques are crucial for multiple industries,including electronics,photonics,and biomedical engineering,owing to their unmatched precision and versatility.The ability to manipulate materials at such scales has unlocked new possibilities for innovation,thereby facilitating the development of advanced components and devices with enhanced performance and functionalities.
基金supported by the Jilin Province Key Research and Development Plan Project(20240302066GX)the National Natural Science Foundation of China(Grant No.52075221)the Fundamental Research Funds for the Central Universities(2023-JCXK-02)。
文摘Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step and controllable fabrication.Accordingly,based on tip-based fabrication techniques,this study proposed a micro-amplitude vibration-assisted scratching method by introducing a periodic backward displacement into the conventional scratching process,which enabled the synchronous creation of the microscale V-groove and nanoscale ripples,i.e.a typical micro/nano hierarchical structure.The experiments and finite element modeling were employed to explore the formation process and mechanism of the micro/nano hierarchical structures.Being different from conventional cutting,this method was mainly based on the plow mechanism,and it could accurately replicate the shape of the indenter on the material surface.The microscale V-groove was formed due to the scratching action,and the nanoscale ripple was formed due to the extrusion action of the indenter on the microscale V-groove’s surface.Furthermore,the relationships between the processing parameters and the dimensions of the micro/nano hierarchical structures were established through experiments,and optimized processing parameters were determined to achieve regular micro/nano hierarchical structures.By this method,complex patterns constructed by various micro/nano hierarchical structures were fabricated on both flat and curved surfaces,achieving diverse surface structural colors.
基金Projects(51134007,21003161,21250110060) supported by the National Natural Science Foundation of ChinaProject(11MX10) supported by Central South University Annual Mittal-Founded Innovation ProjectProject(2011ssxt086) supported by Fundamental Research Funds for the Central Universities,China
文摘The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing.
基金The National Natural Science Foundation of China (Grants No. 59974009) is greatly acknowledged for their financial support.
文摘In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investigated, then the reheating microstructures were investigated. Results show that: the difference of temperature between the outer and center is small and the difference of their microstructures are also small. During reheating at 576℃ the spheroidization of grains is significant after 5min and no rosettes are visible after 20min by optical microscopy. Similar observations were madeon materials reheated at 596℃, but the ripening process is faster. The grains growup to 30-60μm, fine enough for thixoforming.
基金Supported by Guangxi Agricultural College Science Topics(B070206)~~
文摘[ Objective] Correlation of microstructure of leaf sheath epidermis and nutrient composition of palm plants with the damage degree of red palm fiber elephant in four kinds of plants in Nanning were analyzed in order to control the occurrence and damage of this insect in Nanning. [Method] Taken 4 kinds of Palmae plants in Nanning including Ravenea fivulafis, Washingtonia filifera, Phoenix canafiensis, Roystonea regia (HBK.)O. F. Cook as materials, damage situation of the red palm fiber elephant was investigated, microstructure of leaf sheath epidermis and nutrient composition of palm plants were analyzed and determined. [ Result] The results showed that there was direct correlation between the microstructure of leaf sheath epidermis and nutrient composition with the physical resistance of palm plant against red palm fiber elephant. The extend of damage from red palm fiber elephant had negatively relation with the thickness of corneum and leaf epidermis. The damage degree caused by red palm fiber elephant increased with the content of crude protein, crude ash and nitrogen free extract increasing, also increased with the content of rude fiber decreasing. [Condusion] The damage degree of red palm fiber elephant had a relationship with microstructure of leaf sheath epidermis and nutrient composition of palm plants.
基金partially supported by the National Basic Research Program of China(No.2013CB328805)the National Science Foundation of China(NSFC,No.61205024,61178038)the National Key Technology R&D Program(No.2012BAH64F03)
文摘A new type of light fiehl display is proposed using a head-mounted display (HMD) and a micro structure array (MSA, lens array or pinhole array). Each rendering point emits abundant rays from different directions into the viewer's pupil, and at one time the dense light field is generated inside the exit pupil of the HMD through the eyepiece. Therefore, the proposed method not only solves the problem of accommodation and convergence conflict in a traditional HMD, but also drastically reduces the huge data in real three-dimensional (3D) display. To demonstrate the proposed method, a prototype is developed, which is capable of giving the observer a real perception of depth.
基金Supported by "Eleventh Five-Year" National Science and Technology Support Project(2009BADB1B03)Forestry Public Welfare Industry Special (201004051)~~
文摘[Objective] The paper was to study the effect of microporous structure of ac- tivated carbon on adsorption performance of n-butane. [Method] Using 8 activated car- bons prepared from different materials and technologies, the effects of physical prop- erties of activated carbon on butane adsorption performance were investigated. [Result] Specific surface area, pore volume and pore size distribution of activated carbon exert- ed remarkable effects on butane adsorption. The activated carbon with high percent- age of micropore volume within the range of 1.2-2 nm possessed high butane activity. The level of butane retentivity rose with the increase of the volume of pore within the range of 0.5-0,9 nm, which led to smaller butan working capacity (BWC). [Conclusion] The study provided reference for the adsorption research for activated carbon.
基金The project was supported by National Natural Science Foundation of China (Grant No.50171005) the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE. The authors very thank Special Metals Corpora
文摘INCONEL725 is a highly corrosion resistant nickel based alloy capable of being age-hardened to high strength levels. The micro structure observations and the phase identification after a standard heat treatment were investigated. The results show that the precipitation phases include the strengthening phasesγ', γ', and 8 phase, primary carbide phase TiC, as well as M6 C carbide and a little extent MC (mainly TiC) precipitates which nucleate mainly at grain boundaries. An isothermal aging study was carried out on this alloy for up to 10 000 hours at 593℃. This additional aging did not affect the tensile strength. However, micro structures show that the thermal exposure has a little additional effect. With increasing the exposure time, the size of γ' phase slightly increases, almost no change for γ' phase, while M6C carbides precipitated at grain boundaries have an increased and complex tendency on a few grain boundaries. The experimental results illustrate the excellent structure stability of the age-hardenable IN725 at 593℃.
基金The authors would like to thank financial support of National Natural Science Foundation of China(Project No.59901004).
文摘The phase transformation behavior and micro structure of Nb-Ru alloys have been studied by DSC, X-ray diffraction, optical microscopy, transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). Two-step phase transformation of CsCl (β) →face-centered tetragonal (β)→ monoclinic (β') occurs during cooling from high temperature to room temperature. The lattice parameters of marten-sites of Nb-Ru alloys were found to increase with the increase of Nb content. The martensite variants exhibit triangular self-accommodating morphology, with alternating regular bands inside. The twinning relationship between the sub structural bands was found to be (101) type I mode, and this kind of twinning interface was straight, well-defined and coherent.
基金the National Natural Science Foundation of China State Key Projects for Science and Technology during the 8th Five-Year Plan 85906-04-03
文摘The macro and micro cloud physics structures and their evolution with time are the core of describing cloud fields in essence.They are necessary atmospheric environment not only in aviation and spaceflight activities but also for atmos- pheric radiation transfer and acid rain formation research.Unfortunately it is difficult to obtain an entire environmental cloud field by using observation methods directly.Thus,by use of computation physics method to build a cloud-system model may be an indispensable way for this topic.This paper presented a cloud-system model for this goal,and simu- lated a real case.The results of computation showed that the macro structure of the cloud field was better consistent with real observation,and the micro structure was fairly reasonable.The output of model could provide all the information about the cloud field:(1)size-distribution spectrum of hydrometeor particles (point),(2)vertical profile (line),(3)hori- zontal or vertical section of macro and micro parameters (surface),and (4)cloud cover,pattern of cloud and configura- tion of cloud,etc.(body).
文摘O<span>steoporosis is an increasingly prevalent malady of the elderly that is associated with bone fragility and increased risk of fractures. Osteoporosis treatments focus on restoring bone strength and quality. Teriparatide (TPTD) is </span><span>a therapeutic agent that has been shown to increase bone strength by improving the volume and connectivity of trabecular bone. Exercise is also known to have pro-osteogenic effects. Here we used a rat model of severe osteoporosis (ovariectomized and tail-suspension) to evaluate th</span><span>e effects of TPTD, exercise and a combination of TPTD and exercise on the microstructure of trabecular </span><span>bone. TPTD mono-therapy and TPTD combined with exercise treatment significantly increased bone mineral density (BMD) in the whole body</span><span>. </span><span>Micro-computed tomography analysis revealed that </span><span>a combination of exercise and TPTD treatment significantly decreased bone surface to volume and trab</span><span>ecular separation compared with those of the control and exercise groups. Node-strut analysis indicated that exercise or TPTD alone did not affect trabecular bone connectivity. However, the combination of exercise and TPTD treatment significantly decreased measures of tra</span><span>becular bone connectivity (node number) that are consistent with a transition from rod-like to plate-like of trabecular bone microstructures. The combination treatment with exercise and TPTD improved microstructure of trabecular bone in the OVX and tail-suspended rats. These results indicate that combining exercise with TPTD represents a viable means to improve cancellous bone strength in osteoporosis populations.</span>
文摘In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF.
基金supported by National Natural Science Foundation of China(Grant No.50675049)
文摘Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metallographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures.
文摘Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.
文摘A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite.