期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
CO_(2)nanobubble-enhanced cement-fly ash backfill:Optimizing aggregate gradation and microstructure
1
作者 Xiaoxiao Cao Haoyan Lyu +4 位作者 Yanlong Chen Jiangyu Wu Hideki Shimada Takashi Sasaoka Akihiro Hamanaka 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期129-140,共12页
Mine filling materials urgently need to improve mechanical properties and achieve low-carbon transformation.This study explores the mechanism of the synergistic effect of optimizing aggregate fractal grading and intro... Mine filling materials urgently need to improve mechanical properties and achieve low-carbon transformation.This study explores the mechanism of the synergistic effect of optimizing aggregate fractal grading and introducing CO_(2)nanobubble technology to improve the performance of cement-fly ash-based backfill materials(CFB).The properties including fluidity,setting time,uniaxial compressive strength,elastic modulus,porosity,microstructure and CO_(2)storage performance were systematically studied through methods such as fluidity evaluation,time test,uniaxial compression test,mercury intrusion porosimetry(MIP),scanning electron microscopy-energy dispersive spectroscopy analysis(SEM-EDS),and thermogravimetric-differential thermogravimetric analysis(TG-DTG).The experimental results show that the density and strength of the material are significantly improved under the synergistic effect of fractal dimension and CO_(2)nanobubbles.When the fractal dimension reaches 2.65,the mass ratio of coarse and fine aggregates reaches the optimal balance,and the structural density is greatly improved at the same time.At this time,the uniaxial compressive strength and elastic modulus reach their peak values,with increases of up to 13.46%and 27.47%,respectively.CO_(2)nanobubbles enhance the material properties by promoting hydration reaction and carbonization.At the microscopic level,CO_(2)nanobubble water promotes the formation of C-S-H(hydrated calcium silicate),C-A-S-H(hydrated calcium aluminium silicate)gel and CaCO_(3),which is the main way to enhance the performance.Thermogravimetric studies have shown that when the fractal dimension is 2.65,the dehydration of hydration products and the decarbonization process of CaCO_(3)are most obvious,and CO_(2)nanobubble water promotes the carbonization reaction,making it surpass the natural state.The CO_(2)sequestration quality of cement-fly ash-based materials treated with CO_(2)nanobubble water at different fractal dimensions increased by 12.4wt%to 99.8wt%.The results not only provide scientific insights for the design and implementation of low-carbon filling materials,but also provide a solid theoretical basis for strengthening green mining practices and promoting sustainable resource utilization. 展开更多
关键词 cement-fly ash-based backfill CO_(2)nanobubble fractal dimension macro and micro performance carbon sequestration
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部