The current microgrid power management system is undergoing a significant and drastic overhaul. The integration of existing electrical infrastructure with an information and communication network is an inherent and si...The current microgrid power management system is undergoing a significant and drastic overhaul. The integration of existing electrical infrastructure with an information and communication network is an inherent and significant need for microgrid classification and operation in this case. Microgrid technology’s most important features: 1) Full duplex communication;2) Advanced metering infrastructure;3) Renewable and energy resource integration;4) Distribution automation and complete monitoring, as well as overall power system control. A microgrid’s communication infrastructure is made up of several hierarchical communication networks. Microgrid applications can frequently be found in numerous aspects of energy consumption. Because it provides a spontaneous communicational network, the Internet of Things plays a fundamental and crucial role in Microgrid infrastructure. This paper covers the deployment of a comprehensive energy management system for microgrid communication infrastructure based on the Internet of Things (IoT). This paper discusses microgrid operations and controls using the Internet of Things (IoT) architecture. Microgrids make use of IoT-enabled technologies, in conjunction with power grid equipment, which are enabling local networks to provide additional services on top of the essential supply of electricity to local networks that operate in parallel with or independently of the regional grid. Local balancing, internal blockage management, and request for support marketplace or grid operator activities are examples of auxiliary services provided by the microgrid that can add value to each end-user and other true stakeholders. Different technologies, architectures, and applications that use IoT as a key element with the main purpose of preserving and regulating innovative smart microgrids in accordance with modern optimization features and regulations are designed to update and improve efficiency, resiliency, and economics.展开更多
The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in re...The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in remote areas.So far,Solar Home Systems(SHS)have mostly been applied to increase electricity access in rural areas.SHSs have continuous constraints to meet electricity demands and cannot run income-generating activities.The current research presents the feasibility study of electrifying Remera village with the smart microgrid as a case study.The renewable energy resources available in Remera are the key sources of electricity in that village.The generation capacity is estimated based on the load profile.The microgrid configurations are simulated with HOMER,and the genetic algorithm is used to analyze the optimum cost.By analyzing the impact of operation and maintenance costs,the results show that the absence of subsidies increases the levelized cost of electricity(COE)five times greater than the electricity price from the public utility.The microgrid made up of PV,diesel generator,and batteries proved to be the most viable solution and ensured continuous power supply to customers.By considering the subsidies,COE reaches 0.186$/kWh,a competitive price with electricity from public utilities in Rwanda.展开更多
This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources an...This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources and load of user changes randomly and the non-tinearity of the power output by renewable generations, an intelligent optimization method based on the improvement of the genetic algorithm and the control strategy are discussed. The instance analysis is compared with the optimization result of the hybrid system based on HOMER (hybrid optimization of multiple energy resources) and GA (genetic algorithm) method on Matlab software. The simulation result of the optimal configuration showed the new hybrid renewable system and would improve the power supply situation which decreased the cost of energy greatly compared with the conventional form of power supply system which was operated only by diesel. The conclusion of the comparing result between HOMER and GA method shows the advantages of the strategy for the diesel as main control sources.展开更多
Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency devia...Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency deviations,voltage fluctuations,and poor reactive power coordination,posing serious challenges to grid stability.Conventional Interconnection FlowControllers(IFCs)primarily regulate active power flowand fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks.To overcome these limitations,this study proposes an enhanced Interconnection Flow Controller(e-IFC)that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller(IRFC)within a unified adaptive control structure.The proposed e-IFC is implemented and analyzed in DIgSILENT PowerFactory to evaluate its performance under various grid disturbances,including frequency drops,load changes,and reactive power fluctuations.Simulation results reveal that the e-IFC achieves 27.4% higher active power sharing accuracy,19.6% lower reactive power deviation,and 18.2% improved frequency stability compared to the conventional IFC.The adaptive controller ensures seamless transitions between grid-connected and islanded modes and maintains stable operation even under communication delays and data noise.Overall,the proposed e-IFCsignificantly enhances active-reactive power coordination and dynamic stability in renewable-integrated multi-microgrid systems.Future research will focus on coupling the e-IFC with tertiary-level optimization frameworks and conducting hardware-in-the-loop validation to enable its application in large-scale smart microgrid environments.展开更多
The interconnection between initially independent energy infrastructures offers additional system flexibility and efficiency.The integration at distribution level simplifies the implementation of the integrated energy...The interconnection between initially independent energy infrastructures offers additional system flexibility and efficiency.The integration at distribution level simplifies the implementation of the integrated energy system functionalities.This paper proposes concepts and design principles of a smart micro energy grid(MEG)for accommodating micro-grids,distributed poly-generation systems,energy storage facilities,and associated energy distribution infrastructures.The energy management system is responsible for the smart operation of the MEG while supporting multiple criteria,such as safety,economy,and environmental protection.To realize the vision of the smart MEG,an engineering game theory based energy management system with self-approaching-optimum capability is investigated.Based on the proposed concepts,design principles,and energy management system,this paper presents a prototype of China’s first conceptual solar-based smart MEG,established in Qinghai University.展开更多
We extract a mathematical model to simulate the steady-state charging and discharging behaviors of an electrochemical storage over a 24-hour time interval.Moreover,we develop a model for optimizing the daily operation...We extract a mathematical model to simulate the steady-state charging and discharging behaviors of an electrochemical storage over a 24-hour time interval.Moreover,we develop a model for optimizing the daily operational planning of an interconnected micro grid considering electrochemical storage.The optimization model is formulated to maximize the total benefit of the micro grid via selling power to its end consumers and also exchanging power with the wholesale energy market so that the constraints of distributed energy resources(DERs) and low-voltage grid are met.The optimization problem is solved by a genetic algorithm,and applied on two micro grids operating under different scenarios containing the absence or presence of electrochemical storages.Comparison of the results of the optimization model for this micro grid,with and without electrochemical storage,shows that the electrochemical storage can improve the economical efficiency of the interconnected micro grids by up to 10.16%.展开更多
In this paper, a hybrid optimization algorithm is proposed for modeling and managing the micro grid (MG) system. The management of distributed energy sources with MG is a multi-objective problem which consists of wi...In this paper, a hybrid optimization algorithm is proposed for modeling and managing the micro grid (MG) system. The management of distributed energy sources with MG is a multi-objective problem which consists of wind turbine (WT), photovoltaic (PV) array, fuel cell (FC), micro turbine (MT) and diesel generator (DG). Because, perfect economic model of energy source of the MG units are needed to describe the operating cost of the output power generated, the objective of the hybrid model is to minimize the fuel cost of the MG sources such as FC, MT and DG. The problem formulation takes into consideration the optimal configuration of the MG at a minimum fuel cost, operation and maintenance costs as well as emissions reduction. Here, the hybrid algorithm is obtained as artificial bee colony (ABC) algorithm, which is used in two stages. The first stage of the ABC gets the optimal MG configuration at a minimum fuel cost for the required load demand. From the minimized fuel cost functions, the operation and maintenance cost as well as the emission is reduced using the second stage of the ABC. The proposed method is implemented in the Maflab/ Simulink platform and its effectiveness is analyzed by comparing with existing techniques. The comparison demonstrates the superiority of the proposed approach and confirms its potential to solve the problem.展开更多
Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range o...Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range of charging pressure(1 to 21 MPa).Our analyses show that the baseline LAES could achieve an electrical round trip efficiency(e RTE)above 60%at a high charging pressure of 19 MPa.The baseline LAES,however,produces a large amount of excess heat particularly at low charging pressures with the maximum occurred at~1 MPa.Hence,the performance of the baseline LAES,especially at low charging pressures,is underestimated by only considering electrical energy in all the previous research.The performance of the baseline LAES with excess heat is then evaluated which gives a high e RTE even at lower charging pressures;the local maximum of 62%is achieved at~4 MPa.As a result of the above,a hybrid LAES system is proposed to provide cooling,heating,hot water and power.To evaluate the performance of the hybrid LAES system,three performance indicators are considered:nominal-electrical round trip efficiency(ne RTE),primary energy savings and avoided carbon dioxide emissions.Our results show that the hybrid LAES can achieve a high ne RTE between 52%and 76%,with the maximum at~5 MPa.For a given size of hybrid LAES(1 MW×8 h),the primary energy savings and avoided carbon dioxide emissions are up to 12.1 MWh and 2.3 ton,respectively.These new findings suggest,for the first time,that small-scale LAES systems could be best operated at lower charging pressures and the technologies have a great potential for applications in local decentralized micro energy networks.展开更多
This paper proposes a distributed computing architecture for protection functions within a digital substation, in order to achieve data redundancy, functional redundancy and functional coordination. This can be realiz...This paper proposes a distributed computing architecture for protection functions within a digital substation, in order to achieve data redundancy, functional redundancy and functional coordination. This can be realized primarily due to the advances in digital and communications technology within a substation, particularly the process bus which allows data sharing between Intelligent Electronic Devices(IEDs). Results of backup protection investigation, using redundant information both within the substation and on a wide area basis, are then presented. A campus microgrid protection scheme was used as a test case to demonstrate the concept of protection using shared information. Finally, the paper proposes a multi-agent system as a simulation platform, which can be used to further demonstrate some of these concepts.展开更多
文摘The current microgrid power management system is undergoing a significant and drastic overhaul. The integration of existing electrical infrastructure with an information and communication network is an inherent and significant need for microgrid classification and operation in this case. Microgrid technology’s most important features: 1) Full duplex communication;2) Advanced metering infrastructure;3) Renewable and energy resource integration;4) Distribution automation and complete monitoring, as well as overall power system control. A microgrid’s communication infrastructure is made up of several hierarchical communication networks. Microgrid applications can frequently be found in numerous aspects of energy consumption. Because it provides a spontaneous communicational network, the Internet of Things plays a fundamental and crucial role in Microgrid infrastructure. This paper covers the deployment of a comprehensive energy management system for microgrid communication infrastructure based on the Internet of Things (IoT). This paper discusses microgrid operations and controls using the Internet of Things (IoT) architecture. Microgrids make use of IoT-enabled technologies, in conjunction with power grid equipment, which are enabling local networks to provide additional services on top of the essential supply of electricity to local networks that operate in parallel with or independently of the regional grid. Local balancing, internal blockage management, and request for support marketplace or grid operator activities are examples of auxiliary services provided by the microgrid that can add value to each end-user and other true stakeholders. Different technologies, architectures, and applications that use IoT as a key element with the main purpose of preserving and regulating innovative smart microgrids in accordance with modern optimization features and regulations are designed to update and improve efficiency, resiliency, and economics.
文摘The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in remote areas.So far,Solar Home Systems(SHS)have mostly been applied to increase electricity access in rural areas.SHSs have continuous constraints to meet electricity demands and cannot run income-generating activities.The current research presents the feasibility study of electrifying Remera village with the smart microgrid as a case study.The renewable energy resources available in Remera are the key sources of electricity in that village.The generation capacity is estimated based on the load profile.The microgrid configurations are simulated with HOMER,and the genetic algorithm is used to analyze the optimum cost.By analyzing the impact of operation and maintenance costs,the results show that the absence of subsidies increases the levelized cost of electricity(COE)five times greater than the electricity price from the public utility.The microgrid made up of PV,diesel generator,and batteries proved to be the most viable solution and ensured continuous power supply to customers.By considering the subsidies,COE reaches 0.186$/kWh,a competitive price with electricity from public utilities in Rwanda.
文摘This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources and load of user changes randomly and the non-tinearity of the power output by renewable generations, an intelligent optimization method based on the improvement of the genetic algorithm and the control strategy are discussed. The instance analysis is compared with the optimization result of the hybrid system based on HOMER (hybrid optimization of multiple energy resources) and GA (genetic algorithm) method on Matlab software. The simulation result of the optimal configuration showed the new hybrid renewable system and would improve the power supply situation which decreased the cost of energy greatly compared with the conventional form of power supply system which was operated only by diesel. The conclusion of the comparing result between HOMER and GA method shows the advantages of the strategy for the diesel as main control sources.
基金the Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia,for funding this research work through the project number“NBU-FFR-2025-3623-11”.
文摘Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency deviations,voltage fluctuations,and poor reactive power coordination,posing serious challenges to grid stability.Conventional Interconnection FlowControllers(IFCs)primarily regulate active power flowand fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks.To overcome these limitations,this study proposes an enhanced Interconnection Flow Controller(e-IFC)that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller(IRFC)within a unified adaptive control structure.The proposed e-IFC is implemented and analyzed in DIgSILENT PowerFactory to evaluate its performance under various grid disturbances,including frequency drops,load changes,and reactive power fluctuations.Simulation results reveal that the e-IFC achieves 27.4% higher active power sharing accuracy,19.6% lower reactive power deviation,and 18.2% improved frequency stability compared to the conventional IFC.The adaptive controller ensures seamless transitions between grid-connected and islanded modes and maintains stable operation even under communication delays and data noise.Overall,the proposed e-IFCsignificantly enhances active-reactive power coordination and dynamic stability in renewable-integrated multi-microgrid systems.Future research will focus on coupling the e-IFC with tertiary-level optimization frameworks and conducting hardware-in-the-loop validation to enable its application in large-scale smart microgrid environments.
基金supported in part by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(51621065)in part by Key Lab Program of Science and Technology Office of Qinghai Province(2017-ZJ-Y27)in part by the National Natural Science Foundation of China(51577163).
文摘The interconnection between initially independent energy infrastructures offers additional system flexibility and efficiency.The integration at distribution level simplifies the implementation of the integrated energy system functionalities.This paper proposes concepts and design principles of a smart micro energy grid(MEG)for accommodating micro-grids,distributed poly-generation systems,energy storage facilities,and associated energy distribution infrastructures.The energy management system is responsible for the smart operation of the MEG while supporting multiple criteria,such as safety,economy,and environmental protection.To realize the vision of the smart MEG,an engineering game theory based energy management system with self-approaching-optimum capability is investigated.Based on the proposed concepts,design principles,and energy management system,this paper presents a prototype of China’s first conceptual solar-based smart MEG,established in Qinghai University.
文摘We extract a mathematical model to simulate the steady-state charging and discharging behaviors of an electrochemical storage over a 24-hour time interval.Moreover,we develop a model for optimizing the daily operational planning of an interconnected micro grid considering electrochemical storage.The optimization model is formulated to maximize the total benefit of the micro grid via selling power to its end consumers and also exchanging power with the wholesale energy market so that the constraints of distributed energy resources(DERs) and low-voltage grid are met.The optimization problem is solved by a genetic algorithm,and applied on two micro grids operating under different scenarios containing the absence or presence of electrochemical storages.Comparison of the results of the optimization model for this micro grid,with and without electrochemical storage,shows that the electrochemical storage can improve the economical efficiency of the interconnected micro grids by up to 10.16%.
文摘In this paper, a hybrid optimization algorithm is proposed for modeling and managing the micro grid (MG) system. The management of distributed energy sources with MG is a multi-objective problem which consists of wind turbine (WT), photovoltaic (PV) array, fuel cell (FC), micro turbine (MT) and diesel generator (DG). Because, perfect economic model of energy source of the MG units are needed to describe the operating cost of the output power generated, the objective of the hybrid model is to minimize the fuel cost of the MG sources such as FC, MT and DG. The problem formulation takes into consideration the optimal configuration of the MG at a minimum fuel cost, operation and maintenance costs as well as emissions reduction. Here, the hybrid algorithm is obtained as artificial bee colony (ABC) algorithm, which is used in two stages. The first stage of the ABC gets the optimal MG configuration at a minimum fuel cost for the required load demand. From the minimized fuel cost functions, the operation and maintenance cost as well as the emission is reduced using the second stage of the ABC. The proposed method is implemented in the Maflab/ Simulink platform and its effectiveness is analyzed by comparing with existing techniques. The comparison demonstrates the superiority of the proposed approach and confirms its potential to solve the problem.
基金the partial support from UK EPSRC Manifest Project under EP/N032888/1,EP/P003605/1a UK FCO Science&Innovation Network grant(Global Partnerships Fund)an IGI/IAS Global Challenges Funding(IGI/IAS ID 3041)。
文摘Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range of charging pressure(1 to 21 MPa).Our analyses show that the baseline LAES could achieve an electrical round trip efficiency(e RTE)above 60%at a high charging pressure of 19 MPa.The baseline LAES,however,produces a large amount of excess heat particularly at low charging pressures with the maximum occurred at~1 MPa.Hence,the performance of the baseline LAES,especially at low charging pressures,is underestimated by only considering electrical energy in all the previous research.The performance of the baseline LAES with excess heat is then evaluated which gives a high e RTE even at lower charging pressures;the local maximum of 62%is achieved at~4 MPa.As a result of the above,a hybrid LAES system is proposed to provide cooling,heating,hot water and power.To evaluate the performance of the hybrid LAES system,three performance indicators are considered:nominal-electrical round trip efficiency(ne RTE),primary energy savings and avoided carbon dioxide emissions.Our results show that the hybrid LAES can achieve a high ne RTE between 52%and 76%,with the maximum at~5 MPa.For a given size of hybrid LAES(1 MW×8 h),the primary energy savings and avoided carbon dioxide emissions are up to 12.1 MWh and 2.3 ton,respectively.These new findings suggest,for the first time,that small-scale LAES systems could be best operated at lower charging pressures and the technologies have a great potential for applications in local decentralized micro energy networks.
基金supported by the National Natural Science Foundation of China under grant number 51277009
文摘This paper proposes a distributed computing architecture for protection functions within a digital substation, in order to achieve data redundancy, functional redundancy and functional coordination. This can be realized primarily due to the advances in digital and communications technology within a substation, particularly the process bus which allows data sharing between Intelligent Electronic Devices(IEDs). Results of backup protection investigation, using redundant information both within the substation and on a wide area basis, are then presented. A campus microgrid protection scheme was used as a test case to demonstrate the concept of protection using shared information. Finally, the paper proposes a multi-agent system as a simulation platform, which can be used to further demonstrate some of these concepts.