期刊文献+
共找到97,033篇文章
< 1 2 250 >
每页显示 20 50 100
Mimicking Nature’s Insects: A Review of Bio-inspired Flapping-Wing Micro Robots (FWMRs)
1
作者 Chao Liu Tianyu Shen +4 位作者 Huan Shen Bo Lu Lining Sun Guodong Chen Wenzheng Chi 《Journal of Bionic Engineering》 2025年第2期458-479,共22页
Micro aerial vehicles(MAVs)have flexibility and maneuverability,which can offer vast potential for applications in both civilian and military domains.Compared to Fixed-wing/Rotor-wing MAVs,Flapping Wing Micro Robots(F... Micro aerial vehicles(MAVs)have flexibility and maneuverability,which can offer vast potential for applications in both civilian and military domains.Compared to Fixed-wing/Rotor-wing MAVs,Flapping Wing Micro Robots(FWMRs)have garnered widespread attention among scientists due to their superior miniaturized aerodynamic theory,reduced noise,and enhanced resistance to disturbances in complex and diverse environments.Flying insects,it not only has remarkable flapping flight ability(wings),but also takeoff and landing habitat ability(legs).If the various functions of flying insects can be imitated,efficient biomimetic FWMRs can be produced.This paper provides a review of the flight kinematics,aerodynamics,and wing structural parameters of insects.Then,the traditional wings and folding wings of insect-inspired FWMRs were compared.The research progress in takeoff and landing of FWMRs was also summarized,and the future developments and challenges for insect-inspired FWMRs were discussed. 展开更多
关键词 INSECT flapping-wing micro Robots BIOINSPIRED Takeoff-Landing
在线阅读 下载PDF
Bio-inspired passive design of flapping-wing micro air vehicles
2
作者 Xiufeng YANG Mingjing QI 《Chinese Journal of Aeronautics》 2025年第10期360-362,共3页
Flapping-Wing Micro Air Vehicles(FMAVs)are compact and agile,capable of accessing narrow spaces that conventional vehicles struggle to reach,such as ruins,caves,or the interiors of complex structures,making them ideal... Flapping-Wing Micro Air Vehicles(FMAVs)are compact and agile,capable of accessing narrow spaces that conventional vehicles struggle to reach,such as ruins,caves,or the interiors of complex structures,making them ideal tools for reconnaissance and rescue missions.1 However,the operation of FMAVs relies on coordinating multiple forces with different scaling effects,posing challenges to miniaturization design. 展开更多
关键词 coordinating multiple forces reconnaissance rescue missions accessing narrow micro air vehicles conventional vehicles flapping wing miniaturization design passive design
原文传递
Modeling and Trajectory Tracking Control for Flapping-Wing Micro Aerial Vehicles 被引量:22
3
作者 Wei He Xinxing Mu +1 位作者 Liang Zhang Yao Zou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期148-156,共9页
This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic ... This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic force and torque generated by flapping wings and the tail wing are explicitly formulated with respect to the flapping frequency of the wings and the degree of tail wing inclination.To achieve autonomous tracking,an adaptive control scheme is proposed under the hierarchical framework.Specifically,a bounded position controller with hyperbolic tangent functions is designed to produce the desired aerodynamic force,and a pitch command is extracted from the designed position controller.Next,an adaptive attitude controller is designed to track the extracted pitch command,where a radial basis function neural network is introduced to approximate the unknown aerodynamic perturbation torque.Finally,the flapping frequency of the wings and the degree of tail wing inclination are calculated from the designed position and attitude controllers,respectively.In terms of Lyapunov's direct method,it is shown that the tracking errors are bounded and ultimately converge to a small neighborhood around the origin.Simulations are carried out to verify the effectiveness of the proposed control scheme. 展开更多
关键词 flapping-wing micro aerial vehicles(FWMAVs) MODELING neural networks trajectory tracking
在线阅读 下载PDF
Topology optimization in lightweight design of a 3D-printed flapping-wing micro aerial vehicle 被引量:8
4
作者 Long CHEN Yanlai ZHANG +2 位作者 Zuyong CHEN Jun XU Jianghao Wu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3206-3219,共14页
Topology optimization is an effective method to obtain a lightweight structure that meets the requirements of structural strength.Whether the optimization results meet the actual needs mainly depends on the accuracy o... Topology optimization is an effective method to obtain a lightweight structure that meets the requirements of structural strength.Whether the optimization results meet the actual needs mainly depends on the accuracy of the material properties and the boundary conditions,especially for a tiny Flapping-wing Micro Aerial Vehicle(FMAV)transmission system manufactured by 3D printing.In this paper,experimental and numerical computation efforts were undertaken to gain a reliable topology optimization method for the bottom of the transmission system.First,the constitutive behavior of the ultraviolet(UV)curable resin used in fabrication was evaluated.Second,a numerical computation model describing further verified via experiments.Topology optimization modeling considering nonlinear factors,e.g.contact,friction and collision,was presented,and the optimization results were verified by both dynamic simulation and experiments.Finally,detailed discussions on different load cases and constraints were presented to clarify their effect on the optimization.Our methods and results presented in this paper may shed light on the lightweight design of a FMAV. 展开更多
关键词 3D printing Finite element analysis flapping-wing micro aerial vehicle Topology optimization Transmission system
原文传递
Human Memory/Learning Inspired Control Method for Flapping-Wing Micro Air Vehicles 被引量:3
5
作者 Garv Lebbv 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第2期127-133,共7页
The problem of flapping motion control of Micro Air Vehicles (MAVs) with flapping wings was studied in this paper.Based upon the knowledge of skeletal and muscular components of hummingbird, a dynamic model for flappi... The problem of flapping motion control of Micro Air Vehicles (MAVs) with flapping wings was studied in this paper.Based upon the knowledge of skeletal and muscular components of hummingbird, a dynamic model for flapping wing wasdeveloped.A control scheme inspired by human memory and learning concept was constructed for wing motion control ofMAVs.The salient feature of the proposed control lies in its capabilities to improve the control performance by learning fromexperience and observation on its current and past behaviors, without the need for system dynamic information.Furthermore,the overall control scheme has a fairly simple structure and demands little online computations, making it attractive for real-timeimplementation on MAVs.Both theoretical analysis and computer simulation confirms its effectiveness. 展开更多
关键词 flapping wing micro air vehicle BIO-INSPIRED memory-based control
在线阅读 下载PDF
Gravity-assisted Takeoff of Bird-inspired Flapping-Wing Air Vehicle Using Cliff-drop
6
作者 Sang-Gil Lee Hyeon-Ho Yang +1 位作者 Eun-Hyuck Lee Jae-Hung Han 《Journal of Bionic Engineering》 2025年第1期144-156,共13页
Flapping-Wing Air Vehicles(FWAVs)have been developed to pursue the efficient,agile,and quiet flight of flying animals.However,unlike lightweight FWAVs capable of vertical takeoff,relatively heavy FWAVs face challenges... Flapping-Wing Air Vehicles(FWAVs)have been developed to pursue the efficient,agile,and quiet flight of flying animals.However,unlike lightweight FWAVs capable of vertical takeoff,relatively heavy FWAVs face challenges in self-takeoff,which refers to taking off without both external device and energy input.In this study,a cliff-drop method is implemented for an independent takeoff of a heavy FWAV,relying solely on gravity.In the takeoff process using the cliff-drop method,the FWAV moves on the ground to a cliff edge using a wheel-driving motor and then descends from the cliff to achieve the necessary speed for flight.To demonstrate the cliff-drop method,the KAIST Robotic Hawk(KRoHawk)with a mass of 740 g and a wingspan of 120 cm is developed.The takeoff tests demonstrate that the KRoHawk,significantly heavier than the vertical-takeoff capable FWAVs,can successfully take off using the gravity-assisted takeoff method.The scalability of cliff-drop method is analyzed through simulations.When drop constraints are absent,the wheel-driving motor mass fraction for cliff-drop method remains negligible even as the vehicle's weight increases.When drop constraints are set to 4 m,FWAVs heavier than KRoHawk,weighing up to 4.4 kg,can perform the cliff-drop takeoffs with a wheel-driving motor mass fraction of less than 8%. 展开更多
关键词 flapping-wing air vehicle Biologically-inspired BIOMIMETIC TAKEOFF micro air vehicle
在线阅读 下载PDF
Controlled flight of a self-powered micro blimp driven by insect-sized flapping-wing thrusters
7
作者 Xian YU Zhiwei LIU +2 位作者 Jiaming LENG Mingjing QI Xiaojun YAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期127-136,共10页
Micro aerial platforms face significant challenges in achieving long controlled endurance as most of the energy is consumed to overcome the weight of the body.In this study,we present a controllable micro blimp that a... Micro aerial platforms face significant challenges in achieving long controlled endurance as most of the energy is consumed to overcome the weight of the body.In this study,we present a controllable micro blimp that addresses this issue through the use of a helium-filled balloon.The micro blimp has a long axis of 23 cm and is propelled by four insect-sized flapping-wing thrusters,each weighing 80 mg and with a wingspan of 3.5 cm.These distributed thrusters enable controlled motions and provide the micro blimp with an advantage in flight endurance compared to multirotors or flapping-wing micro aerial vehicles at the same size scale.To enhance the performance of the controlled flight,we propose a wireless control module that enables manipulation from a distance of up to 100 m.Additionally,a smartphone application is developed to send instructions to the circuit board,allowing the blimp to turn left and right,ascend and descend,and achieve a combination of these movements separately.Our findings demonstrate that this micro blimp is one of the smallest controlled self-powered micro blimps to date. 展开更多
关键词 microairvehicle Aircraft control Self-powered micro blimp flapping-wing thruster Wireless flight
原文传递
距骨不同区域骨小梁形态特征的Micro-CT评估
8
作者 李磊 张凤珍 +10 位作者 尹兆正 伊钰营 申晓科 段博 王志强 任小燕 李琨 李志军 王奇娇 王星 张少杰 《中国组织工程研究》 北大核心 2026年第15期3946-3952,共7页
背景:距骨骨折治疗难度大,易出现多种并发症,导致预后不良,故需进一步了解距骨内骨小梁分布特征及其与骨折发生的关系。目的:利用Micro-CT技术对距骨标本进行扫描,观测骨小梁结构特征及形态计量学参数,探讨距骨不同区域的骨小梁差异,为... 背景:距骨骨折治疗难度大,易出现多种并发症,导致预后不良,故需进一步了解距骨内骨小梁分布特征及其与骨折发生的关系。目的:利用Micro-CT技术对距骨标本进行扫描,观测骨小梁结构特征及形态计量学参数,探讨距骨不同区域的骨小梁差异,为距骨骨折的预防、治疗及骨折机制研究提供依据。方法:选取53例成人距骨标本进行Micro-CT扫描,将影像资料导入Avata软件进行三维重建,通过对距骨头部、颈部、体部3个感兴趣区域内骨小梁的勾选与重建,观察其形态特征,并测量分析不同区域骨小梁形态计量学参数的差异。结果与结论:①距骨的Micro-CT扫描影像显示其头部和体部的皮质骨较薄,而颈部的皮质骨则相对较厚;颈部的骨小梁分布较为稀疏,而头部和体部的骨小梁则相对致密;②距骨骨小梁的骨体积、骨体积分数、骨小梁模式因子在头部与颈部、体部间比较差异均有显著性意义(P<0.05);距骨骨小梁的骨表面积、骨表面积组织体积比、骨小梁分离度、分形维数在颈部与头部、体部间比较差异均有显著性意义(P<0.05);距骨骨小梁的骨小梁厚度在体部与头部、颈部之间比较差异有显著性意义(P<0.05);距骨骨小梁的骨表面积骨体积比、骨小梁厚度、骨小梁连通性、骨小梁连接密度、各向异性程度、结构模型指数在颈部与头部、体部,头部与体部间比较差异均有显著性意义(P<0.05);③提示Micro-CT技术能够定量分析距骨不同区域骨小梁形态的计量学参数,距骨的骨小梁形态计量学参数存在区域性差异,颈部的骨小梁数量和强度较低,是最容易发生骨折的部位,从骨小梁分布特征说明了距骨骨折好发于颈部。 展开更多
关键词 距骨 micro-CT 骨小梁 区域差异 形态计量学参数
暂未订购
IMPROVED UVLM FOR FLAPPING-WING AERODYNAMICS COMPUTATION
9
作者 贺红林 周翔 +1 位作者 龙玉繁 余春锦 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期205-212,共8页
To calculate the aerodynamics of flapping-wing micro air vehicle(MAV) with the high efficiency and the engineering-oriented accuracy,an improved unsteady vortex lattice method (UVLM) for MAV is proposed. The metho... To calculate the aerodynamics of flapping-wing micro air vehicle(MAV) with the high efficiency and the engineering-oriented accuracy,an improved unsteady vortex lattice method (UVLM) for MAV is proposed. The method considers the influence of instantaneous wing deforming in flapping,as well as the induced drag,additionally models the stretching and the dissipation of vortex rings,and can present the aerodynamics status on the wing surface. An implementation of the method is developed. Moreover,the results and the efficiency of the proposed method are verified by CFD methods. Considering the less time cost of UVLM,for application of UVLM in the MAV optimization,the influence of wake vortex ignoring time saving and precision is studied. Results show that saving in CPU time with wake vortex ignoring the appropriate distance is considerable while the precision is not significantly reduced. It indicates the potential value of UVLM in the optimization of MAV design. 展开更多
关键词 AERODYNAMICS flapping-wing micro air vehicle(MAV) unsteady vortex lattice method (UVLM) wake vortex ignoring
在线阅读 下载PDF
基于专利视角的Micro LED产业技术态势分析
10
作者 胡思思 李贞贞 《世界科技研究与发展》 2025年第5期651-662,共12页
Micro LED作为新一代显示技术,凭借高亮度、高分辨率、低功耗等特性成为全球显示产业竞争焦点。本文基于专利计量与BERTopic模型方法,对全球Micro LED技术开展专利分析,从技术分布、创新主体、技术主题、法律状态、价值分布等多个维度,... Micro LED作为新一代显示技术,凭借高亮度、高分辨率、低功耗等特性成为全球显示产业竞争焦点。本文基于专利计量与BERTopic模型方法,对全球Micro LED技术开展专利分析,从技术分布、创新主体、技术主题、法律状态、价值分布等多个维度,系统梳理了该领域的发展现状与趋势。研究表明:中国的专利申请量占据全球主导地位,但高价值专利仍集中于美国和日本等发达国家;显示设备、量子点/全彩化、显示应用、材料与元器件、芯片及显示屏六大领域是专利技术重点细分方向;巨量转移、全彩显示等关键技术仍处于突破阶段,产业生态需进一步完善;光电子与集成电路、人工智能等电子信息技术的深度融合进一步驱动Micro LED技术向高精度、高集成度方向发展。基于分析结果,本文从核心技术突破、产学研协同机制、差异化应用场景、国际竞争力提升等方面提出建议,为中国Micro LED产业高质量发展提供参考。 展开更多
关键词 micro LED 专利分析 BERTopic 巨量转移 全彩显示
在线阅读 下载PDF
Flight control of a large-scale flapping-wing flying robotic bird:System development and flight experiment 被引量:4
11
作者 Wenfu XU Erzhen PAN +2 位作者 Juntao LIU Yihong LI Han YUAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第2期235-249,共15页
Large-scale flapping-wing flying robotic birds have huge application potential in outdoor tasks,such as military reconnaissance,environment exploring,disaster rescue and so on.In this paper,a multiple modes flight con... Large-scale flapping-wing flying robotic birds have huge application potential in outdoor tasks,such as military reconnaissance,environment exploring,disaster rescue and so on.In this paper,a multiple modes flight control method and system are proposed for a large-scale robotic bird which has 2.3 m wingspan and 650 g mass.Different from small flapping wing aerial vehicle,the mass of its wings cannot be neglected and the flapping frequency are much lower.Therefore,the influence of transient aerodynamics instead of only mean value are considered in attitude estimation and controller design.Moreover,flight attitude and trajectory are highly coupled,and the robot has only three actuators----one for wings flapping and two for tail adjustment,it is very difficult to simultaneously control the attitude and position.Hence,a fuzzy control strategy is addressed to determine the command of each actuator by considering the priority of attitude stabilization,trajectory tracking and the flight safety.Then,the on-board controller is designed based on FreeRTOS.It not only satisfies the strict restrictions on mass,size,power and space but also meets the autonomous,semi-autonomous and manual flight control requirements.Finally,the developed control system was integrated to the robotic prototype,HIT-phoenix.Flight experiments under different environment conditions such as sunny and windy weather were completed to verify the control method and system. 展开更多
关键词 Autonomous flight control flapping-wing Free RTOS HIT-Phoenix Robotic bird
原文传递
Micro LED表面缺陷的快速高精度检测 被引量:3
12
作者 赵天元 董登峰 +2 位作者 王国名 王博 周维虎 《光学精密工程》 北大核心 2025年第9期1434-1445,共12页
为了满足Micro LED缺陷检测对实时性和高精度的要求,结合轻量化的设计和增强的特征提取能力,提出了一种快速高精度的检测算法LED-YOLO。该方法通过设计图像采集系统并结合多种数据增广策略,模拟工业环境中的实际干扰,增强了训练数据的... 为了满足Micro LED缺陷检测对实时性和高精度的要求,结合轻量化的设计和增强的特征提取能力,提出了一种快速高精度的检测算法LED-YOLO。该方法通过设计图像采集系统并结合多种数据增广策略,模拟工业环境中的实际干扰,增强了训练数据的多样性。针对Micro LED缺陷的低区分度问题,提出了轻量级动态融合模块(Lightweight Dynamic Fusion Module,LDFM),该模块结合动态卷积、深度卷积和通道混合操作,在保持模型轻量化的同时,提升了特征表达能力。为了进一步加强缺陷区域的关注,设计了增强协调注意力模块(Enhanced Coordinate Attention Module,ECAM),通过结合通道和空间注意力机制及残差连接,增强了特征提取的准确性。最后,考虑到Micro LED图像的纵横比变化较小,引入动态聚焦机制,提出了DIoU_W回归损失函数,显著提高了模型的收敛速度和稳定性。实验结果表明,LED-YOLO的检测准确率、召回率、mAP、F1值均优于目前最先进的YOLOv11s模型,在参数量减少1.6 M的情况下,检测速度和检测精度均有明显提升,可以有效满足实际Micro LED面板制造过程的质量检验需求。 展开更多
关键词 深度学习 micro LED 缺陷检测 动态卷积 注意力机制
在线阅读 下载PDF
Development of a Bird-like Flapping-wing Aerial Vehicle with Autonomous Take-off and Landing Capabilities 被引量:3
13
作者 Dongfu Ma Bifeng Song +2 位作者 Zhihe Wang Jianlin Xuan Dong Xue 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第6期1291-1303,共13页
The lack of autonomous take-off and landing capabilities of bird-like flapping-wing aerial vehicles(BFAVs)seriously restricts their further development and application.Thus,combined with the current research results o... The lack of autonomous take-off and landing capabilities of bird-like flapping-wing aerial vehicles(BFAVs)seriously restricts their further development and application.Thus,combined with the current research results on the autonomous take-off and landing technology of unmanned aerial vehicles,four types of technologies are studied,including jumping take-off and landing technology,taxiing take-off and landing technology,gliding take-off and landing technology,and vertical take-off and landing(VTOL)technology.Based on the analytic hierarchy process(AHP)-comprehensive evaluation method,a fuzzy comprehensive evaluation model for the autonomous take-off and landing scheme of a BFAV is established,and four schemes are evaluated concretely.The results show that under the existing technical conditions,the hybrid layout VTOL scheme is the best.Furthermore,the detailed design and development of the prototype of a BFAV with a four-rotor hybrid layout are carried out,and the vehicle performance is tested.The results prove that through the four-rotor hybrid layout design,the BFAV has good autonomous take-off and landing abilities.The power consumption analysis shows that for a fixed-point reconnaissance mission,when the mission radius is less than 3.38 km,the VTOL type exhibits longer mission duration than the hand-launched type. 展开更多
关键词 Bird-like flapping-wing aerial vehicle(BFAV) Autonomous take-off and landing Take-off mechanism Hybrid layout
在线阅读 下载PDF
Autonomous Formation Flight Control of Large-Sized Flapping-Wing Flying Robots Based on Leader–Follower Strategy 被引量:1
14
作者 Hui Xu Yuanpeng Wang +2 位作者 Erzhen Pan Wenfu Xu Dong Xue 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2542-2558,共17页
Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper pr... Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper proposes an autonomous formation flight control method for Large-sized Flapping-Wing Flying Robots(LFWFRs),which can enhance their search range and flight efficiency.First,the kinematics model for LFWFRs is established.Then,an autonomous flight controller based on this model is designed,which has multiple flight control modes,including attitude stabilization,course keeping,hovering,and so on.Second,a formation flight control method is proposed based on the leader–follower strategy and periodic characteristics of flapping-wing flight.The up and down fluctuation of the fuselage of each LFWFR during wing flapping is considered in the control algorithm to keep the relative distance,which overcomes the trajectory divergence caused by sensor delay and fuselage fluctuation.Third,typical formation flight modes are realized,including straight formation,circular formation,and switching formation.Finally,the outdoor formation flight experiment is carried out,and the proposed autonomous formation flight control method is verified in real environment. 展开更多
关键词 BIONIC Large-sized flapping-wing flying robot HIT-Phoenix Periodic flight characteristics Formation flight Leader follower strategy
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部