The paper focuses on developing mathematical models to predict grain size and ul- timate tensile strength of pulsed current micro plasma arc welded Inconel 625 nickel alloy. Four factors, five levels, central composit...The paper focuses on developing mathematical models to predict grain size and ul- timate tensile strength of pulsed current micro plasma arc welded Inconel 625 nickel alloy. Four factors, five levels, central composite rotatable design matrix is used to op- timize the number of experiments. The mathematical models have been developed by response surface method. The adequacy of the models is checked by analysis of vari- ance technique. By using the developed mathematical models, grain size and ultimate tensile strength of the joints can be predicted with 99% confidence level. Contour plots are drawn to study the interaction effect of pulsed current micro plasma arc welding parameters on fusion zone grain size and ultimate tensile strength of Inconel 625 weld joints.展开更多
In the present study, titania coatings were prepared under different current density conditions in micro-arc oxidation (MAO) process on titanium alloy in NaAlO2 solution. The aim of this work was to study the effect...In the present study, titania coatings were prepared under different current density conditions in micro-arc oxidation (MAO) process on titanium alloy in NaAlO2 solution. The aim of this work was to study the effects of current density on the microstructure of titania coatings. The morphology and phase composition of the coatings were investigated by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Raman spectra. The thickness and surface roughness of the coatings were characterized by confocal laser Scanning Microscopy (CLSM). The results showed that the coatings were composed of crystalline anatase and rutile phases of TiO2, and contain a network of evenly distributed small pores. It has also shown that an increase in current density leads to an increase in rutile content.展开更多
Nickel alloys had gathered wide acceptance in the fabrication of components which require high temperature resistance and corrosion resistance, such as metallic bellows used in expansion joints used in aircraft, aeros...Nickel alloys had gathered wide acceptance in the fabrication of components which require high temperature resistance and corrosion resistance, such as metallic bellows used in expansion joints used in aircraft, aerospace and petroleum industry. Micro Plasma Arc Welding (MPAW) is one of the important arc welding processes commonly using in fabric- cation of Nickel alloys. In the present paper welding of Inconel 625 sheets using pulsed current micro plasma arc weld- ing was discussed. The paper mainly focuses on studying the weld quality characteristics like weld pool geometry pa- rameters, microstructure, grain size, hardness and tensile properties of Pulsed Current Micro Plasma Arc Welded In- conel 625 sheets at different welding speeds. Results reveals that at a welding speed of 260 mm/minute better weld quality characteristics can be obtained.展开更多
Nickel alloys had gathered wide acceptance in the fabrication of components which require high temperature resistance and corrosion resistance, such as metallic bellows used in expansion joints used in aircraft, aeros...Nickel alloys had gathered wide acceptance in the fabrication of components which require high temperature resistance and corrosion resistance, such as metallic bellows used in expansion joints used in aircraft, aerospace and petroleum industry. In the present paper an attempt is made to study various weld quality characteristics like weld bead geometry dimensions, micro hardness, microstructure, grain size and tensile properties of Pulsed Current Micro Plasma Welding of Inconel625sheets. Weld joint was prepared by fusing the two parent metals of Inconel625 sheets. Square butt joint is used and welding was carried out using Pulsed DCEN, without filler wire. Peak current, back current, pulse and pulse width are considered as the main influential input variables during the welding.展开更多
In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of...In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of ZK60 Mg alloy after single MPO and HCPEB+MPO compounded treatment were investigated by SEM. The results showed that the density of the ceramic layer of HCPEB+MPO-treated ZK60 Mg alloy was improved and defects were reduced compared to that under MPO treatment alone. Surface modified layer of ZK60 Mg alloys treated by HCPEB+MPO was divided into three zones, namely the top loose ceramic zone, middle compact zone and inside HCPEB-induced melted zone. Corrosion resistance of ZK60 Mg alloy before and after the compounded surface modification was measured in a solution of 3.5% NaCl by potentiodynamic polarization curves. It was found that the corrosion current density of ZK60 Mg alloys could be reduced by about three orders of magnitude, from 311μA/cm^2 of the original sample to 0.2μA/cm^2 of the HCPEB+MPO-treated sample. This indicates the great application potential of the HCPEB+MPO compounded surface modification technology in improving the corrosion resistance of ZK60 Mg alloys in the future.展开更多
AISI 304L is an austenitic Chromium-Nickel stainless steel offering the optimum combination of corrosion resistance, strength and ductility. These attributes make it a favorite for many mechanical components. The pape...AISI 304L is an austenitic Chromium-Nickel stainless steel offering the optimum combination of corrosion resistance, strength and ductility. These attributes make it a favorite for many mechanical components. The paper focuses on developing mathematical models to predict grain size and hardness of pulsed current micro plasma arc welded AISI 304L joints. Four factors, five level, central composite rotatable design matrix is used to optimize the number of experiments. The mathematical models have been developed by Response Surface Method (RSM) and its adequacy is checked by Analysis of Variance (ANOVA) technique. By using the developed mathematical models, grain size and hardness of the weld joints can be predicted with 99% confidence level. The developed mathematical models have been optimized using Hooke and Jeeves algorithm to minimize grain size and maximize the hardness.展开更多
Pulsed current Micro Plasma Arc Welding is used to joint thin sheets of AISI 304L sheets, which are used in manufacturing of metallic bellows and diaphragms. In this article the effects of pulsing current parameters o...Pulsed current Micro Plasma Arc Welding is used to joint thin sheets of AISI 304L sheets, which are used in manufacturing of metallic bellows and diaphragms. In this article the effects of pulsing current parameters on weld pool geometry namely front width, back width, front height and back height of pulsed current micro plasma arc welded AISI 304L stainless steel sheets was analyzed. Four factors, five levels, central composite design was used to develop mathematical models, incorporating pulsed current parameters and weld pool geometry. The mathematical models have been developed by Response Surface Method. The adequacy of the models was checked by ANOVA technique. Variation of output responses with input process variables are discussed. By using the developed mathematical models, weld pool geometry parameters can be predicted.展开更多
In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the move...In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the movement of single molecule within micro-/submicro-fluidic channels, the characteristics of current signals at the initial stage of the flow are systematically studied based on a three-electrode system. The current response of micro-/submicro-fluidic channels filled with different electrolyte solutions in non-continuous external electric field are investigated. It is found, there always exists a current reversal phenomenon, which is an inherent property of the current signals in micro/submicro-fluidics Each solution has an individual critical voltage under which the steady current value is equal to zero The interaction between the steady current and external applied voltage follows an exponential function. All these results can be attributed to the overpotentials of the electric double layer on the electrodes. These results are helpful for the design and fabrication of functional micro/nano-scale fluidic sensors and biochips.展开更多
This paper presents and tests three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types when the MG transferred to the islanding mode. The main contribution of this work is incl...This paper presents and tests three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types when the MG transferred to the islanding mode. The main contribution of this work is including the models of all micro sources which interfaced to the MG by power electronic inverters. Inverters in turns are provided with current limiters and this also included with the inverter models to exactly simulate the real situation in the MG during fault times. Results proved that the most suitable earthing system for MG protection during the islanding mode is the TN earthing system. That system leads to a suitable amount of fault current sufficient to activate over current pro-tection relays. With using TN earthing system, touch voltages at the faulted bus and all other consumer’s buses are less than the safety limited values during islanding mode. For the two others earthing systems (TT and IT), fault currents are small and nearly equal to the over load currents which make over current protection relay can not differentiate between fault currents and overload currents. All models of micro sources, earthing systems, inverters and control schemes are built using Matlab?/Simulink? environment.展开更多
The movement of sediment in estuary and on coast is directly restricted by the bed shear stress. Therefore, the research on the basic problem of sediment movement by the bed shear stress is an important way to researc...The movement of sediment in estuary and on coast is directly restricted by the bed shear stress. Therefore, the research on the basic problem of sediment movement by the bed shear stress is an important way to research the theory of sediment movement. However, there is not a measuring and computing method to measure the bed shear stress under a complicated dynamic effect like wave and current. This paper describes the measurement and test research on the bed shear stress in a long launder of direct current by the new instrument named thermal shearometer based on micro-nanotechnology. As shown by the research results, the thermal shearometer has a high response frequency and strong stability. The measured results can reflect the basic change of the bed shear stress under wave and wave-current effect, and confirm that the method of measuring bed shear stress under wave-current effect with thermal shearometer is feasible. Meanwhile, a preliminary method to compute the shear stress compounded by wave-current is put forward according to the tested and measured results, and then a reference for further study on the basic theory of sediment movement under a complicated dynamic effect is provided.展开更多
This paper presents, tests and compares three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types during the connected mode. The main contribution of this work is including the ...This paper presents, tests and compares three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types during the connected mode. The main contribution of this work is including the models of all the micro sources which interfaced to the MG by power electronic inverters. Inverters in turns are provided with current limiters and this also included in the inverter models to exactly simulate the real situation in the MG during fault times. Results proved that the most suitable earthing system for MG protection during the connecting mode is the TN earthing system. That system leads to a suitable amount of fault current sufficient to activate over current protection relays. With using TN system, Touch voltages at the faulted bus and all other consumer’s buses are less than the safety limited value if current limiter is included with the transformer of the main grid which connects MG. For the two others earthing systems (TT and IT), fault current is small and nearly equal to the over load current which make over current protection relay can not differentiate between fault current and overload current. All models of micro sources, earthing systems, inverters, main grid and control schemes are built using Matlab?/Simulink? environment.展开更多
Electrical property of a micro-plasma spray system with different working-gas feed- ing schemes was tested to optimize the plasma spray process. The arc voltage with an integrated gas injection mode is higher than tha...Electrical property of a micro-plasma spray system with different working-gas feed- ing schemes was tested to optimize the plasma spray process. The arc voltage with an integrated gas injection mode is higher than that with radial injection or axial injection modes. Thus, an integrated gas injection mode with an excellent electrical characteristic was adopted to deposit alumina-titania coating. The microstructure, bonding strength and hardness of the plasma sprayed alumina-titania coating, as a function of the spraying parameters, e.g., plasma current, gas flow rate and gas pressure, were studied. It was shown that the spraying parameters affected remarkably on the microstructure of the coating. Different tendencies in bonding strength and hardness were also shown for different spraying parameters. At an arc current of 250 A, a gas flow rate of 20 L/min and a gas pressure of 0.5 MPa, the bonding strength and micro-hardness of the coatings reach 40.6 MPa and HV1406.1, respectively.展开更多
Since Bi2Sr2Ca1Cu2O8+x(Bi2212) wires are subject to mechanical loadings, degradation of critical current will occur. The effect of compressive loadings on the critical current of Bi2212 wire is studied by consideri...Since Bi2Sr2Ca1Cu2O8+x(Bi2212) wires are subject to mechanical loadings, degradation of critical current will occur. The effect of compressive loadings on the critical current of Bi2212 wire is studied by considering micro-buckling of filament. A Bi2212 wire is regarded as a unidirectional filament-reinforced composite in the theoretical analysis. By considering the influence of inclusion, the micro-buckling wavelength can be derived by using a two-dimensional model. Based on the experimental results, the critical current is fitted as a function of buckling wavelength. It is found that the decrease of the critical current is directly proportional to the reciprocal of square of the buckling wavelength. Change of micro-buckling wavelength with material parameters is discussed. A critical strain in the wire with a filament bridge is analyzed using the finite element method.展开更多
文摘The paper focuses on developing mathematical models to predict grain size and ul- timate tensile strength of pulsed current micro plasma arc welded Inconel 625 nickel alloy. Four factors, five levels, central composite rotatable design matrix is used to op- timize the number of experiments. The mathematical models have been developed by response surface method. The adequacy of the models is checked by analysis of vari- ance technique. By using the developed mathematical models, grain size and ultimate tensile strength of the joints can be predicted with 99% confidence level. Contour plots are drawn to study the interaction effect of pulsed current micro plasma arc welding parameters on fusion zone grain size and ultimate tensile strength of Inconel 625 weld joints.
基金supported by the Program for New Century Excellent Talents from the Ministry of Education(Grant No. NCET-2011)
文摘In the present study, titania coatings were prepared under different current density conditions in micro-arc oxidation (MAO) process on titanium alloy in NaAlO2 solution. The aim of this work was to study the effects of current density on the microstructure of titania coatings. The morphology and phase composition of the coatings were investigated by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Raman spectra. The thickness and surface roughness of the coatings were characterized by confocal laser Scanning Microscopy (CLSM). The results showed that the coatings were composed of crystalline anatase and rutile phases of TiO2, and contain a network of evenly distributed small pores. It has also shown that an increase in current density leads to an increase in rutile content.
文摘Nickel alloys had gathered wide acceptance in the fabrication of components which require high temperature resistance and corrosion resistance, such as metallic bellows used in expansion joints used in aircraft, aerospace and petroleum industry. Micro Plasma Arc Welding (MPAW) is one of the important arc welding processes commonly using in fabric- cation of Nickel alloys. In the present paper welding of Inconel 625 sheets using pulsed current micro plasma arc weld- ing was discussed. The paper mainly focuses on studying the weld quality characteristics like weld pool geometry pa- rameters, microstructure, grain size, hardness and tensile properties of Pulsed Current Micro Plasma Arc Welded In- conel 625 sheets at different welding speeds. Results reveals that at a welding speed of 260 mm/minute better weld quality characteristics can be obtained.
文摘Nickel alloys had gathered wide acceptance in the fabrication of components which require high temperature resistance and corrosion resistance, such as metallic bellows used in expansion joints used in aircraft, aerospace and petroleum industry. In the present paper an attempt is made to study various weld quality characteristics like weld bead geometry dimensions, micro hardness, microstructure, grain size and tensile properties of Pulsed Current Micro Plasma Welding of Inconel625sheets. Weld joint was prepared by fusing the two parent metals of Inconel625 sheets. Square butt joint is used and welding was carried out using Pulsed DCEN, without filler wire. Peak current, back current, pulse and pulse width are considered as the main influential input variables during the welding.
基金supported by Liaoning BaiQianWan Talents Program of China (No. 2008921028)Doctoral Fund of Ministry of Education of China (No. 200801451082)
文摘In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of ZK60 Mg alloy after single MPO and HCPEB+MPO compounded treatment were investigated by SEM. The results showed that the density of the ceramic layer of HCPEB+MPO-treated ZK60 Mg alloy was improved and defects were reduced compared to that under MPO treatment alone. Surface modified layer of ZK60 Mg alloys treated by HCPEB+MPO was divided into three zones, namely the top loose ceramic zone, middle compact zone and inside HCPEB-induced melted zone. Corrosion resistance of ZK60 Mg alloy before and after the compounded surface modification was measured in a solution of 3.5% NaCl by potentiodynamic polarization curves. It was found that the corrosion current density of ZK60 Mg alloys could be reduced by about three orders of magnitude, from 311μA/cm^2 of the original sample to 0.2μA/cm^2 of the HCPEB+MPO-treated sample. This indicates the great application potential of the HCPEB+MPO compounded surface modification technology in improving the corrosion resistance of ZK60 Mg alloys in the future.
文摘AISI 304L is an austenitic Chromium-Nickel stainless steel offering the optimum combination of corrosion resistance, strength and ductility. These attributes make it a favorite for many mechanical components. The paper focuses on developing mathematical models to predict grain size and hardness of pulsed current micro plasma arc welded AISI 304L joints. Four factors, five level, central composite rotatable design matrix is used to optimize the number of experiments. The mathematical models have been developed by Response Surface Method (RSM) and its adequacy is checked by Analysis of Variance (ANOVA) technique. By using the developed mathematical models, grain size and hardness of the weld joints can be predicted with 99% confidence level. The developed mathematical models have been optimized using Hooke and Jeeves algorithm to minimize grain size and maximize the hardness.
文摘Pulsed current Micro Plasma Arc Welding is used to joint thin sheets of AISI 304L sheets, which are used in manufacturing of metallic bellows and diaphragms. In this article the effects of pulsing current parameters on weld pool geometry namely front width, back width, front height and back height of pulsed current micro plasma arc welded AISI 304L stainless steel sheets was analyzed. Four factors, five levels, central composite design was used to develop mathematical models, incorporating pulsed current parameters and weld pool geometry. The mathematical models have been developed by Response Surface Method. The adequacy of the models was checked by ANOVA technique. Variation of output responses with input process variables are discussed. By using the developed mathematical models, weld pool geometry parameters can be predicted.
基金supported by the National Natural Science Foundation of China(Grant Nos.61378083 and 11672229)the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011DFA12220)+2 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.91123030)the Natural Science Foundation of Shaanxi Province of China(Grant Nos.2010JS110,14JS106,14JS107,and 2013SZS03-Z01)the Natural Science Basic Research Program of Shaanxi Province-Major Basic Research Project(Grant No.2016ZDJC-15)
文摘In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the movement of single molecule within micro-/submicro-fluidic channels, the characteristics of current signals at the initial stage of the flow are systematically studied based on a three-electrode system. The current response of micro-/submicro-fluidic channels filled with different electrolyte solutions in non-continuous external electric field are investigated. It is found, there always exists a current reversal phenomenon, which is an inherent property of the current signals in micro/submicro-fluidics Each solution has an individual critical voltage under which the steady current value is equal to zero The interaction between the steady current and external applied voltage follows an exponential function. All these results can be attributed to the overpotentials of the electric double layer on the electrodes. These results are helpful for the design and fabrication of functional micro/nano-scale fluidic sensors and biochips.
文摘This paper presents and tests three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types when the MG transferred to the islanding mode. The main contribution of this work is including the models of all micro sources which interfaced to the MG by power electronic inverters. Inverters in turns are provided with current limiters and this also included with the inverter models to exactly simulate the real situation in the MG during fault times. Results proved that the most suitable earthing system for MG protection during the islanding mode is the TN earthing system. That system leads to a suitable amount of fault current sufficient to activate over current pro-tection relays. With using TN earthing system, touch voltages at the faulted bus and all other consumer’s buses are less than the safety limited values during islanding mode. For the two others earthing systems (TT and IT), fault currents are small and nearly equal to the over load currents which make over current protection relay can not differentiate between fault currents and overload currents. All models of micro sources, earthing systems, inverters and control schemes are built using Matlab?/Simulink? environment.
基金financially supported by the National Natural Science Foundation of China(Grant No.51309158)funds from the National Key Scientific Instrument and Equipment Development Project(Grant No.2013YQ04091108)Important and Large Scientific and Technical Project of the Ministry of Communications(Grant No.201132874640)
文摘The movement of sediment in estuary and on coast is directly restricted by the bed shear stress. Therefore, the research on the basic problem of sediment movement by the bed shear stress is an important way to research the theory of sediment movement. However, there is not a measuring and computing method to measure the bed shear stress under a complicated dynamic effect like wave and current. This paper describes the measurement and test research on the bed shear stress in a long launder of direct current by the new instrument named thermal shearometer based on micro-nanotechnology. As shown by the research results, the thermal shearometer has a high response frequency and strong stability. The measured results can reflect the basic change of the bed shear stress under wave and wave-current effect, and confirm that the method of measuring bed shear stress under wave-current effect with thermal shearometer is feasible. Meanwhile, a preliminary method to compute the shear stress compounded by wave-current is put forward according to the tested and measured results, and then a reference for further study on the basic theory of sediment movement under a complicated dynamic effect is provided.
文摘This paper presents, tests and compares three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types during the connected mode. The main contribution of this work is including the models of all the micro sources which interfaced to the MG by power electronic inverters. Inverters in turns are provided with current limiters and this also included in the inverter models to exactly simulate the real situation in the MG during fault times. Results proved that the most suitable earthing system for MG protection during the connecting mode is the TN earthing system. That system leads to a suitable amount of fault current sufficient to activate over current protection relays. With using TN system, Touch voltages at the faulted bus and all other consumer’s buses are less than the safety limited value if current limiter is included with the transformer of the main grid which connects MG. For the two others earthing systems (TT and IT), fault current is small and nearly equal to the over load current which make over current protection relay can not differentiate between fault current and overload current. All models of micro sources, earthing systems, inverters, main grid and control schemes are built using Matlab?/Simulink? environment.
文摘Electrical property of a micro-plasma spray system with different working-gas feed- ing schemes was tested to optimize the plasma spray process. The arc voltage with an integrated gas injection mode is higher than that with radial injection or axial injection modes. Thus, an integrated gas injection mode with an excellent electrical characteristic was adopted to deposit alumina-titania coating. The microstructure, bonding strength and hardness of the plasma sprayed alumina-titania coating, as a function of the spraying parameters, e.g., plasma current, gas flow rate and gas pressure, were studied. It was shown that the spraying parameters affected remarkably on the microstructure of the coating. Different tendencies in bonding strength and hardness were also shown for different spraying parameters. At an arc current of 250 A, a gas flow rate of 20 L/min and a gas pressure of 0.5 MPa, the bonding strength and micro-hardness of the coatings reach 40.6 MPa and HV1406.1, respectively.
基金Project supported by the National Natural Science Foundation of China(Nos.11327802,11472120,and 11421062)the National Key Project of Magneto-Constrained Fusion Energy Development Program(No.2013GB110002)the Fundamental Research Funds for the Central Universities(No.lzujbky-2017-k18)
文摘Since Bi2Sr2Ca1Cu2O8+x(Bi2212) wires are subject to mechanical loadings, degradation of critical current will occur. The effect of compressive loadings on the critical current of Bi2212 wire is studied by considering micro-buckling of filament. A Bi2212 wire is regarded as a unidirectional filament-reinforced composite in the theoretical analysis. By considering the influence of inclusion, the micro-buckling wavelength can be derived by using a two-dimensional model. Based on the experimental results, the critical current is fitted as a function of buckling wavelength. It is found that the decrease of the critical current is directly proportional to the reciprocal of square of the buckling wavelength. Change of micro-buckling wavelength with material parameters is discussed. A critical strain in the wire with a filament bridge is analyzed using the finite element method.