The integration of Michaelis-Menten kinetics results in a trancedental equation. The results are not in a form that is readily usable. A more usable form of the model solutions is developed. This was accomplished by u...The integration of Michaelis-Menten kinetics results in a trancedental equation. The results are not in a form that is readily usable. A more usable form of the model solutions is developed. This was accomplished by using Taylor series expansion of dimensionless concentration u in terms of its derivatives. The infinite series expression for dimensionless concentration is given. It can be seen that for times t < , the Taylor series expression evaluated near the origin up to the third derivative is a reasonable representation of the integrated solution. More terms in the Taylor series expression can be added to suit the application. It can vary with the apparent volume, dosage, enzyme concentration, Michaelis constant and the desired accuracy level needed. The single compartment model solution was obtained by the method of Laplace transform. It can be seen from Figure 2 that the dimensionless drug concentration in the compartment goes through a maxima. The curve is convex throughout the absorption and elimination processes. The drug gets completely depleted after a said time. The curve is asymmetrical with a right skew. The systems under absorption with elimination that obey the kinetics that can be represented by a set of reactions in circle were considered. A system of simple reactions in circle was taken into account. The concentration profile of the reactants were obtained by the method of Laplace transforms. The conditions when subcritical damped oscillations can be expected are derived. A model was developed for cases when absorption kinetics exhibit subcritical damped oscillations. The solution was developed by the method of Laplace transforms. The solution for dimensionless concentration of the drug in single compartment for different values of rate constants and dimensionless frequency are shown in Figures 6-9. The drug profile reaches a maximum and drops to zero concen-tration after a said time. The fluctuations in concentration depends on the dimensionless frequency resulting from the subcritical damped oscillations during absorption. At low frequencies the fluctuations are absent. As the frequency is increased the fluctuations in concentration are pronounced. The fre-quency of fluctuations were found to increase with increase in frequency of oscillations during ab-sorption.展开更多
The Michaelis-Menten elimination process for intravenous injection can be described as-dC/dt= V<sub>m</sub>C/(K<sub>m</sub>+C). (1)The equations for the maximum, minimum and average plasma ...The Michaelis-Menten elimination process for intravenous injection can be described as-dC/dt= V<sub>m</sub>C/(K<sub>m</sub>+C). (1)The equations for the maximum, minimum and average plasma concentration of drugswhich obey Eq.(1)in steady-state, C<sub>ss</sub><sup>max</sup>, C<sub>ss</sub><sup>min</sup> and are derived as follows:C<sub>ss</sub><sup>max</sup>=D/[V(1-e<sup>-Hτ</sup>)] , (2)展开更多
In order to describe the relationship between dynamic process and sludge removing load in active sludge system, a new method for designing the volume of aeration tanks was put forward based on the Michaelis and Menten...In order to describe the relationship between dynamic process and sludge removing load in active sludge system, a new method for designing the volume of aeration tanks was put forward based on the Michaelis and Menten equation. the influence of sludge returning was considered in the design. The result shows that the parameter of sludge reflux ratio plays a very important role in the design of active sludge system. In some given conditions,there exists an optimum reflux ratio which can make the volume of aeration tank be the minimum.展开更多
Soil phosphomonoesterase plays a critical role in controlling phosphorus(P) cycling for crop nutrition,especially in P-deficient soils.A 6-year field experiment was conducted to evaluate soil phosphomonoesterase activ...Soil phosphomonoesterase plays a critical role in controlling phosphorus(P) cycling for crop nutrition,especially in P-deficient soils.A 6-year field experiment was conducted to evaluate soil phosphomonoesterase activities,kinetics and thermodynamics during rice growth stages after consistent swine manure application,to understand the impacts of swine manure amendment rates on soil chemical and enzymatic properties,and to investigate the correlations between soil enzymatic and chemical variables.The experiment was set out in a randomized complete block design with three replicates and five treatments including three swine manure rates(26,39,and 52 kg P ha^(-1),representing low,middle,and high application rates,respectively) and two controls(no-fertilizer and superphosphate at 26 kg P ha^(-1)).The results indicated that the grain yield and soil chemical properties were significantly improved with the application of P-based swine manure from 0 to 39 kg P ha^(-1);however,the differences between the 39(M_(39)) and 52 kg P ha^(-1) treatments(M_(52)) were not significant.The enzymatic property analysis indicated that acid phosphomonoesterase was the predominant phosphomonoesterase in the tested soil.The M_(39) and M_(52) treatments had relatively high initial velocity(V_0),maximal velocity(V_(max)),and activation grade(lgN_a) but low Michaelis constant(K_m),temperature coefficient(Q_(10)),activation energy(E_a),and activation enthalpy(ΔH),implying that the M_(39) and M_(52) treatments could stimulate the enzyme-catalyzed reactions more easily than all other treatments.The correlation analysis showed that the distribution of soil phosphomonoesterase activities mainly followed the distributions of total C and total N.Based on these results,39 kg P ha^(-1) could be recommended as the most appropriate rate of swine manure amendment.展开更多
Cross-linked enzyme aggregates(CLEAs) of nitrile hydratase(NHase) ES-NHT-118 from Escherichia coli were prepared by using ammonium sulfate as precipitating agent followed by cross-linking with dextran polyaldehyde for...Cross-linked enzyme aggregates(CLEAs) of nitrile hydratase(NHase) ES-NHT-118 from Escherichia coli were prepared by using ammonium sulfate as precipitating agent followed by cross-linking with dextran polyaldehyde for the first time. In this process, egg white was added as protein feeder for facilitating the formation of CLEAs. The optimal conditions of the immobilization process were determined. Michaelis constants(Km) of free NHase and NHase CLEAs were also determined. The NHase CLEAs exhibited increased stability at varied pH and temperature conditions compared to its free counterpart. When exposed to high concentrations of acrylamide, NHase CLEAs also exhibited effective catalytic activity.展开更多
The effect of magnetic field on a-amylase was studied. Under the experimental conditions, a-amylase solution was treated by 0.15 T, 0.30 T and 0.45 T static magnetic fields for a known period of time, then the activit...The effect of magnetic field on a-amylase was studied. Under the experimental conditions, a-amylase solution was treated by 0.15 T, 0.30 T and 0.45 T static magnetic fields for a known period of time, then the activity, kinetic parameters, and the secondary conformation were investigated. The results showed that there was a considerable effect of the magnetic exposure on the α-amylase. The activity was increased by 27%, 34.1%, 37.8% compared with the control. It was also found that both kinetic parameters Km and Vm could be decreased due to the increasing magnetic field, Km decreased from 2.20×10^2 to 0.87×10^2, whereas Vm decreased from 2.0×10^3 g/min to 1.1 ×10^3 g/min. At the same time, there were some irregular changes in a-amylase secondary conformation.展开更多
In order to find effective measures to control diatom blooms, a better understanding of the physiological characteristics of nutrient uptake in diatoms is needed. A study of P and Si-uptake kinetics for diatom species...In order to find effective measures to control diatom blooms, a better understanding of the physiological characteristics of nutrient uptake in diatoms is needed. A study of P and Si-uptake kinetics for diatom species from two light regimes was conducted at low(LL),moderate(ML) and high light intensities(HL)(2, 25 and 80 μmol photons/(m2·sec)),respectively. The results showed that P uptake of diatoms was heavily influenced by historic light regimes. P affinity changed with growth and photosynthetic activity. The lowest half saturation constant for P uptake(Km(P)) was under HL for high-light adapted diatoms while the lowest half-saturation constant for low-light adapted diatoms was observed under LL. The Si half-saturation constant(Km(Si)) increased with increasing light intensities for pennate diatoms but decreased for centric diatoms. Diatom volumes were correlated with the maximum Si uptake rates(Vm(Si)) at HL and K m(Si)at ML and HL for six diatom species. Our results imply that when we assess the development of diatom blooms we should consider light intensity and cell volume in addition to ambient Si or P concentration. The relationship between light intensity and P-uptake suggests that we can find suitable methods to control diatom blooms on the basis of reducing phytoplankton activity of P-uptake and photosynthesis simultaneously.展开更多
Eucalyptus clones are selected according to productivity,wood quality,rooting capacity,and resistance to drought,frost and diseases.However,kinetic and morphological parameters that determine the absorption efficiency...Eucalyptus clones are selected according to productivity,wood quality,rooting capacity,and resistance to drought,frost and diseases.However,kinetic and morphological parameters that determine the absorption efficiency of nutrients such as nitrate(NO_(3)^(-)) and ammonium(NH_(4)^(+))are often not considered in breeding programs.The objective of this study was to evaluate the morphological,physiological and kinetic parameters of nitrogen uptake by clones of Eucalyptus saligna(32,864) and Eucalyptus grandis(GPC23).Morphological parameters in shoot and root systems,biomass and N concentrations in different organs,photosynthetic pigment concentrations,parameters of chlorophyll a fluorescence and photosynthetic rates were evaluated.Kinetic parameters,maximum absorption velocity(V_(max)),Michaelis-Menten constant(K_(m)),minimum concentration(C_(min)) and influx(I) were calculated for NO_(3)^(-)and NH_(4)^(+) in the two clones.E.granais clone was more efficient in the uptake of NO_(3)^(-)and NH_(4)^(+),and showed lower K_(m) and C_(min)values,allowing for the absorption of nitrogen at low concentrations due to the high affinity of the absorption sites of clone roots to NO_(3)^(-)and NH_(4)^(+).Higher root lengths,area and volume helped the E.grandis clone in absorption efficiency and consequently,resulted in higher root and shoot biomass.The E.saligna clone had higher K_(m) and Cmin for NO_(3)^(-)and NH_(4)^(+),indicating adaptation to environments with higher N availability.The results of NO_(3)^(-)and NH_(4)^(+) kinetic parameters indicate that they can be used in Eucalyptus clone selection and breeding programs as they can predict the ability of clones to absorb NO_(3)^(-)and NH_(4)^(+) at different concentrations.展开更多
文摘The integration of Michaelis-Menten kinetics results in a trancedental equation. The results are not in a form that is readily usable. A more usable form of the model solutions is developed. This was accomplished by using Taylor series expansion of dimensionless concentration u in terms of its derivatives. The infinite series expression for dimensionless concentration is given. It can be seen that for times t < , the Taylor series expression evaluated near the origin up to the third derivative is a reasonable representation of the integrated solution. More terms in the Taylor series expression can be added to suit the application. It can vary with the apparent volume, dosage, enzyme concentration, Michaelis constant and the desired accuracy level needed. The single compartment model solution was obtained by the method of Laplace transform. It can be seen from Figure 2 that the dimensionless drug concentration in the compartment goes through a maxima. The curve is convex throughout the absorption and elimination processes. The drug gets completely depleted after a said time. The curve is asymmetrical with a right skew. The systems under absorption with elimination that obey the kinetics that can be represented by a set of reactions in circle were considered. A system of simple reactions in circle was taken into account. The concentration profile of the reactants were obtained by the method of Laplace transforms. The conditions when subcritical damped oscillations can be expected are derived. A model was developed for cases when absorption kinetics exhibit subcritical damped oscillations. The solution was developed by the method of Laplace transforms. The solution for dimensionless concentration of the drug in single compartment for different values of rate constants and dimensionless frequency are shown in Figures 6-9. The drug profile reaches a maximum and drops to zero concen-tration after a said time. The fluctuations in concentration depends on the dimensionless frequency resulting from the subcritical damped oscillations during absorption. At low frequencies the fluctuations are absent. As the frequency is increased the fluctuations in concentration are pronounced. The fre-quency of fluctuations were found to increase with increase in frequency of oscillations during ab-sorption.
文摘The Michaelis-Menten elimination process for intravenous injection can be described as-dC/dt= V<sub>m</sub>C/(K<sub>m</sub>+C). (1)The equations for the maximum, minimum and average plasma concentration of drugswhich obey Eq.(1)in steady-state, C<sub>ss</sub><sup>max</sup>, C<sub>ss</sub><sup>min</sup> and are derived as follows:C<sub>ss</sub><sup>max</sup>=D/[V(1-e<sup>-Hτ</sup>)] , (2)
文摘In order to describe the relationship between dynamic process and sludge removing load in active sludge system, a new method for designing the volume of aeration tanks was put forward based on the Michaelis and Menten equation. the influence of sludge returning was considered in the design. The result shows that the parameter of sludge reflux ratio plays a very important role in the design of active sludge system. In some given conditions,there exists an optimum reflux ratio which can make the volume of aeration tank be the minimum.
基金supported by the National Natural Science Foundation of China(Nos.21077088,41271314and 51008107)
文摘Soil phosphomonoesterase plays a critical role in controlling phosphorus(P) cycling for crop nutrition,especially in P-deficient soils.A 6-year field experiment was conducted to evaluate soil phosphomonoesterase activities,kinetics and thermodynamics during rice growth stages after consistent swine manure application,to understand the impacts of swine manure amendment rates on soil chemical and enzymatic properties,and to investigate the correlations between soil enzymatic and chemical variables.The experiment was set out in a randomized complete block design with three replicates and five treatments including three swine manure rates(26,39,and 52 kg P ha^(-1),representing low,middle,and high application rates,respectively) and two controls(no-fertilizer and superphosphate at 26 kg P ha^(-1)).The results indicated that the grain yield and soil chemical properties were significantly improved with the application of P-based swine manure from 0 to 39 kg P ha^(-1);however,the differences between the 39(M_(39)) and 52 kg P ha^(-1) treatments(M_(52)) were not significant.The enzymatic property analysis indicated that acid phosphomonoesterase was the predominant phosphomonoesterase in the tested soil.The M_(39) and M_(52) treatments had relatively high initial velocity(V_0),maximal velocity(V_(max)),and activation grade(lgN_a) but low Michaelis constant(K_m),temperature coefficient(Q_(10)),activation energy(E_a),and activation enthalpy(ΔH),implying that the M_(39) and M_(52) treatments could stimulate the enzyme-catalyzed reactions more easily than all other treatments.The correlation analysis showed that the distribution of soil phosphomonoesterase activities mainly followed the distributions of total C and total N.Based on these results,39 kg P ha^(-1) could be recommended as the most appropriate rate of swine manure amendment.
基金Supported by the National Nature Science Foundation of China(Nos.21306039,21276060,21276062)the Natural Science Foundation of Hebei Province(B2015202082,B2016202027)the Tianjin City High School Science&Technology Fund Planning Project(20140513)
文摘Cross-linked enzyme aggregates(CLEAs) of nitrile hydratase(NHase) ES-NHT-118 from Escherichia coli were prepared by using ammonium sulfate as precipitating agent followed by cross-linking with dextran polyaldehyde for the first time. In this process, egg white was added as protein feeder for facilitating the formation of CLEAs. The optimal conditions of the immobilization process were determined. Michaelis constants(Km) of free NHase and NHase CLEAs were also determined. The NHase CLEAs exhibited increased stability at varied pH and temperature conditions compared to its free counterpart. When exposed to high concentrations of acrylamide, NHase CLEAs also exhibited effective catalytic activity.
基金Supported by Tianjin Natural Science Foundation (No033603611)
文摘The effect of magnetic field on a-amylase was studied. Under the experimental conditions, a-amylase solution was treated by 0.15 T, 0.30 T and 0.45 T static magnetic fields for a known period of time, then the activity, kinetic parameters, and the secondary conformation were investigated. The results showed that there was a considerable effect of the magnetic exposure on the α-amylase. The activity was increased by 27%, 34.1%, 37.8% compared with the control. It was also found that both kinetic parameters Km and Vm could be decreased due to the increasing magnetic field, Km decreased from 2.20×10^2 to 0.87×10^2, whereas Vm decreased from 2.0×10^3 g/min to 1.1 ×10^3 g/min. At the same time, there were some irregular changes in a-amylase secondary conformation.
基金supported by the Hubei Project for Research and Development (No.2008BCA004)the National High Technology Research and Development Program of China (No.2012ZX07105-004)the State Key Laboratory of Freshwater Ecology and Biotechnology (No.2014FBZ02)
文摘In order to find effective measures to control diatom blooms, a better understanding of the physiological characteristics of nutrient uptake in diatoms is needed. A study of P and Si-uptake kinetics for diatom species from two light regimes was conducted at low(LL),moderate(ML) and high light intensities(HL)(2, 25 and 80 μmol photons/(m2·sec)),respectively. The results showed that P uptake of diatoms was heavily influenced by historic light regimes. P affinity changed with growth and photosynthetic activity. The lowest half saturation constant for P uptake(Km(P)) was under HL for high-light adapted diatoms while the lowest half-saturation constant for low-light adapted diatoms was observed under LL. The Si half-saturation constant(Km(Si)) increased with increasing light intensities for pennate diatoms but decreased for centric diatoms. Diatom volumes were correlated with the maximum Si uptake rates(Vm(Si)) at HL and K m(Si)at ML and HL for six diatom species. Our results imply that when we assess the development of diatom blooms we should consider light intensity and cell volume in addition to ambient Si or P concentration. The relationship between light intensity and P-uptake suggests that we can find suitable methods to control diatom blooms on the basis of reducing phytoplankton activity of P-uptake and photosynthesis simultaneously.
基金funded partly by the Conselho Nacional de Desenvolvimento Científico and Tecnológico(CNPq)。
文摘Eucalyptus clones are selected according to productivity,wood quality,rooting capacity,and resistance to drought,frost and diseases.However,kinetic and morphological parameters that determine the absorption efficiency of nutrients such as nitrate(NO_(3)^(-)) and ammonium(NH_(4)^(+))are often not considered in breeding programs.The objective of this study was to evaluate the morphological,physiological and kinetic parameters of nitrogen uptake by clones of Eucalyptus saligna(32,864) and Eucalyptus grandis(GPC23).Morphological parameters in shoot and root systems,biomass and N concentrations in different organs,photosynthetic pigment concentrations,parameters of chlorophyll a fluorescence and photosynthetic rates were evaluated.Kinetic parameters,maximum absorption velocity(V_(max)),Michaelis-Menten constant(K_(m)),minimum concentration(C_(min)) and influx(I) were calculated for NO_(3)^(-)and NH_(4)^(+) in the two clones.E.granais clone was more efficient in the uptake of NO_(3)^(-)and NH_(4)^(+),and showed lower K_(m) and C_(min)values,allowing for the absorption of nitrogen at low concentrations due to the high affinity of the absorption sites of clone roots to NO_(3)^(-)and NH_(4)^(+).Higher root lengths,area and volume helped the E.grandis clone in absorption efficiency and consequently,resulted in higher root and shoot biomass.The E.saligna clone had higher K_(m) and Cmin for NO_(3)^(-)and NH_(4)^(+),indicating adaptation to environments with higher N availability.The results of NO_(3)^(-)and NH_(4)^(+) kinetic parameters indicate that they can be used in Eucalyptus clone selection and breeding programs as they can predict the ability of clones to absorb NO_(3)^(-)and NH_(4)^(+) at different concentrations.