期刊文献+
共找到541,577篇文章
< 1 2 250 >
每页显示 20 50 100
Construction of miRNA-mRNA network reveals crucial miRNAs and genes in acute myocardial infarction 被引量:5
1
作者 Kai Wang Zhongming Li +7 位作者 Wenjie Ma Yan Sun Xianling Liu Lijun Qian Jian Hong Dasheng Lu Jing Zhang Di Xu 《The Journal of Biomedical Research》 CAS CSCD 2021年第6期425-435,共11页
Acute myocardial infarction(AMI)is a severe cardiovascular disease.This study aimed to identify crucial microRNAs(miRNAs)and mRNAs in AMI by establishing a miRNA-mRNA network.The microarray datasets GSE31568,GSE148153... Acute myocardial infarction(AMI)is a severe cardiovascular disease.This study aimed to identify crucial microRNAs(miRNAs)and mRNAs in AMI by establishing a miRNA-mRNA network.The microarray datasets GSE31568,GSE148153,and GSE66360 were downloaded from the Gene Expression Omnibus(GEO)database.We identified differentially expressed miRNAs(DE-miRNAs)and mRNAs(DE-mRNAs)in AMI samples compared with normal control samples.The consistently changing miRNAs in both GSE31568 and GSE148153 datasets were selected as candidate DE-miRNAs.The interactions between the candidate DE-miRNAs and DE-mRNAs were analyzed,and a miRNA-mRNA network and a protein-protein interaction network were constructed,along with functional enrichment and pathway analyses.A total of 209 DE-miRNAs in the GSE31568 dataset,857 DE-miRNAs in the GSE148153 dataset,and 351 DE-mRNAs in the GSE66360 dataset were identified.Eighteen candidate DE-miRNAs were selected from both the GSE31568 and GSE148153 datasets.Furthermore,miR-646,miR-127-5p,miR-509-5p,miR-509-3-5p,and miR-767-5p were shown to have a higher degree in the miRNA-mRNA network.THBS-1 as well as FOS was a hub gene in the miRNA-mRNA network and the protein-protein interaction(PPI)network,respectively.CDKN1A was important in both miRNA-mRNA network and PPI network.We established a miRNA-mRNA network in AMI and identified five miRNAs and three genes,which might be used as biomarkers and potential therapeutic targets for patients with AMI. 展开更多
关键词 acute myocardial infarction MIRNAS MRNAS mirna-mrna regulatory network
暂未订购
布鲁氏菌病诊断外泌体microRNA生物标志物的筛选和潜在miRNA-mRNA调控网络的构建
2
作者 赵进 陈志强 +5 位作者 王冰丽 李书灵 朱晓玉 贾金彤 柳叶子 李智伟 《中国人兽共患病学报》 北大核心 2025年第3期269-277,共9页
目的 探索布鲁氏菌病新型辅助诊断生物标志物及其潜在的miRNA-mRNA调控网络。方法 通过高通量测序比较布鲁氏菌病患者和健康对照组血清外泌体中miRNA的表达差异。利用RT-qPCR验证显著上调的外泌体miRNA的表达。采用ROC曲线评估这些miRN... 目的 探索布鲁氏菌病新型辅助诊断生物标志物及其潜在的miRNA-mRNA调控网络。方法 通过高通量测序比较布鲁氏菌病患者和健康对照组血清外泌体中miRNA的表达差异。利用RT-qPCR验证显著上调的外泌体miRNA的表达。采用ROC曲线评估这些miRNA的诊断价值,并结合生物信息学分析miRNA在布鲁氏菌病感染中的潜在作用。结果 ROC曲线显示外泌体hsa-miR-11400(P<0.05)、hsa-miR-199a-5p(P<0.05)和hsa-miR-148a-5p(P<0.05)的曲线下面积分别为0.79、0.81和0.74。预测了465个差异表达基因,其中包括25个免疫相关靶基因,其中大多数与癌症蛋白多糖、NF-kappa B信号网络和IL-17信号通路密切相关。通过构建差异表达基因网络,PLXNA2、IL17RA、PRKCA、CD22、ACVR1B和CBL免疫基因可能分别受到hsa-miR-199a-5p和hsa-miR-148a-5p的调控。结论 表明外泌体miRNA可作为布鲁氏菌病的辅助诊断指标,且外泌体miRNA-mRNA调控网络为布鲁氏菌病的发病机制及治疗提供了新的见解。 展开更多
关键词 布鲁氏菌病 外泌体微小核糖核酸 生物标志物 mirna-mrna调控网络
暂未订购
改进Deep Q Networks的交通信号均衡调度算法
3
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 Deep Q networks 深度强化学习 智能交通
在线阅读 下载PDF
血友病A miRNA-mRNA调控网络构建及靶向治疗药物预测
4
作者 耿杰 侯传东 +7 位作者 陈浩然 张力中 何田田 张辉 赵鹏 贺培凤 于琦 卢学春 《郑州大学学报(医学版)》 北大核心 2025年第6期754-759,共6页
目的:构建血友病A(HA)患者的miRNA-mRNA调控网络,并预测HA的潜在靶向治疗药物。方法:选取9例男性HA患者的全血样本进行mRNA测序,并采用来自基因型-组织表达数据库的43例正常男性血液样本的RNA测序数据,使用R 4.3.2的DESeq 21.42.1包鉴... 目的:构建血友病A(HA)患者的miRNA-mRNA调控网络,并预测HA的潜在靶向治疗药物。方法:选取9例男性HA患者的全血样本进行mRNA测序,并采用来自基因型-组织表达数据库的43例正常男性血液样本的RNA测序数据,使用R 4.3.2的DESeq 21.42.1包鉴定差异表达的mRNA(DEmRNA)。从基因表达综合数据库筛选5名正常人和6名无FⅧ自身抗体的HA患者的miRNA测序数据,使用limma包鉴定差异表达miRNA(DEmiRNA),并利用TargetScanHuman等数据库预测DEmiRNA的靶基因,构建miRNA-mRNA负调控网络。基于EpiMed平台和计算机辅助药物设计技术(CADD)预测HA的潜在治疗药物。结果:HA的miRNA-mRNA负调控网络中包含5个miRNA,has-mir-1246、has-mir-3197、has-mir-3620和has-mir-30c-1表达上调,has-mir-570表达下调,对应负调控9个mRNA表达下调,5个mRNA表达上调。EpiMed平台预测到245种处方药物,CADD筛选出47种药物,综合评估后得到4种候选药物(地高辛、安西奈德、依托泊苷和阿奇霉素),4种候选药物与5个DEmiRNA均产生多条氢键相互作用力。结论:本研究构建HA miRNA-mRNA负调控网络,并预测得到4种靶向miRNA的潜在治疗药物。 展开更多
关键词 血友病A mirna-mrna调控网络 分子对接 EpiMed 药物预测
暂未订购
慢性髓性白血病红系分化相关miRNA-mRNA网络的构建与分析
5
作者 王静艳 杨玉 +5 位作者 张涛 彭琳茜 迟睿 高吴陆怡 孙晓航 商宇 《黑龙江医学》 2025年第5期515-519,共5页
目的:确定慢性髓性白血病(CML)红系分化过程中起关键作用的微小核糖核酸(miRNA)和信使核糖核酸(mRNA),并揭示它们之间的网络调控关系以及其对信号通路的影响。方法:利用GEO数据库筛选出CML红系分化后表达显著改变的miRNA与mRNA,并通过DI... 目的:确定慢性髓性白血病(CML)红系分化过程中起关键作用的微小核糖核酸(miRNA)和信使核糖核酸(mRNA),并揭示它们之间的网络调控关系以及其对信号通路的影响。方法:利用GEO数据库筛选出CML红系分化后表达显著改变的miRNA与mRNA,并通过DIANA tools分析平台的TarBase v.8工具与Cytoscape软件构建miRNA-mRNA调控网络,进一步筛选出发挥关键作用的枢纽miRNA。使用DIANA tools分析平台的mirPath v.3工具与Metascape分析平台分别对miRNA与mRNA的进行KEGG信号通路富集分析。最后,通过实时荧光定量PCR的方法验证红系分化对CML细胞枢纽miRNA表达的影响。结果:共筛选出表达显著差异的4281个mRNA与475个miRNA,其中差异最为显著的基因包括ATP2A3、CXCL8、hsa-miR-219a-5p和hsa-miR-154-5p等。miRNA-mRNA网络分析发现,hsa-miR-520c-3p等4个miRNA是表达显著降低miRNA的网络枢纽,而hsa-miR-128-3p等11个miRNA是表达显著升高miRNA的网络枢纽。信号通路富集分析发现差异表达miRNA与mRNA主要富集于PI3K-Akt信号通路等。体外实验结果显示,在氯化血红素处理的K562细胞中,hsa-miR-520c-3p的相对表达量显著减少,而hsa-miR-128-3p的相对表达量则显著增加。结论:通过构建miRNA-mRNA网络全面探讨了CML红系分化过程中miRNA与mRNA之间的调控作用,揭示了发挥关键作用的miRNA与信号通路,为理解CML红系分化的调控机制提供了新视角,并为CML治疗提供了潜在靶标。 展开更多
关键词 慢性髓性白血病 红系分化 mirna-mrna网络
暂未订购
后备母猪发情期和乏情期下丘脑-垂体-卵巢性腺轴miRNA-mRNA表达谱比较分析
6
作者 吕玲燕 孙如玉 +9 位作者 林昌华 张胜斌 覃秀珍 柏秀芳 吴永绍 陈钊 刘磊 张冰 蒋家霞 张家庆 《中国畜牧兽医》 北大核心 2025年第7期2965-2980,共16页
【目的】探讨miRNA-mRNA互作网络在后备母猪发情调控中的关键作用,以期解释其在后备母猪发情活动中的遗传机制。【方法】以发情期和乏情期后备母猪的下丘脑、垂体、卵巢组织为研究对象,测定血清中促卵泡激素(FSH)、孕酮(P4)、雌二醇(E2... 【目的】探讨miRNA-mRNA互作网络在后备母猪发情调控中的关键作用,以期解释其在后备母猪发情活动中的遗传机制。【方法】以发情期和乏情期后备母猪的下丘脑、垂体、卵巢组织为研究对象,测定血清中促卵泡激素(FSH)、孕酮(P4)、雌二醇(E2)等生殖激素浓度,通过小RNA测序(sRNA-Seq)并利用生物信息学软件筛选出不同情期差异表达miRNA,通过R语言对差异表达miRNA靶基因进行GO功能及KEGG通路富集分析,并随机选取4个差异表达miRNAs进行实时荧光定量PCR验证。【结果】后备母猪血清中生殖激素浓度与母猪所处的生理周期相吻合;在发情期和乏情期母猪中共检测到742个已知的miRNAs和229个新的miRNAs。发情期和乏情期母猪下丘脑中有57个差异表达miRNAs,其中24个上调,33个下调;垂体中有71个差异表达miRNAs,其中44个上调,27个下调;卵巢中有140个差异表达miRNAs,其中63个上调,77个下调。KEGG通路富集分析发现,后备母猪下丘脑中差异表达miRNA靶基因主要参与癌症中的蛋白聚糖、NOD样受体信号通路、Toll样受体信号通路、细胞因子受体相互作用等;垂体中差异表达miRNA靶基因主要参与甘氨酸、丝氨酸、苏氨酸代谢过程,促性腺激素释放激素分泌,细胞黏附分子,新陈代谢信号通路等;卵巢中差异表达miRNA靶基因主要参与趋化因子信号通路、溶酶体、卵巢类固醇生成、胆固醇代谢、PPAR信号通路、ECM受体交互作用等。在与生殖相关的靶基因调控网络中筛选出可能由下丘脑-垂体-卵巢性腺轴介导调控后备母猪情期活动的关键miRNAs:miR-6240Z、ssc-miR-34a、ssc-miR-143-3P、ssc-miR-127、ssc-miR-21-5P、ssc-miR-381-3p。对后备母猪卵巢组织中4个差异表达miRNAs进行实时荧光定量PCR验证,其表达趋势与测序结果一致。【结论】本研究成功构建了发情期和乏情期后备母猪下丘脑-垂体-卵巢性腺轴miRNA表达谱,并对差异表达miRNA进行验证,筛选到与后备母猪情期活动显著相关的miRNA,为解析后备母猪发情机制提供了理论依据。 展开更多
关键词 mirna-mrna 后备母猪 发情期 乏情期 下丘脑-垂体-卵巢性腺轴
在线阅读 下载PDF
LATITUDES Network:提升证据合成稳健性的效度(偏倚风险)评价工具库
7
作者 廖明雨 熊益权 +7 位作者 赵芃 郭金 陈靖文 刘春容 贾玉龙 任燕 孙鑫 谭婧 《中国循证医学杂志》 北大核心 2025年第5期614-620,共7页
证据合成是对现有研究证据进行系统收集、分析和整合的过程,其结果依赖于纳入原始研究的质量,而效度评价(validity assessment,又称偏倚风险评价)则是评估这些原始研究质量的重要手段。现有效度评价工具种类繁多,但部分工具缺乏严格的... 证据合成是对现有研究证据进行系统收集、分析和整合的过程,其结果依赖于纳入原始研究的质量,而效度评价(validity assessment,又称偏倚风险评价)则是评估这些原始研究质量的重要手段。现有效度评价工具种类繁多,但部分工具缺乏严格的开发过程和评估,证据合成过程中应用不恰当的效度评价工具开展文献质量评价,可能会影响研究结论的准确性,误导临床实践。为解决这一困境,2023年9月英国Bristol大学学者牵头成立了效度评价工具一站式资源站LATITUDES Network。该网站致力于收集、整理和推广研究效度评价工具,以促进原始研究效度评价的准确性,提升证据合成的稳健性和可靠性。本文对LATITUDES Network成立背景、收录的效度评价工具,以及评价工具使用的培训资源等内容进行了详细介绍,以期为国内学者更多地了解LATITUDES Network,更好地运用恰当的效度评价工具开展文献质量评价,以及为开发效度评价工具等提供参考。 展开更多
关键词 效度评价 偏倚风险 证据合成 LATITUDES network
原文传递
Application of virtual reality technology improves the functionality of brain networks in individuals experiencing pain 被引量:3
8
作者 Takahiko Nagamine 《World Journal of Clinical Cases》 SCIE 2025年第3期66-68,共3页
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u... Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field. 展开更多
关键词 Virtual reality PAIN ANXIETY Salience network Default mode network
在线阅读 下载PDF
Construction of the underlying circRNA-miRNA-mRNA regulatory network and a new diagnostic model in ulcerative colitis by bioinformatics analysis 被引量:1
9
作者 Yu-Yi Yuan Hui Wu +2 位作者 Qian-Yun Chen Heng Fan Bo Shuai 《World Journal of Clinical Cases》 SCIE 2024年第9期1606-1621,共16页
BACKGROUND Circular RNAs(circRNAs)are involved in the pathogenesis of many diseases through competing endogenous RNA(ceRNA)regulatory mechanisms.AIM To investigate a circRNA-related ceRNA regulatory network and a new ... BACKGROUND Circular RNAs(circRNAs)are involved in the pathogenesis of many diseases through competing endogenous RNA(ceRNA)regulatory mechanisms.AIM To investigate a circRNA-related ceRNA regulatory network and a new predictive model by circRNA to understand the diagnostic mechanism of circRNAs in ulcerative colitis(UC).METHODS We obtained gene expression profiles of circRNAs,miRNAs,and mRNAs in UC from the Gene Expression Omnibus dataset.The circRNA-miRNA-mRNA network was constructed based on circRNA-miRNA and miRNA-mRNA interactions.Functional enrichment analysis was performed to identify the biological mechanisms involved in circRNAs.We identified the most relevant differential circRNAs for diagnosing UC and constructed a new predictive nomogram,whose efficacy was tested with the C-index,receiver operating characteristic curve(ROC),and decision curve analysis(DCA).RESULTS A circRNA-miRNA-mRNA regulatory network was obtained,containing 12 circRNAs,three miRNAs,and 38 mRNAs.Two optimal prognostic-related differentially expressed circRNAs,hsa_circ_0085323 and hsa_circ_0036906,were included to construct a predictive nomogram.The model showed good discrimination,with a C-index of 1(>0.9,high accuracy).ROC and DCA suggested that the nomogram had a beneficial diagnostic ability.CONCLUSION This novel predictive nomogram incorporating hsa_circ_0085323 and hsa_circ_0036906 can be conveniently used to predict the risk of UC.The circRNa-miRNA-mRNA network in UC could be more clinically significant. 展开更多
关键词 Circular RNAs RNA regulatory network Ulcerative colitis New predictive model BIOINFORMATICS DIAGNOSE
暂未订购
miRNA-mRNA网络参与高脂饮食损伤甲状腺功能的生物信息学分析
10
作者 窦涛 窦乃馨 +4 位作者 汪如 杨芊 管庆波 王磊 于春晓 《山东大学耳鼻喉眼学报》 2025年第4期151-160,167,共11页
目的通过生物信息学方法分析参与高脂饮食损伤甲状腺功能的miRNA-mRNA调控网络,为早期干预脂毒性损伤甲状腺功能提供新的靶点。方法给予大鼠高脂饮食8周,建立甲状腺功能损伤大鼠模型,以正常饮食组为对照,Agilent芯片检测甲状腺miRNA和m... 目的通过生物信息学方法分析参与高脂饮食损伤甲状腺功能的miRNA-mRNA调控网络,为早期干预脂毒性损伤甲状腺功能提供新的靶点。方法给予大鼠高脂饮食8周,建立甲状腺功能损伤大鼠模型,以正常饮食组为对照,Agilent芯片检测甲状腺miRNA和mRNA表达,RStudio的limma包筛选差异miRNA和mRNA。miRwalk预测差异miRNA调控的潜在下游靶基因,利用微生信网站将预测的靶基因和差异mRNA取交集,建立差异miRNA-差异mRNA网络。通过在线网站Metascape对交集mRNA进行基因本体论(gene ontology,GO)注释和京都基因和基因组百科全书(kyoto encyclopedia of genes and genomes,KEGG)通路分析。利用String在线网站进行蛋白质-蛋白质相互作用(protein-protein interaction,PPI)分析,使用Cytoscape可视化PPI网络,CytoNCA插件筛选枢纽基因。基于关键基因建立高脂饮食损伤甲状腺功能的潜在miRNA-mRNA网络。结果筛选出27个上调和6个下调miRNA,775个上调和543个下调mRNA,下调miRNA的靶点mRNA与芯片筛选的上调mRNA有301个重叠,上调miRNA的靶点mRNA与芯片筛选的下调mRNA有278个重叠,分别获得491和777个miRNA-mRNA对。GO和KEGG分析发现差异mRNA富集到与甲状腺激素合成和细胞增殖等相关通路。进一步筛选出Src、Pebp1、Il1b、Plcg1、Igf1、Ntrk2等10个枢纽基因,建立了包括miR-3473/Src、miR-339-3p/Igf1、miR-674-5p/Igf1、miR-339-3p/Ntrk2、miR-99b-3p/Ntrk2等的关键miRNA-mRNA调控对。结论miR-3473、Igf1和Ntrk2等可能作为核心miRNA和mRNA,参与调控高脂饮食损伤甲状腺功能。 展开更多
关键词 甲状腺功能减退 高脂饮食 mirna-mrna网络
原文传递
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
11
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Offload Strategy for Edge Computing in Satellite Networks Based on Software Defined Network 被引量:1
12
作者 Zhiguo Liu Yuqing Gui +1 位作者 Lin Wang Yingru Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期863-879,共17页
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us... Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency. 展开更多
关键词 Satellite network edge computing task scheduling computing offloading
在线阅读 下载PDF
Identification and construction of lncRNA-miRNA-mRNA ceRNA networks associated with temperature changes in Sebastiscus marmoratus
13
作者 Zhujun LI Chenyan SHOU +2 位作者 Shaolei SUN Zhiqiang HAN Qi LIU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第6期1957-1975,共19页
Sebastiscus marmoratus is one of the ideal fish species for offshore breeding,and temperature changes directly affect its physiological process.We performed whole-transcriptome sequencing of the liver tissues of S.mar... Sebastiscus marmoratus is one of the ideal fish species for offshore breeding,and temperature changes directly affect its physiological process.We performed whole-transcriptome sequencing of the liver tissues of S.marmoratus under heat stress(25℃),normal condition(20℃,the control),and cold stress(15℃).A total of 376 differentially expressed genes(DEGs),147 differentially expressed lncRNAs(DELs),and 40 differentially expressed miRNAs(DEMis)were detected under heat stress;59 DEGs,59 DELs,and 44 DEMis were detected under cold stress.Furthermore,a competing endogenous RNA regulatory network for the functional interaction of lncRNA-miRNA-mRNA was constructed,and GO and KEGG enrichment analyses showed that genes involved in maintaining homeostasis or adjusting to stress and stimulation were strongly activated during heat stress.Including heat-shock protein-related genes Hsp70,FKBP4,and Hspa4a regulated by dre-mir-205-5p;energy metabolism-related genes GCK,g6pca,and RFK regulated by dre-miR-205-5p,dre-miR-145-5p,novel_441,TCONS_00023692,and tcon_00095578;and immune-related genes SCAF,NLRC3,per1b,herc4,MafG,and KLHL29 regulated by dre-miR-456,novel_640,novel_163,TCONS_00079377,TCONS_00063590,and TCONS_000605708.Our findings provide new insights into the adaptation of S.marmoratus to acute temperature changes. 展开更多
关键词 Sebastiscus marmoratus differentially expressed gene(DEG) ceRNA network temperature change
在线阅读 下载PDF
A Novel Self-Supervised Learning Network for Binocular Disparity Estimation 被引量:1
14
作者 Jiawei Tian Yu Zhou +5 位作者 Xiaobing Chen Salman A.AlQahtani Hongrong Chen Bo Yang Siyu Lu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期209-229,共21页
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st... Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments. 展开更多
关键词 Parallax estimation parallax regression model self-supervised learning Pseudo-Siamese neural network pyramid dilated convolution binocular disparity estimation
在线阅读 下载PDF
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
15
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
Multi-Stage-Based Siamese Neural Network for Seal Image Recognition
16
作者 Jianfeng Lu Xiangye Huang +3 位作者 Caijin Li Renlin Xin Shanqing Zhang Mahmoud Emam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期405-423,共19页
Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited... Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets. 展开更多
关键词 Seal recognition seal authentication document tampering siamese network spatial transformer network similarity comparison network
在线阅读 下载PDF
Enhanced electrode-level diagnostics for lithium-ion battery degradation using physics-informed neural networks 被引量:1
17
作者 Rui Xiong Yinghao He +2 位作者 Yue Sun Yanbo Jia Weixiang Shen 《Journal of Energy Chemistry》 2025年第5期618-627,共10页
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models... For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management. 展开更多
关键词 Lithium-ion batteries Electrode level Ageing diagnosis Physics-informed neural network Convolutional neural networks
在线阅读 下载PDF
TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks 被引量:1
18
作者 Baoquan Liu Xi Chen +2 位作者 Qingjun Yuan Degang Li Chunxiang Gu 《Computers, Materials & Continua》 2025年第2期3179-3201,共23页
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based... With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%. 展开更多
关键词 Encrypted traffic classification deep learning graph neural networks multi-layer perceptron graph convolutional networks
在线阅读 下载PDF
Traffic safety helmet wear detection based on improved YOLOv5 network 被引量:1
19
作者 GUI Dongdong SUN Bo 《Optoelectronics Letters》 2025年第1期35-42,共8页
Aiming at the problem that the current traffic safety helmet detection model can't balance the accuracy of detection with the size of the model and the poor generalization of the model,a method based on improving ... Aiming at the problem that the current traffic safety helmet detection model can't balance the accuracy of detection with the size of the model and the poor generalization of the model,a method based on improving you only look once version 5(YOLOv5) is proposed.By incorporating the lightweight Ghost Net module into the YOLOv5 backbone network,we effectively reduce the model size.The addition of the receptive fields block(RFB) module enhances feature extraction and improves the feature acquisition capability of the lightweight model.Subsequently,the high-performance lightweight convolution,GSConv,is integrated into the neck structure for further model size compression.Moreover,the baseline model's loss function is substituted with efficient insertion over union(EIoU),accelerating network convergence and enhancing detection precision.Experimental results corroborate the effectiveness of this improved algorithm in real-world traffic scenarios. 展开更多
关键词 network UNION BACKBONE
原文传递
Atmospheric scattering model and dark channel prior constraint network for environmental monitoring under hazy conditions 被引量:2
20
作者 Lintao Han Hengyi Lv +3 位作者 Chengshan Han Yuchen Zhao Qing Han Hailong Liu 《Journal of Environmental Sciences》 2025年第6期203-218,共16页
Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze we... Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability. 展开更多
关键词 Remote sensing Image dehazing Environmental monitoring Neural network INTERPRETABILITY
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部