We investigate the origin of the 1/3 magnetization plateau in the S=1/2 kagome antiferromagnetic Heisenberg model using the variational Monte Carlo and exact diagonalization methods,to account for the recent experimen...We investigate the origin of the 1/3 magnetization plateau in the S=1/2 kagome antiferromagnetic Heisenberg model using the variational Monte Carlo and exact diagonalization methods,to account for the recent experimental observations in YCu_(3)(OH)_(6+x)Br_(3-x)and YCu_(3)(OD)_(6+x)Br_(3-x).We identify three degenerate valencebond-solid(VBS)states forming a√3×√3 unit cell.These states exhibit David-star patterns in the spin moment distribution with only two fractional values-1/3 and 2/3,and are related through translational transformations.While the spin correlations in these VBS states are found to be short-range,resembling a quantum spin liquid,we show that they have a vanishing topological entanglement entropy and thus are topologically trivial many-body states.Our theoretical results provide strong evidence that the 1/3 magnetization plateau observed in recent experiments arises from these√3×√3 VBS states with fractional spin moments.展开更多
基金supported by the National Key Projects for Research and Development of China(Grant Nos.2021YFA1400400 and 2024YFA1408104)the National Natural Science Foundation of China(Grant Nos.12434005,12374137,and 92165205).
文摘We investigate the origin of the 1/3 magnetization plateau in the S=1/2 kagome antiferromagnetic Heisenberg model using the variational Monte Carlo and exact diagonalization methods,to account for the recent experimental observations in YCu_(3)(OH)_(6+x)Br_(3-x)and YCu_(3)(OD)_(6+x)Br_(3-x).We identify three degenerate valencebond-solid(VBS)states forming a√3×√3 unit cell.These states exhibit David-star patterns in the spin moment distribution with only two fractional values-1/3 and 2/3,and are related through translational transformations.While the spin correlations in these VBS states are found to be short-range,resembling a quantum spin liquid,we show that they have a vanishing topological entanglement entropy and thus are topologically trivial many-body states.Our theoretical results provide strong evidence that the 1/3 magnetization plateau observed in recent experiments arises from these√3×√3 VBS states with fractional spin moments.