期刊文献+
共找到10,457篇文章
< 1 2 250 >
每页显示 20 50 100
Jamming recognition method based on wavelet packet decomposition and improved deep learning
1
作者 Qi Wu Gang Li +4 位作者 Xiang Wang Hao Luo Lianghong Li Qianbin Chen Xiaorong Jing 《Digital Communications and Networks》 2025年第5期1469-1478,共10页
To overcome the challenges of poor real-time performance,limited scalability,and low intelligence in conventional jamming pattern recognition methods,this paper proposes a method based on Wavelet Packet Decomposition(... To overcome the challenges of poor real-time performance,limited scalability,and low intelligence in conventional jamming pattern recognition methods,this paper proposes a method based on Wavelet Packet Decomposition(WPD)and enhanced deep learning techniques.In the proposed method,an agent at the receiver processes the received signal using WPD to generate an initial Spectrogram Waterfall(SW),which is subsequently segmented using a sliding window to serve as the input for the jamming recognition network.The network employs a bilateral filter to preprocess the input SW,thereby enhancing the edge features of the jamming signals.To extract abstract features,depthwise separable convolution is utilized instead of traditional convolution,thereby reducing the network’s parameter count and enhancing real-time performance.A pyramid pooling layer is integrated before the fully connected layer to enable the network to process input SW of varying sizes,thus enhancing scalability.During network training,adaptive moment estimation is employed as the optimizer,allowing the network to dynamically adjust the learning rate and accelerate convergence.A comprehensive comparison between the proposed jamming recognition network and six other models is conducted,along with Ablation Experiments(AE)based on numerical simulations.Simulation results demonstrate that the proposed method based on WPD and enhanced deep learning achieves high-precision recognition of various jamming patterns while maintaining a favorable balance among prediction accuracy,network complexity,and prediction time. 展开更多
关键词 wavelet packet decomposition Improved deep learning Spectrogram waterfall Pyramid pooling Jamming recognition
在线阅读 下载PDF
Forecasting electricity prices in the spot market utilizing wavelet packet decomposition integrated with a hybrid deep neural network
2
作者 Heping Jia Yuchen Guo +5 位作者 Xiaobin Zhang Qianxin Ma Zhenglin Yang Yaxian Zheng Dan Zeng Dunnan Liu 《Global Energy Interconnection》 2025年第5期874-890,共17页
Accurate forecasting of electricity spot prices is crucial for market participants in formulating bidding strategies.However,the extreme volatility of electricity spot prices,influenced by various factors,poses signif... Accurate forecasting of electricity spot prices is crucial for market participants in formulating bidding strategies.However,the extreme volatility of electricity spot prices,influenced by various factors,poses significant challenges for forecasting.To address the data uncertainty of electricity prices and effectively mitigate gradient issues,overfitting,and computational challenges associated with using a single model during forecasting,this paper proposes a framework for forecasting spot market electricity prices by integrating wavelet packet decomposition(WPD)with a hybrid deep neural network.By ensuring accurate data decomposition,the WPD algorithm aids in detecting fluctuating patterns and isolating random noise.The hybrid model integrates temporal convolutional networks(TCN)and long short-term memory(LSTM)networks to enhance feature extraction and improve forecasting performance.Compared to other techniques,it significantly reduces average errors,decreasing mean absolute error(MAE)by 27.3%,root mean square error(RMSE)by 66.9%,and mean absolute percentage error(MAPE)by 22.8%.This framework effectively captures the intricate fluctuations present in the time series,resulting in more accurate and reliable predictions. 展开更多
关键词 Electricity price forecasting Long and short-term memory Hybrid deep neural network wavelet packet decomposition Temporal neural network
在线阅读 下载PDF
Integrated interpretation of dual frequency induced polarization measurement based on wavelet analysis and metal factor methods 被引量:3
3
作者 韩世礼 张术根 +2 位作者 柳建新 胡厚继 张文山 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1465-1471,共7页
In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When... In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method. 展开更多
关键词 dual frequency induced polarization method wavelet analysis metal factor Arabian-Nubian shield volcanogenic massive sulfide deposit
在线阅读 下载PDF
Identification of Grinding Wheel Wear Signature by a Wavelet Packet Decomposition Method 被引量:6
4
作者 许黎明 许开州 柴运东 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第3期323-328,共6页
Grinding is known as the most complicated material removal process and the method for monitoring the grinding wheel wear has its own characteristics comparing with the approaches for detecting the wear on regular cutt... Grinding is known as the most complicated material removal process and the method for monitoring the grinding wheel wear has its own characteristics comparing with the approaches for detecting the wear on regular cutting tools.Research efforts were made to develop the wheel wear monitoring system due to its significance in grinding process.This paper presents a novel method for identification of grinding wheel wear signature by combination of wavelet packet decomposition(WPD) based energies.The distinctive feature of the method is that it takes advantage of the combinational information of the decomposed frequency components based on the WPD so the extracted features can be customized according to the specific monitored object to get better diagnosis effects.Experiments are researched on monitoring of grinding wheel wear states under different machining conditions.The results show that the energy ratio extracted from the measured vibration signals is consistent with the grinding wheel wear condition evaluated by experiment and the further extracted feature ratio can be used in prediction of wheel wear condition. 展开更多
关键词 grinding wheel wear VIBRATION feature extraction wavelet packet decomposition(WPD)
原文传递
Morphological Undecimated Wavelet Decomposition Fusion Algorithm and Its Application on Fault Feature Extraction of Hydraulic Pump 被引量:3
5
作者 孙健 李洪儒 +1 位作者 王卫国 叶鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第3期268-278,共11页
Since vibration signals of hydraulic pump are mostly nonlinear and traditional fusion algorithm cannot satisfyingly process them,a morphological undecimated wavelet decomposition fusion(MUWDF)algorithm is proposed.Fir... Since vibration signals of hydraulic pump are mostly nonlinear and traditional fusion algorithm cannot satisfyingly process them,a morphological undecimated wavelet decomposition fusion(MUWDF)algorithm is proposed.Firstly,under the framework of morphological undecimated wavelet decomposition(MUWD),multi-channel signals are decomposed.Approximate signals of all decomposition layers are selected by feature energy factor and fused according to the presented fusion rules.Furthermore,specific method for optimal selection of MUWDF parameters is presented to avoid subjective influences.Finally,the proposed algorithm is verified by simulation signals and pump vibration signals. 展开更多
关键词 MORPHOLOGICAL undecimated wavelet decomposition(MU
在线阅读 下载PDF
Feature Extraction of Bearing Vibration Signals Using Second Generation Wavelet and Spline-Based Local Mean Decomposition 被引量:5
6
作者 文成玉 董良 金欣 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第1期56-60,共5页
In order to extract the fault feature frequency of weak bearing signals,we put forward a local mean decomposition(LMD)method combining with the second generation wavelet transform.After performing the second generatio... In order to extract the fault feature frequency of weak bearing signals,we put forward a local mean decomposition(LMD)method combining with the second generation wavelet transform.After performing the second generation wavelet denoising,the spline-based LMD is used to decompose the high-frequency detail signals of the second generation wavelet signals into a number of production functions(PFs).Power spectrum analysis is applied to the PFs to detect bearing fault information and identify the fault patterns.Application in inner and outer race fault diagnosis of rolling bearing shows that the method can extract the vibration features of rolling bearing fault.This method is suitable for extracting the fault characteristics of the weak fault signals in strong noise. 展开更多
关键词 second generation wavelet transform local mean decomposition(LMD) feature extraction fault diagnosis
原文传递
Time Domain Signal Analysis Using Wavelet Packet Decomposition Approach 被引量:7
7
作者 M. Y. Gokhale Daljeet Kaur Khanduja 《International Journal of Communications, Network and System Sciences》 2010年第3期321-329,共9页
This paper explains a study conducted based on wavelet packet transform techniques. In this paper the key idea underlying the construction of wavelet packet analysis (WPA) with various wavelet basis sets is elaborated... This paper explains a study conducted based on wavelet packet transform techniques. In this paper the key idea underlying the construction of wavelet packet analysis (WPA) with various wavelet basis sets is elaborated. Since wavelet packet decomposition can provide more precise frequency resolution than wavelet decomposition the implementation of one dimensional wavelet packet transform and their usefulness in time signal analysis and synthesis is illustrated. A mother or basis wavelet is first chosen for five wavelet filter families such as Haar, Daubechies (Db4), Coiflet, Symlet and dmey. The signal is then decomposed to a set of scaled and translated versions of the mother wavelet also known as time and frequency parameters. Analysis and synthesis of the time signal is performed around 8 seconds to 25 seconds. This was conducted to determine the effect of the choice of mother wavelet on the time signals. Results are also prepared for the comparison of the signal at each decomposition level. The physical changes that are occurred during each decomposition level can be observed from the results. The results show that wavelet filter with WPA are useful for analysis and synthesis purpose. In terms of signal quality and the time required for the analysis and synthesis, the Haar wavelet has been seen to be the best mother wavelet. This is taken from the analysis of the signal to noise ratio (SNR) value which is around 300 dB to 315 dB for the four decomposition levels. 展开更多
关键词 WPA wavelet PACKET decomposition (WPD) SNR HAAR
暂未订购
Separation of closely spaced modes by combining complex envelope displacement analysis with method of generating intrinsic mode functions through filtering algorithm based on wavelet packet decomposition 被引量:3
8
作者 Y.S.KIM 陈立群 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期801-810,共10页
One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the mo... One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method. 展开更多
关键词 empirical mode decomposition (EMD) wavelet packet decomposition com- plex envelope displacement analysis (CEDA) closely spaced modes modal identification
在线阅读 下载PDF
Wind speed forecasting based on wavelet decomposition and wavelet neural networks optimized by the Cuckoo search algorithm 被引量:8
9
作者 ZHANG Ye YANG Shiping +2 位作者 GUO Zhenhai GUO Yanling ZHAO Jing 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第2期107-115,共9页
Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In... Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models. 展开更多
关键词 Wind speed forecast wavelet decomposition neural network Cuckoo search algorithm
在线阅读 下载PDF
A novel internet traffic identification approach using wavelet packet decomposition and neural network 被引量:7
10
作者 谭骏 陈兴蜀 +1 位作者 杜敏 朱锴 《Journal of Central South University》 SCIE EI CAS 2012年第8期2218-2230,共13页
Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network... Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network. 展开更多
关键词 neural network particle swarm optimization statistical characteristic traffic identification wavelet packet decomposition
在线阅读 下载PDF
Phase space reconstruction of chaotic dynamical system based on wavelet decomposition 被引量:2
11
作者 游荣义 黄晓菁 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期114-118,共5页
In view of the disadvantages of the traditional phase space reconstruction method, this paper presents the method of phase space reconstruction based on the wavelet decomposition and indicates that the wavelet decompo... In view of the disadvantages of the traditional phase space reconstruction method, this paper presents the method of phase space reconstruction based on the wavelet decomposition and indicates that the wavelet decomposition of chaotic dynamical system is essentially a projection of chaotic attractor on the axes of space opened by the wavelet filter vectors, which corresponds to the time-delayed embedding method of phase space reconstruction proposed by Packard and Takens. The experimental results show that, the structure of dynamical trajectory of chaotic system on the wavelet space is much similar to the original system, and the nonlinear invariants such as correlation dimension, Lyapunov exponent and Kolmogorov entropy are still reserved. It demonstrates that wavelet decomposition is effective for characterizing chaotic dynamical system. 展开更多
关键词 chaotic dynamical system phase space reconstruction wavelet decomposition
原文传递
Features of energy distribution for blast vibration signals based on wavelet packet decomposition 被引量:5
12
作者 LING Tong-hua LI Xi-bing DAI Ta-gen PENG Zhen-bin 《Journal of Central South University of Technology》 2005年第z1期135-140,共6页
Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time non... Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria. 展开更多
关键词 BLASTING vibration NON-STATIONARY random signal energy distribution wavelet TRANSFORM wavelet PACKET decomposition
在线阅读 下载PDF
Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis 被引量:4
13
作者 Arturo GARCIA-PEREZ Juan P. AMEZQUITA-SANCHEZ +3 位作者 Aurelio DOMINGUEZ-GONZALEZ Ramin SEDAGHATI Roque OSORNIO-RIOS Rene J. ROMERO-TRONCOSO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第9期615-630,共16页
Structural health monitoring (SHM) is a relevant topic for civil systems and involves the monitoring, data processing and interpretation to evaluate the condition of a structure, in order to detect damage. In real str... Structural health monitoring (SHM) is a relevant topic for civil systems and involves the monitoring, data processing and interpretation to evaluate the condition of a structure, in order to detect damage. In real structures, two or more sites or types of damage can be present at the same time. It has been shown that one kind of damaged condition can interfere with the detection of another kind of damage, leading to an incorrect assessment about the structure condition. Identifying combined damage on structures still represents a challenge for condition monitoring, because the reliable identification of a combined damaged condition is a difficult task. Thus, this work presents a fusion of methodologies, where a single wavelet-packet and the empirical mode decomposition (EMD) method are combined with artificial neural networks (ANNs) for the automated and online identification-location of single or multiple-combined damage in a scaled model of a five-bay truss-type structure. Results showed that the proposed methodology is very efficient and reliable for identifying and locating the three kinds of damage, as well as their combinations. Therefore, this methodology could be applied to detection-location of damage in real truss-type structures, which would help to improve the characteristics and life span of real structures. 展开更多
关键词 Truss structure Vibration Spectral analysis wavelet packet transform Empirical mode decomposition Artificialneural network (ANN)
原文传递
Low Bit Rate Underwater Video Image Compression and Coding Method Based on Wavelet Decomposition 被引量:3
14
作者 Yonggang He Xiongzhu Bu +1 位作者 Ming Jiang Maojun Fan 《China Communications》 SCIE CSCD 2020年第9期210-219,共10页
In view of the limited bandwidth of underwater video image transmission,a low bit rate underwater video compression coding method is proposed.Based on the preprocessing process of wavelet transform and coefficient dow... In view of the limited bandwidth of underwater video image transmission,a low bit rate underwater video compression coding method is proposed.Based on the preprocessing process of wavelet transform and coefficient down-sampling,the visual redundancy of underwater image is removed and the computational coefficients and coding bits are reduced.At the same time,combined with multi-level wavelet decomposition,inter frame motion compensation,entropy coding and other methods,according to the characteristics of different types of frame image data,reduce the number of calculations and improve the coding efficiency.The experimental results show that the reconstructed image quality can meet the visual requirements,and the average compression ratio of underwater video can meet the requirements of underwater acoustic channel transmission rate. 展开更多
关键词 low bit rate DOWN-SAMPLING wavelet decomposition underwater video coding
在线阅读 下载PDF
Domain Decomposition for Wavelet Single Layer on Geometries with Patches 被引量:3
15
作者 Maharavo Randrianarivony 《Applied Mathematics》 2016年第15期1798-1823,共27页
We focus on the single layer formulation which provides an integral equation of the first kind that is very badly conditioned. The condition number of the unpreconditioned system increases exponentially with the multi... We focus on the single layer formulation which provides an integral equation of the first kind that is very badly conditioned. The condition number of the unpreconditioned system increases exponentially with the multiscale levels. A remedy utilizing overlapping domain decompositions applied to the Boundary Element Method by means of wavelets is examined. The width of the overlapping of the subdomains plays an important role in the estimation of the eigenvalues as well as the condition number of the additive domain decomposition operator. We examine the convergence analysis of the domain decomposition method which depends on the wavelet levels and on the size of the subdomain overlaps. Our theoretical results related to the additive Schwarz method are corroborated by numerical outputs. 展开更多
关键词 wavelet Single Layer PATCH Domain decomposition Convergence Graph Partitioning Condition Number
在线阅读 下载PDF
Hybrid Model Based on Wavelet Decomposition for Electricity Consumption Prediction 被引量:1
16
作者 XIA Chenxia WANG Zilong JHONY Choon Yeong Ng 《Journal of Donghua University(English Edition)》 EI CAS 2019年第1期77-87,共11页
The effective supply of electricity is the basis of ensuring economic development and people's normal life. It is difficult to store electricity, as leading to the production and consumption must be completed simu... The effective supply of electricity is the basis of ensuring economic development and people's normal life. It is difficult to store electricity, as leading to the production and consumption must be completed simultaneously. Therefore, it is of great significance to accurately predict the demand for electricity consumption for the production planning of electricity and the normal operation of the society. In this paper, a hybrid model is constructed to predict the electricity consumption in China. The structural breaks test of monthly electricity consumption in China from January 2010 to December 2016 is carried out by using the structural breaks unit root test. Based on the existence of structura breaks, the electricity consumption data are decomposed into low-frequency and high-frequency components by wavelet model, and the separated low frequency signal and high frequency signal are predicted by autoregressive integrated moving average(ARIMA) and nonlinear autoregressive neural network(NAR), respectively. Therefore the wavelet-ARIMA-NAR hybrid model is constructed. In order to compare the effect of the hybrid model, the structural time series(STS) model is applied to predicting the electricity consumption. The results of prediction error test show that the hybrid model is more accurate for electricity consumption prediction. 展开更多
关键词 ELECTRICITY CONSUMPTION forecasting wavelet decomposition STRUCTURAL BREAKS STRUCTURAL time series(STS) model
在线阅读 下载PDF
Effect of preparation methods on Pt/alumina catalysts for the hydrogen iodide catalytic decomposition 被引量:1
17
作者 Zhi Chao Wang Lai Jun Wang Ping Zhang Song Zhe Chen Jing Ming Xu Jing Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第1期102-105,共4页
Three kinds of Pt/alumina catalysts were prepared by impregnation-hydrogen reduction, impregnation-hydrazine reduction and electroless plating methods. Their differences in the structures, specific areas and particle ... Three kinds of Pt/alumina catalysts were prepared by impregnation-hydrogen reduction, impregnation-hydrazine reduction and electroless plating methods. Their differences in the structures, specific areas and particle sizes were characterized by XRD, BET and TEM, respectively. Furthermore, their catalytic activities for the hydrogen iodide (HI) decomposition were evaluated in a fixed bed reactor. The results show that the catalyst 5%Pt/Al2O3 prepared by the electroless plating has the optimum catalytic properties for HI decomposition owing to the high dispersion of the platinum nano-particles (〈5 nm) on the alumina supports. 展开更多
关键词 Hydrogen iodide Catalytic decomposition Pt/At2O3 Preparation methods
在线阅读 下载PDF
Audio Zero-Watermark Scheme Based on Discrete Cosine Transform-Discrete Wavelet TransformSingular Value Decomposition 被引量:7
18
作者 Min Lei Yu Yang +2 位作者 XiaoMing Liu MingZhi Cheng Rui Wang 《China Communications》 SCIE CSCD 2016年第7期117-121,共5页
Traditional watermark embedding schemes inevitably modify the data in a host audio signal and lead to the degradation of the host signal.In this paper,a novel audio zero-watermarking algorithm based on discrete wavele... Traditional watermark embedding schemes inevitably modify the data in a host audio signal and lead to the degradation of the host signal.In this paper,a novel audio zero-watermarking algorithm based on discrete wavelet transform(DWT),discrete cosine transform(DCT),and singular value decomposition(SVD) is presented.The watermark is registered by performing SVD on the coefficients generated through DWT and DCT to avoid data modification and host signal degradation.Simulation results show that the proposed zero-watermarking algorithm is strongly robust to common signal processing methods such as requantization,MP3 compression,resampling,addition of white Gaussian noise,and low-pass filtering. 展开更多
关键词 zero-watermark discrete wavelet transform discrete cosine transform singular value decomposition
在线阅读 下载PDF
A Robust Image Watermarking Scheme Using Z-Transform, Discrete Wavelet Transform and Bidiagonal Singular Value Decomposition 被引量:2
19
作者 N.Jayashree R.S.Bhuvaneswaran 《Computers, Materials & Continua》 SCIE EI 2019年第1期263-285,共23页
Watermarking is a widely used solution to the problems of authentication and copyright protection of digital media especially for images,videos,and audio data.Chaos is one of the emerging techniques adopted in image w... Watermarking is a widely used solution to the problems of authentication and copyright protection of digital media especially for images,videos,and audio data.Chaos is one of the emerging techniques adopted in image watermarking schemes due to its intrinsic cryptographic properties.This paper proposes a new chaotic hybrid watermarking method combining Discrete Wavelet Transform(DWT),Z-transform(ZT)and Bidiagonal Singular Value Decomposition(BSVD).The original image is decomposed into 3-level DWT,and then,ZT is applied on the HH3 and HL3 sub-bands.The watermark image is encrypted using Arnold Cat Map.BSVD for the watermark and transformed original image were computed,and the watermark was embedded by modifying singular values of the host image with the singular values of the watermark image.Robustness of the proposed scheme was examined using standard test images and assessed against common signal processing and geometric attacks.Experiments indicated that the proposed method is transparent and highly robust. 展开更多
关键词 Digital WATERMARKING chaotic mapping Z-TRANSFORM ARNOLD cat map discrete wavelet transform(DWT) bidiagonal SINGULAR value decomposition(BSVD)
在线阅读 下载PDF
Sea-water-level prediction via combined wavelet decomposition,neuro-fuzzy and neural networks using SLA and wind information 被引量:1
20
作者 Bao Wang Bin Wang +2 位作者 Wenzhou Wu Changbai Xi Jiechen Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第5期157-167,共11页
Sea-water-level(SWL)prediction significantly impacts human lives and maritime activities in coastal regions,particularly at offshore locations with shallow water levels.Long-term SWL forecasts,which are conventionally... Sea-water-level(SWL)prediction significantly impacts human lives and maritime activities in coastal regions,particularly at offshore locations with shallow water levels.Long-term SWL forecasts,which are conventionally obtained via harmonic analysis,become ineffective when nonperiodic meteorological events predominate.Artificial intelligence combined with other data-processing methods can effectively forecast highly nonlinear and nonstationary inflow patterns by recognizing historical relationships between input and output.These techniques are considerably useful in time-series data predictions.This paper reports the development of a hybrid model to realize accurate multihour SWL forecasting by combining an adaptive neuro-fuzzy inference system(ANFIS)with wavelet decomposition while using sea-level anomaly(SLA)and wind-shear-velocity components as inputs.Numerous wavelet-ANFIS(WANFIS)models have been tested using different inputs to assess their applicability as alternatives to the artificial neural network(ANN),wavelet ANN(WANN),and ANFIS models.Different error definitions have been used to evaluate results,which indicate that integrated wavelet-decomposition and ANFIS models improve the accuracy of SWL prediction and that the inputs of SLA and wind-shear velocity exhibit superior prediction capability compared to conventional SWL-only models. 展开更多
关键词 sea-water level PREDICTION ANFIS wavelet decomposition WIND
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部