As pivotal supporting technologies for smart manufacturing and digital engineering,model-based and data-driven methods have been widely applied in many industrial fields,such as product design,process monitoring,and s...As pivotal supporting technologies for smart manufacturing and digital engineering,model-based and data-driven methods have been widely applied in many industrial fields,such as product design,process monitoring,and smart maintenance.While promising,both methods have issues that need to be addressed.For example,model-based methods are limited by low computational accuracy and a high computational burden,and data-driven methods always suffer from poor interpretability and redundant features.To address these issues,the concept of data-model fusion(DMF)emerges as a promising solution.DMF involves integrating model-based methods with data-driven methods by incorporating big data into model-based methods or embedding relevant domain knowledge into data-driven methods.Despite growing efforts in the field of DMF,a unanimous definition of DMF remains elusive,and a general framework of DMF has been rarely discussed.This paper aims to address this gap by providing a thorough overview and categorization of both data-driven methods and model-based methods.Subsequently,this paper also presents the definition and categorization of DMF and discusses the general framework of DMF.Moreover,the primary seven applications of DMF are reviewed within the context of smart manufacturing and digital engineering.Finally,this paper directs the future directions of DMF.展开更多
Snow cover in mountainous areas is characterized by high reflectivity,strong spatial heterogeneity,rapid changes,and susceptibility to cloud interference.However,due to the limitations of a single sensor,it is challen...Snow cover in mountainous areas is characterized by high reflectivity,strong spatial heterogeneity,rapid changes,and susceptibility to cloud interference.However,due to the limitations of a single sensor,it is challenging to obtain high-resolution satellite remote sensing data for monitoring the dynamic changes of snow cover within a day.This study focuses on two typical data fusion methods for polar-orbiting satellites(Sentinel-3 SLSTR)and geostationary satellites(Himawari-9 AHI),and explores the snow cover detection accuracy of a multitemporal cloud-gap snow cover identification model(Loose data fusion)and the ESTARFM(Spatiotemporal data fusion).Taking the Qilian Mountains as the research area,the accuracy of two data fusion results was verified using the snow cover extracted from Landsat-8 SR products.The results showed that both data fusion models could effectively capture the spatiotemporal variations of snow cover,but the ESTARFM demonstrated superior performance.It not only obtained fusion images at any target time,but also extracted snow cover that was closer to the spatial distribution of real satellite images.Therefore,the ESTARFM was utilized to fuse images for hourly reconstruction of the snow cover on February 14–15,2023.It was found that the maximum snow cover area of this snowfall reached 83.84%of the Qilian Mountains area,and the melting rate of the snow was extremely rapid,with a change of up to 4.30%per hour of the study area.This study offers reliable high spatiotemporal resolution satellite remote sensing data for monitoring snow cover changes in mountainous areas,contributing to more accurate and timely assessments.展开更多
A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5w...A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.展开更多
Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments.However,due to the nonlinearity and non-stationarity of collect...Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments.However,due to the nonlinearity and non-stationarity of collected vibration signals,single-modal methods struggle to capture fault features fully.This paper proposes a rolling bearing fault diagnosis method based on multi-modal information fusion.The method first employs the Hippopotamus Optimization Algorithm(HO)to optimize the number of modes in Variational Mode Decomposition(VMD)to achieve optimal modal decomposition performance.It combines Convolutional Neural Networks(CNN)and Gated Recurrent Units(GRU)to extract temporal features from one-dimensional time-series signals.Meanwhile,the Markovian Transition Field(MTF)is used to transform one-dimensional signals into two-dimensional images for spatial feature mining.Through visualization techniques,the effectiveness of generated images from different parameter combinations is compared to determine the optimal parameter configuration.A multi-modal network(GSTCN)is constructed by integrating Swin-Transformer and the Convolutional Block Attention Module(CBAM),where the attention module is utilized to enhance fault features.Finally,the fault features extracted from different modalities are deeply fused and fed into a fully connected layer to complete fault classification.Experimental results show that the GSTCN model achieves an average diagnostic accuracy of 99.5%across three datasets,significantly outperforming existing comparison methods.This demonstrates that the proposed model has high diagnostic precision and good generalization ability,providing an efficient and reliable solution for rolling bearing fault diagnosis.展开更多
BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery...BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery speed and quality of life.Effective prevention of anxiety and depression in elderly patients has become an urgent problem.AIM To investigate the trajectory of anxiety and depression levels in elderly patients after LIF,and the influencing factors.METHODS Random sampling was used to select 239 elderly patients who underwent LIF from January 2020 to December 2024 in Shenzhen Pingle Orthopedic Hospital.General information and surgery-related indices were recorded,and participants completed measures of psychological status,lumbar spine dysfunction,and quality of life.A latent class growth model was used to analyze the post-LIF trajectory of anxiety and depression levels,and unordered multi-categorical logistic regression was used to analyze the influencing factors.RESULTS Three trajectories of change in anxiety level were identified:Increasing anxiety(n=26,10.88%),decreasing anxiety(n=27,11.30%),and stable anxiety(n=186,77.82%).Likewise,three trajectories of change in depression level were identified:Increasing depression(n=30,12.55%),decreasing depression(n=26,10.88%),and stable depression(n=183,76.57%).Regression analysis showed that having no partner,female sex,elevated Oswestry dysfunction index(ODI)scores,and reduced 36-Item Short Form Health Survey scores all contributed to increased anxiety levels,whereas female sex,postoperative opioid use,and elevated ODI scores all contributed to increased depression levels.CONCLUSION During clinical observation,combining factors to predict anxiety and depression in post-LIF elderly patients enables timely intervention,quickens recovery,and enhances quality of life.展开更多
BACKGROUND Salvage of the infected long stem revision total knee arthroplasty is challenging due to the presence of well-fixed ingrown or cemented stems.Reconstructive options are limited.Above knee amputation(AKA)is ...BACKGROUND Salvage of the infected long stem revision total knee arthroplasty is challenging due to the presence of well-fixed ingrown or cemented stems.Reconstructive options are limited.Above knee amputation(AKA)is often recommended.We present a surgical technique that was successfully used on four such patients to convert them to a knee fusion(KF)using a cephalomedullary nail.CASE SUMMARY Four patients with infected long stem revision knee replacements that refused AKA had a single stage removal of their infected revision total knee followed by a KF.They were all treated with a statically locked antegrade cephalomedullary fusion nail,augmented with antibiotic impregnated bone cement.All patients had successful limb salvage and were ambulatory with assistive devices at the time of last follow-up.All were infection free at an average follow-up of 25.5 months(range 16-31).CONCLUSION Single stage cephalomedullary nailing can result in a successful KF in patients with infected long stem revision total knees.展开更多
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an...Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.展开更多
Aim To fuse the fluorescence image and transmission image of a cell into a single image containing more information than any of the individual image. Methods Image fusion technology was applied to biological cell imag...Aim To fuse the fluorescence image and transmission image of a cell into a single image containing more information than any of the individual image. Methods Image fusion technology was applied to biological cell imaging processing. It could match the images and improve the confidence and spatial resolution of the images. Using two algorithms, double thresholds algorithm and denoising algorithm based on wavelet transform,the fluorescence image and transmission image of a Cell were merged into a composite image. Results and Conclusion The position of fluorescence and the structure of cell can be displyed in the composite image. The signal-to-noise ratio of the exultant image is improved to a large extent. The algorithms are not only useful to investigate the fluorescence and transmission images, but also suitable to observing two or more fluoascent label proes in a single cell.展开更多
Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly ...Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly important. Taking the Daquekou section of the Qiantang River as an observation target, four conventional fusion methods widely accepted in satellite image processing, including pan sharpening(PS), principal component analysis(PCA), Gram-Schmidt(GS), and wavelet fusion(WF), are utilized to fuse MS and PAN images of GF-1.The results of subjective and objective evaluation methods application indicate that GS performs the best,followed by the PCA, the WF and the PS in the order of descending. The existence of a large area of the water body is a dominant factor impacting the fusion performance. Meanwhile, the ability of retaining spatial and spectral informations is an important factor affecting the fusion performance of different fusion methods. The fundamental difference of reflectivity information acquisition between water and land is the reason for the failure of conventional fusion methods for land observation such as the PS to be used in the presence of the large water body. It is suggested that the adoption of the conventional fusion methods in the observing water body as the main target should be taken with caution. The performances of the fusion methods need re-assessment when the large-scale water body is present in the remote sensing image or when the research aims for the water body observation.展开更多
In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for c...In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for considered schemes are derived in the norm stronger than L^2-norm.展开更多
Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant resear...Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities.Under complex scenes,multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions.However,achieving outstanding performance is challenging because of equipment performance limitations,missing information,and data noise.This paper comprehensively reviews existing methods based onmulti-modal fusion techniques and completes a detailed and in-depth analysis.According to the data fusion stage,multi-modal fusion has four primary methods:early fusion,deep fusion,late fusion,and hybrid fusion.The paper surveys the three majormulti-modal fusion technologies that can significantly enhance the effect of data fusion and further explore the applications of multi-modal fusion technology in various fields.Finally,it discusses the challenges and explores potential research opportunities.Multi-modal tasks still need intensive study because of data heterogeneity and quality.Preserving complementary information and eliminating redundant information between modalities is critical in multi-modal technology.Invalid data fusion methods may introduce extra noise and lead to worse results.This paper provides a comprehensive and detailed summary in response to these challenges.展开更多
Four data fusion methods, principle component transform (PCT), brovey transform (BT), smoothing filter-based intensity modulation(SFIM), and hue, saturation, intensity (HSI), are used to merge Landsat-7 ETM+ multispec...Four data fusion methods, principle component transform (PCT), brovey transform (BT), smoothing filter-based intensity modulation(SFIM), and hue, saturation, intensity (HSI), are used to merge Landsat-7 ETM+ multispectral bands with ETM+ panchromatic band. Each of them improves the spatial resolution effectively but distorts the original spectral signatures to some extent. SFIM model can produce optimal fusion data with respect to preservation of spectral integrity. However, it results the most blurred and noisy image if the coregistration between the multispectral and pan images is not accurate enough. The spectral integrity for all methods is preserved better if the original multispectral images are within the spectral range of ETM+ pan image.展开更多
on the basis of analyzing the characteristics of low light level(LLL)image and ultra-violet image and the information amount of dual channel color night vision system,the LLL and ultra-violet color night vision techni...on the basis of analyzing the characteristics of low light level(LLL)image and ultra-violet image and the information amount of dual channel color night vision system,the LLL and ultra-violet color night vision technique is put forward.The methods of gray-scale modulation,frequency field fusion,special component fusion arc tried,and the improved LLL and ultra-violet image pseudo color fusion algorithms are presented.These new algorithms include subsection gray-scale modulation,image difference picking-up,component separation based on the reflected characteristics to night skylight reflection characteristics of objects and color space mapping which embodies the spectrum response of image sensor and nature vision.Some good results are obtained.展开更多
In this paper, the cubic and quintic diffusion equation under stochastic non homogeneity is solved using Wiener- Hermite expansion and perturbation (WHEP) technique, Homotopy perturbation method (HPM) and Pickard appr...In this paper, the cubic and quintic diffusion equation under stochastic non homogeneity is solved using Wiener- Hermite expansion and perturbation (WHEP) technique, Homotopy perturbation method (HPM) and Pickard approximation technique. The analytic solution of the linear case is obtained using Eigenfunction expansion .The Picard approximation method is used to introduce the first and second order approximate solution for the non linear case. The WHEP technique is also used to obtain approximate solution under different orders and different corrections. The Homotopy perturbation method (HPM) is also used to obtain some approximation orders for mean and variance. Using mathematica-5, the methods of solution are illustrated through figures, comparisons among different methods and some parametric studies.展开更多
In this study, powder metallurgy methods were used to fabricate Mg-7.5Li-3Al-Zn alloys from repowdered extruded alloys. Extruded alloys were powdered using ultrasonic atomization, and then laser powder bed fusion(LPBF...In this study, powder metallurgy methods were used to fabricate Mg-7.5Li-3Al-Zn alloys from repowdered extruded alloys. Extruded alloys were powdered using ultrasonic atomization, and then laser powder bed fusion(LPBF) and pulse plasma sintering(PPS) were used to consolidate the bulk materials. A comparison of the properties of the fabricated alloys with those of a conventionally extruded one was carried out using methods that characterized the microstructure and corrosion resistance. When compared to their conventionally extruded counterpart, LPBF and PPS materials exhibited refined microstructures with low enrichment in Al Li and coarse Al, Zn, Mn precipitates. The main drawback of the LPBF alloy, printed for the needs of this study, was its porosity, which had a negative effect on its corrosion. The presence of unrecrystallized particle boundaries in the PPS alloy was also unbeneficial with regard to corrosion. The advantage of the LPBF and PPS processes was the ability to change the proportion of α(Mg) to β(Li), which when the complete consolidation of the material is achievable, may increase the corrosion resistance of dual-structured Mg-Li alloys. The results show that powder metallurgy routes have a wide potential to be used for the manufacture of Mg-Li based alloys.展开更多
In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear conve...In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear convection-diffusion problems.In the spatial discretization,both the original DDG methods and the refined DDG methods with interface corrections are considered.In the time discretization,the convection term is treated explicitly and the diffusion term implicitly.By the energy method,we show that the corresponding fully discrete schemes are unconditionally stable,in the sense that the time-stepis only required to be upper bounded by a constant which is independent of the mesh size h.Opti-mal error estimate is also obtained by the aid of a special global projection.Numerical experiments are given to verify the stability and accuracy of the proposed schemes.展开更多
Data fusion has shown potential to improve the accuracy of land cover mapping,and selection of the optimal fusion technique remains a challenge.This study investigated the performance of fusing Sentinel-1(S-1)and Sent...Data fusion has shown potential to improve the accuracy of land cover mapping,and selection of the optimal fusion technique remains a challenge.This study investigated the performance of fusing Sentinel-1(S-1)and Sentinel-2(S-2)data,using layer-stacking method at the pixel level and Dempster-Shafer(D-S)theory-based approach at the decision level,for mapping six land cover classes in Thu Dau Mot City,Vietnam.At the pixel level,S-1 and S-2 bands and their extracted textures and indices were stacked into the different single-sensor and multi-sensor datasets(i.e.fused datasets).The datasets were categorized into two groups.One group included the datasets containing only spectral and backscattering bands,and the other group included the datasets consisting of these bands and their extracted features.The random forest(RF)classifier was then applied to the datasets within each group.At the decision level,the RF classification outputs of the single-sensor datasets within each group were fused together based on D-S theory.Finally,the accuracy of the mapping results at both levels within each group was compared.The results showed that fusion at the decision level provided the best mapping accuracy compared to the results from other products within each group.The highest overall accuracy(OA)and Kappa coefficient of the map using D-S theory were 92.67%and 0.91,respectively.The decision-level fusion helped increase the OA of the map by 0.75%to 2.07%compared to that of corresponding S-2 products in the groups.Meanwhile,the data fusion at the pixel level delivered the mapping results,which yielded an OA of 4.88%to 6.58%lower than that of corresponding S-2 products in the groups.展开更多
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grants(52275471 and 52120105008)the Beijing Outstanding Young Scientist Program,and the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘As pivotal supporting technologies for smart manufacturing and digital engineering,model-based and data-driven methods have been widely applied in many industrial fields,such as product design,process monitoring,and smart maintenance.While promising,both methods have issues that need to be addressed.For example,model-based methods are limited by low computational accuracy and a high computational burden,and data-driven methods always suffer from poor interpretability and redundant features.To address these issues,the concept of data-model fusion(DMF)emerges as a promising solution.DMF involves integrating model-based methods with data-driven methods by incorporating big data into model-based methods or embedding relevant domain knowledge into data-driven methods.Despite growing efforts in the field of DMF,a unanimous definition of DMF remains elusive,and a general framework of DMF has been rarely discussed.This paper aims to address this gap by providing a thorough overview and categorization of both data-driven methods and model-based methods.Subsequently,this paper also presents the definition and categorization of DMF and discusses the general framework of DMF.Moreover,the primary seven applications of DMF are reviewed within the context of smart manufacturing and digital engineering.Finally,this paper directs the future directions of DMF.
基金funded by the National Natural Science Foundation of China(42361058)supported by the Science and Technology Program of Gansu Province(22YF7FA074)。
文摘Snow cover in mountainous areas is characterized by high reflectivity,strong spatial heterogeneity,rapid changes,and susceptibility to cloud interference.However,due to the limitations of a single sensor,it is challenging to obtain high-resolution satellite remote sensing data for monitoring the dynamic changes of snow cover within a day.This study focuses on two typical data fusion methods for polar-orbiting satellites(Sentinel-3 SLSTR)and geostationary satellites(Himawari-9 AHI),and explores the snow cover detection accuracy of a multitemporal cloud-gap snow cover identification model(Loose data fusion)and the ESTARFM(Spatiotemporal data fusion).Taking the Qilian Mountains as the research area,the accuracy of two data fusion results was verified using the snow cover extracted from Landsat-8 SR products.The results showed that both data fusion models could effectively capture the spatiotemporal variations of snow cover,but the ESTARFM demonstrated superior performance.It not only obtained fusion images at any target time,but also extracted snow cover that was closer to the spatial distribution of real satellite images.Therefore,the ESTARFM was utilized to fuse images for hourly reconstruction of the snow cover on February 14–15,2023.It was found that the maximum snow cover area of this snowfall reached 83.84%of the Qilian Mountains area,and the melting rate of the snow was extremely rapid,with a change of up to 4.30%per hour of the study area.This study offers reliable high spatiotemporal resolution satellite remote sensing data for monitoring snow cover changes in mountainous areas,contributing to more accurate and timely assessments.
基金Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team Construction Project(2022KXJ-071)2022 Qin Chuangyuan Achievement Transformation Incubation Capacity Improvement Project(2022JH-ZHFHTS-0012)+8 种基金Shaanxi Province Key Research and Development Plan-“Two Chains”Integration Key Project-Qin Chuangyuan General Window Industrial Cluster Project(2023QCY-LL-02)Xixian New Area Science and Technology Plan(2022-YXYJ-003,2022-XXCY-010)2024 Scientific Research Project of Shaanxi National Defense Industry Vocational and Technical College(Gfy24-07)Shaanxi Vocational and Technical Education Association 2024 Vocational Education Teaching Reform Research Topic(2024SZX354)National Natural Science Foundation of China(U24A20115)2024 Shaanxi Provincial Education Department Service Local Special Scientific Research Program Project-Industrialization Cultivation Project(24JC005,24JC063)Shaanxi Province“14th Five-Year Plan”Education Science Plan,2024 Project(SGH24Y3181)National Key Research and Development Program of China(2023YFB4606400)Longmen Laboratory Frontier Exploration Topics Project(LMQYTSKT003)。
文摘A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.
基金funded by the Jilin Provincial Department of Science and Technology,grant number 20230101208JC.
文摘Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments.However,due to the nonlinearity and non-stationarity of collected vibration signals,single-modal methods struggle to capture fault features fully.This paper proposes a rolling bearing fault diagnosis method based on multi-modal information fusion.The method first employs the Hippopotamus Optimization Algorithm(HO)to optimize the number of modes in Variational Mode Decomposition(VMD)to achieve optimal modal decomposition performance.It combines Convolutional Neural Networks(CNN)and Gated Recurrent Units(GRU)to extract temporal features from one-dimensional time-series signals.Meanwhile,the Markovian Transition Field(MTF)is used to transform one-dimensional signals into two-dimensional images for spatial feature mining.Through visualization techniques,the effectiveness of generated images from different parameter combinations is compared to determine the optimal parameter configuration.A multi-modal network(GSTCN)is constructed by integrating Swin-Transformer and the Convolutional Block Attention Module(CBAM),where the attention module is utilized to enhance fault features.Finally,the fault features extracted from different modalities are deeply fused and fed into a fully connected layer to complete fault classification.Experimental results show that the GSTCN model achieves an average diagnostic accuracy of 99.5%across three datasets,significantly outperforming existing comparison methods.This demonstrates that the proposed model has high diagnostic precision and good generalization ability,providing an efficient and reliable solution for rolling bearing fault diagnosis.
基金Supported by the Scientific Research Projects of the Health System in Pingshan District,No.2023122.
文摘BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery speed and quality of life.Effective prevention of anxiety and depression in elderly patients has become an urgent problem.AIM To investigate the trajectory of anxiety and depression levels in elderly patients after LIF,and the influencing factors.METHODS Random sampling was used to select 239 elderly patients who underwent LIF from January 2020 to December 2024 in Shenzhen Pingle Orthopedic Hospital.General information and surgery-related indices were recorded,and participants completed measures of psychological status,lumbar spine dysfunction,and quality of life.A latent class growth model was used to analyze the post-LIF trajectory of anxiety and depression levels,and unordered multi-categorical logistic regression was used to analyze the influencing factors.RESULTS Three trajectories of change in anxiety level were identified:Increasing anxiety(n=26,10.88%),decreasing anxiety(n=27,11.30%),and stable anxiety(n=186,77.82%).Likewise,three trajectories of change in depression level were identified:Increasing depression(n=30,12.55%),decreasing depression(n=26,10.88%),and stable depression(n=183,76.57%).Regression analysis showed that having no partner,female sex,elevated Oswestry dysfunction index(ODI)scores,and reduced 36-Item Short Form Health Survey scores all contributed to increased anxiety levels,whereas female sex,postoperative opioid use,and elevated ODI scores all contributed to increased depression levels.CONCLUSION During clinical observation,combining factors to predict anxiety and depression in post-LIF elderly patients enables timely intervention,quickens recovery,and enhances quality of life.
文摘BACKGROUND Salvage of the infected long stem revision total knee arthroplasty is challenging due to the presence of well-fixed ingrown or cemented stems.Reconstructive options are limited.Above knee amputation(AKA)is often recommended.We present a surgical technique that was successfully used on four such patients to convert them to a knee fusion(KF)using a cephalomedullary nail.CASE SUMMARY Four patients with infected long stem revision knee replacements that refused AKA had a single stage removal of their infected revision total knee followed by a KF.They were all treated with a statically locked antegrade cephalomedullary fusion nail,augmented with antibiotic impregnated bone cement.All patients had successful limb salvage and were ambulatory with assistive devices at the time of last follow-up.All were infection free at an average follow-up of 25.5 months(range 16-31).CONCLUSION Single stage cephalomedullary nailing can result in a successful KF in patients with infected long stem revision total knees.
基金the National Key Research and Development Program of China(Grant No.2022YFF0711400)which provided valuable financial support and resources for my research and made it possible for me to deeply explore the unknown mysteries in the field of lunar geologythe National Space Science Data Center Youth Open Project(Grant No.NSSDC2302001),which has not only facilitated the smooth progress of my research,but has also built a platform for me to communicate and cooperate with experts in the field.
文摘Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.
文摘Aim To fuse the fluorescence image and transmission image of a cell into a single image containing more information than any of the individual image. Methods Image fusion technology was applied to biological cell imaging processing. It could match the images and improve the confidence and spatial resolution of the images. Using two algorithms, double thresholds algorithm and denoising algorithm based on wavelet transform,the fluorescence image and transmission image of a Cell were merged into a composite image. Results and Conclusion The position of fluorescence and the structure of cell can be displyed in the composite image. The signal-to-noise ratio of the exultant image is improved to a large extent. The algorithms are not only useful to investigate the fluorescence and transmission images, but also suitable to observing two or more fluoascent label proes in a single cell.
基金The National Key Research and Development Program of China under contract Nos 2016YFC1400901 and 2018YFC1406600the National Natural Science Foundation of China under contract No.40706057+1 种基金the Environmental Protection and Science and Technology Plan Project of Zhejiang Province of China under contract No.2013A021the Research Center for Air Pollution and Health of Zhejiang University
文摘Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly important. Taking the Daquekou section of the Qiantang River as an observation target, four conventional fusion methods widely accepted in satellite image processing, including pan sharpening(PS), principal component analysis(PCA), Gram-Schmidt(GS), and wavelet fusion(WF), are utilized to fuse MS and PAN images of GF-1.The results of subjective and objective evaluation methods application indicate that GS performs the best,followed by the PCA, the WF and the PS in the order of descending. The existence of a large area of the water body is a dominant factor impacting the fusion performance. Meanwhile, the ability of retaining spatial and spectral informations is an important factor affecting the fusion performance of different fusion methods. The fundamental difference of reflectivity information acquisition between water and land is the reason for the failure of conventional fusion methods for land observation such as the PS to be used in the presence of the large water body. It is suggested that the adoption of the conventional fusion methods in the observing water body as the main target should be taken with caution. The performances of the fusion methods need re-assessment when the large-scale water body is present in the remote sensing image or when the research aims for the water body observation.
基金Project supported by National Natural Science Foundation of China and China State Key project for Basic Researchcs.
文摘In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for considered schemes are derived in the norm stronger than L^2-norm.
基金supported by the Natural Science Foundation of Liaoning Province(Grant No.2023-MSBA-070)the National Natural Science Foundation of China(Grant No.62302086).
文摘Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities.Under complex scenes,multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions.However,achieving outstanding performance is challenging because of equipment performance limitations,missing information,and data noise.This paper comprehensively reviews existing methods based onmulti-modal fusion techniques and completes a detailed and in-depth analysis.According to the data fusion stage,multi-modal fusion has four primary methods:early fusion,deep fusion,late fusion,and hybrid fusion.The paper surveys the three majormulti-modal fusion technologies that can significantly enhance the effect of data fusion and further explore the applications of multi-modal fusion technology in various fields.Finally,it discusses the challenges and explores potential research opportunities.Multi-modal tasks still need intensive study because of data heterogeneity and quality.Preserving complementary information and eliminating redundant information between modalities is critical in multi-modal technology.Invalid data fusion methods may introduce extra noise and lead to worse results.This paper provides a comprehensive and detailed summary in response to these challenges.
文摘Four data fusion methods, principle component transform (PCT), brovey transform (BT), smoothing filter-based intensity modulation(SFIM), and hue, saturation, intensity (HSI), are used to merge Landsat-7 ETM+ multispectral bands with ETM+ panchromatic band. Each of them improves the spatial resolution effectively but distorts the original spectral signatures to some extent. SFIM model can produce optimal fusion data with respect to preservation of spectral integrity. However, it results the most blurred and noisy image if the coregistration between the multispectral and pan images is not accurate enough. The spectral integrity for all methods is preserved better if the original multispectral images are within the spectral range of ETM+ pan image.
文摘on the basis of analyzing the characteristics of low light level(LLL)image and ultra-violet image and the information amount of dual channel color night vision system,the LLL and ultra-violet color night vision technique is put forward.The methods of gray-scale modulation,frequency field fusion,special component fusion arc tried,and the improved LLL and ultra-violet image pseudo color fusion algorithms are presented.These new algorithms include subsection gray-scale modulation,image difference picking-up,component separation based on the reflected characteristics to night skylight reflection characteristics of objects and color space mapping which embodies the spectrum response of image sensor and nature vision.Some good results are obtained.
文摘In this paper, the cubic and quintic diffusion equation under stochastic non homogeneity is solved using Wiener- Hermite expansion and perturbation (WHEP) technique, Homotopy perturbation method (HPM) and Pickard approximation technique. The analytic solution of the linear case is obtained using Eigenfunction expansion .The Picard approximation method is used to introduce the first and second order approximate solution for the non linear case. The WHEP technique is also used to obtain approximate solution under different orders and different corrections. The Homotopy perturbation method (HPM) is also used to obtain some approximation orders for mean and variance. Using mathematica-5, the methods of solution are illustrated through figures, comparisons among different methods and some parametric studies.
文摘In this study, powder metallurgy methods were used to fabricate Mg-7.5Li-3Al-Zn alloys from repowdered extruded alloys. Extruded alloys were powdered using ultrasonic atomization, and then laser powder bed fusion(LPBF) and pulse plasma sintering(PPS) were used to consolidate the bulk materials. A comparison of the properties of the fabricated alloys with those of a conventionally extruded one was carried out using methods that characterized the microstructure and corrosion resistance. When compared to their conventionally extruded counterpart, LPBF and PPS materials exhibited refined microstructures with low enrichment in Al Li and coarse Al, Zn, Mn precipitates. The main drawback of the LPBF alloy, printed for the needs of this study, was its porosity, which had a negative effect on its corrosion. The presence of unrecrystallized particle boundaries in the PPS alloy was also unbeneficial with regard to corrosion. The advantage of the LPBF and PPS processes was the ability to change the proportion of α(Mg) to β(Li), which when the complete consolidation of the material is achievable, may increase the corrosion resistance of dual-structured Mg-Li alloys. The results show that powder metallurgy routes have a wide potential to be used for the manufacture of Mg-Li based alloys.
基金the NSFC grant 11871428the Nature Science Research Program for Colleges and Universities of Jiangsu Province grant 20KJB110011Qiang Zhang:Research supported by the NSFC grant 11671199。
文摘In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear convection-diffusion problems.In the spatial discretization,both the original DDG methods and the refined DDG methods with interface corrections are considered.In the time discretization,the convection term is treated explicitly and the diffusion term implicitly.By the energy method,we show that the corresponding fully discrete schemes are unconditionally stable,in the sense that the time-stepis only required to be upper bounded by a constant which is independent of the mesh size h.Opti-mal error estimate is also obtained by the aid of a special global projection.Numerical experiments are given to verify the stability and accuracy of the proposed schemes.
基金the Hungarian Scientific Research Fund in support of the ongoing research,“Time series analysis of land cover dynamics using medium-and high-resolution satellite images”[grant number NKFIH 124648K],at the Department of Physical Geography and Geoinformatics(the former name of the Department of Geoinformatics,Physical and Environmental Geography),University of Szeged,Szeged,Hungary.
文摘Data fusion has shown potential to improve the accuracy of land cover mapping,and selection of the optimal fusion technique remains a challenge.This study investigated the performance of fusing Sentinel-1(S-1)and Sentinel-2(S-2)data,using layer-stacking method at the pixel level and Dempster-Shafer(D-S)theory-based approach at the decision level,for mapping six land cover classes in Thu Dau Mot City,Vietnam.At the pixel level,S-1 and S-2 bands and their extracted textures and indices were stacked into the different single-sensor and multi-sensor datasets(i.e.fused datasets).The datasets were categorized into two groups.One group included the datasets containing only spectral and backscattering bands,and the other group included the datasets consisting of these bands and their extracted features.The random forest(RF)classifier was then applied to the datasets within each group.At the decision level,the RF classification outputs of the single-sensor datasets within each group were fused together based on D-S theory.Finally,the accuracy of the mapping results at both levels within each group was compared.The results showed that fusion at the decision level provided the best mapping accuracy compared to the results from other products within each group.The highest overall accuracy(OA)and Kappa coefficient of the map using D-S theory were 92.67%and 0.91,respectively.The decision-level fusion helped increase the OA of the map by 0.75%to 2.07%compared to that of corresponding S-2 products in the groups.Meanwhile,the data fusion at the pixel level delivered the mapping results,which yielded an OA of 4.88%to 6.58%lower than that of corresponding S-2 products in the groups.