DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expres...DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.展开更多
With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This...With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques.展开更多
This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can e...This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can enhance the efficiency of bank data processing,enrich data types,and strengthen data analysis and application capabilities.In response to future development needs,it is necessary to strengthen data collection management,enhance data processing capabilities,innovate big data application models,and provide references for bank big data practices,promoting the transformation and upgrading of the banking industry in the context of legal digital currencies.展开更多
In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This s...In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This system restores the essential characteristics of currency while providing auxiliary services related to the formation,circulation,storage,application,and promotion of digital currency.Compared to traditional currency management technologies,big data analysis technology,which is primarily embedded in digital currency systems,enables the rapid acquisition of information.This facilitates the identification of standard associations within currency data and provides technical support for the operational framework of digital currency.展开更多
The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pr...The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pressure transient and rate transient data.The initial flowback involves producing back the fracturing fuid after hydraulic fracturing,while the second flowback involves producing back the preloading fluid injected into the parent wells before fracturing of child wells.The main objective of this research is to compare the initial and second flowback data to capture the changes in fracture volume after production and preload processes.Such a comparison is useful for evaluating well performance and optimizing frac-turing operations.We construct rate-normalized pressure(RNP)versus material balance time(MBT)diagnostic plots using both initial and second flowback data(FB;and FBs,respectively)of six multi-fractured horizontal wells completed in Niobrara and Codell formations in DJ Basin.In general,the slope of RNP plot during the FB,period is higher than that during the FB;period,indicating a potential loss of fracture volume from the FB;to the FB,period.We estimate the changes in effective fracture volume(Ver)by analyzing the changes in the RNP slope and total compressibility between these two flowback periods.Ver during FB,is in general 3%-45%lower than that during FB:.We also compare the drive mechanisms for the two flowback periods by calculating the compaction-drive index(CDI),hydrocarbon-drive index(HDI),and water-drive index(WDI).The dominant drive mechanism during both flowback periods is CDI,but its contribution is reduced by 16%in the FB,period.This drop is generally compensated by a relatively higher HDI during this period.The loss of effective fracture volume might be attributed to the pressure depletion in fractures,which occurs during the production period and can extend 800 days.展开更多
When assessing seismic liquefaction potential with data-driven models,addressing the uncertainties of establishing models,interpreting cone penetration tests(CPT)data and decision threshold is crucial for avoiding bia...When assessing seismic liquefaction potential with data-driven models,addressing the uncertainties of establishing models,interpreting cone penetration tests(CPT)data and decision threshold is crucial for avoiding biased data selection,ameliorating overconfident models,and being flexible to varying practical objectives,especially when the training and testing data are not identically distributed.A workflow characterized by leveraging Bayesian methodology was proposed to address these issues.Employing a Multi-Layer Perceptron(MLP)as the foundational model,this approach was benchmarked against empirical methods and advanced algorithms for its efficacy in simplicity,accuracy,and resistance to overfitting.The analysis revealed that,while MLP models optimized via maximum a posteriori algorithm suffices for straightforward scenarios,Bayesian neural networks showed great potential for preventing overfitting.Additionally,integrating decision thresholds through various evaluative principles offers insights for challenging decisions.Two case studies demonstrate the framework's capacity for nuanced interpretation of in situ data,employing a model committee for a detailed evaluation of liquefaction potential via Monte Carlo simulations and basic statistics.Overall,the proposed step-by-step workflow for analyzing seismic liquefaction incorporates multifold testing and real-world data validation,showing improved robustness against overfitting and greater versatility in addressing practical challenges.This research contributes to the seismic liquefaction assessment field by providing a structured,adaptable methodology for accurate and reliable analysis.展开更多
Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduce...Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduced and then enlarged through interpolation,followed by the embedding of secret data into the newly generated pixels.A general improving approach for embedding secret messages is proposed.The approach may be regarded a general model for enhancing the data embedding capacity of various existing image interpolation-based data hiding methods.This enhancement is achieved by expanding the range of pixel values available for embedding secret messages,removing the limitations of many existing methods,where the range is restricted to powers of two to facilitate the direct embedding of bit-based messages.This improvement is accomplished through the application of multiple-based number conversion to the secret message data.The method converts the message bits into a multiple-based number and uses an algorithm to embed each digit of this number into an individual pixel,thereby enhancing the message embedding efficiency,as proved by a theorem derived in this study.The proposed improvement method has been tested through experiments on three well-known image interpolation-based data hiding methods.The results show that the proposed method can enhance the three data embedding rates by approximately 14%,13%,and 10%,respectively,create stego-images with good quality,and resist RS steganalysis attacks.These experimental results indicate that the use of the multiple-based number conversion technique to improve the three interpolation-based methods for embedding secret messages increases the number of message bits embedded in the images.For many image interpolation-based data hiding methods,which use power-of-two pixel-value ranges for message embedding,other than the three tested ones,the proposed improvement method is also expected to be effective for enhancing their data embedding capabilities.展开更多
With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis o...With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis of these data and insight into user behavior patterns and preferences.This paper elaborates on the application of big data technology in the analysis of user behavior on e-commerce platforms,including the technical methods of data collection,storage,processing and analysis,as well as the specific applications in the construction of user profiles,precision marketing,personalized recommendation,user retention and churn analysis,etc.,and discusses the challenges and countermeasures faced in the application.Through the study of actual cases,it demonstrates the remarkable effectiveness of big data technology in enhancing the competitiveness of e-commerce platforms and user experience.展开更多
The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and ...The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and apparatuses have been proposed over the past few decades.The objective of the present study is to summarize the status and development in theories,test apparatuses,data processing of the existing testing methods for UCS measurement.It starts with elaborating the theories of these test methods.Then the test apparatus and development trends for UCS measurement are summarized,followed by a discussion on rock specimens for test apparatus,and data processing methods.Next,the method selection for UCS measurement is recommended.It reveals that the rock failure mechanism in the UCS testing methods can be divided into compression-shear,compression-tension,composite failure mode,and no obvious failure mode.The trends of these apparatuses are towards automation,digitization,precision,and multi-modal test.Two size correction methods are commonly used.One is to develop empirical correlation between the measured indices and the specimen size.The other is to use a standard specimen to calculate the size correction factor.Three to five input parameters are commonly utilized in soft computation models to predict the UCS of rocks.The selection of the test methods for the UCS measurement can be carried out according to the testing scenario and the specimen size.The engineers can gain a comprehensive understanding of the UCS testing methods and its potential developments in various rock engineering endeavors.展开更多
Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpe...Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism(e.g.,hybrid automatic repeat request[HARQ])becomes indispensable.In that regard,instead of discarding previously transmitted information,the incremental knowledge-based HARQ(IK-HARQ)is deemed as a more effective mechanism that could sufficiently utilize the information semantics.However,considering the possible existence of semantic ambiguity in image transmission,a simple bit-level cyclic redundancy check(CRC)might compromise the performance of IK-HARQ.Therefore,there emerges a strong incentive to revolutionize the CRC mechanism,thus more effectively reaping the benefits of both SemCom and HARQ.In this paper,built on top of swin transformer-based joint source-channel coding(JSCC)and IK-HARQ,we propose a semantic image transmission framework SC-TDA-HARQ.In particular,different from the conventional CRC,we introduce a topological data analysis(TDA)-based error detection method,which capably digs out the inner topological and geometric information of images,to capture semantic information and determine the necessity for re-transmission.Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework,especially under the limited bandwidth condition,and manifest the superiority of TDA-based error detection method in image transmission.展开更多
The incremental capacity analysis(ICA)technique is notably limited by its sensitivity to variations in charging conditions,which constrains its practical applicability in real-world scenarios.This paper introduces an ...The incremental capacity analysis(ICA)technique is notably limited by its sensitivity to variations in charging conditions,which constrains its practical applicability in real-world scenarios.This paper introduces an ICA-compensation technique to address this limitation and propose a generalized framework for assessing the state of health(SOH)of batteries based on ICA that is applicable under differing charging conditions.This novel approach calculates the voltage profile under quasi-static conditions by subtracting the voltage increase attributable to the additional polarization effects at high currents from the measured voltage profile.This approach's efficacy is contingent upon precisely acquiring the equivalent impedance.To obtain the equivalent impedance throughout the batteries'lifespan while minimizing testing costs,this study employs a current interrupt technique in conjunction with a long short-term memory(LSTM)network to develop a predictive model for equivalent impedance.Following the derivation of ICA curves using voltage profiles under quasi-static conditions,the research explores two scenarios for SOH estimation:one utilizing only incremental capacity(IC)features and the other incorporating both IC features and IC sampling.A genetic algorithm-optimized backpropagation neural network(GABPNN)is employed for the SOH estimation.The proposed generalized framework is validated using independent training and test datasets.Variable test conditions are applied for the test set to rigorously evaluate the methodology under challenging conditions.These evaluation results demonstrate that the proposed framework achieves an estimation accuracy of 1.04%for RMSE and 0.90%for MAPE across a spectrum of charging rates ranging from 0.1 C to 1 C and starting SOCs between 0%and 70%,which constitutes a major advancement compared to established ICA methods.It also significantly enhances the applicability of conventional ICA techniques in varying charging conditions and negates the necessity for separate testing protocols for each charging scenario.展开更多
Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to huma...Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to human papilloma virus(HPV)infection,early detection relies on HPV screening;however,late-stage prognosis remains poor,underscoring the need for novel diagnostic and therapeutic targets^([2]).展开更多
The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utilit...The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utility of these ancient genomic datasets,a range of databases and advanced statistical models have been developed,including the Allen Ancient DNA Resource(AADR)(Mallick et al.,2024)and AdmixTools(Patterson et al.,2012).While upstream processes such as sequencing and raw data processing have been streamlined by resources like the AADR,the downstream analysis of these datasets-encompassing population genetics inference and spatiotemporal interpretation-remains a significant challenge.The AADR provides a unified collection of published ancient DNA(aDNA)data,yet its file-based format and reliance on command-line tools,such as those in Admix-Tools(Patterson et al.,2012),require advanced computational expertise for effective exploration and analysis.These requirements can present significant challenges forresearchers lackingadvanced computational expertise,limiting the accessibility and broader application of these valuable genomic resources.展开更多
Gravitational wave detection is one of the most cutting-edge research areas in modern physics, with its success relying on advanced data analysis and signal processing techniques. This study provides a comprehensive r...Gravitational wave detection is one of the most cutting-edge research areas in modern physics, with its success relying on advanced data analysis and signal processing techniques. This study provides a comprehensive review of data analysis methods and signal processing techniques in gravitational wave detection. The research begins by introducing the characteristics of gravitational wave signals and the challenges faced in their detection, such as extremely low signal-to-noise ratios and complex noise backgrounds. It then systematically analyzes the application of time-frequency analysis methods in extracting transient gravitational wave signals, including wavelet transforms and Hilbert-Huang transforms. The study focuses on discussing the crucial role of matched filtering techniques in improving signal detection sensitivity and explores strategies for template bank optimization. Additionally, the research evaluates the potential of machine learning algorithms, especially deep learning networks, in rapidly identifying and classifying gravitational wave events. The study also analyzes the application of Bayesian inference methods in parameter estimation and model selection, as well as their advantages in handling uncertainties. However, the research also points out the challenges faced by current technologies, such as dealing with non-Gaussian noise and improving computational efficiency. To address these issues, the study proposes a hybrid analysis framework combining physical models and data-driven methods. Finally, the research looks ahead to the potential applications of quantum computing in future gravitational wave data analysis. This study provides a comprehensive theoretical foundation for the optimization and innovation of gravitational wave data analysis methods, contributing to the advancement of gravitational wave astronomy.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha...Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines.展开更多
Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ...Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.展开更多
Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanal...Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanalysis database(ERA5)is used.Seeing calculated from ERA5 is compared consistently with the Differential Image Motion Monitor seeing at the height of 12 m.Results show that seeing decays exponentially with height at the Muztagh-Ata site.Seeing decays the fastest in fall in 2021 and most slowly with height in summer.The seeing condition is better in fall than in summer.The median value of seeing at 12 m is 0.89 arcsec,the maximum value is1.21 arcsec in August and the minimum is 0.66 arcsec in October.The median value of seeing at 12 m is 0.72arcsec in the nighttime and 1.08 arcsec in the daytime.Seeing is a combination of annual and about biannual variations with the same phase as temperature and wind speed indicating that seeing variation with time is influenced by temperature and wind speed.The Richardson number Ri is used to analyze the atmospheric stability and the variations of seeing are consistent with Ri between layers.These quantitative results can provide an important reference for a telescopic observation strategy.展开更多
To obtain more stable spectral data for accurate quantitative analysis of multi-element,especially for the large-area in-situ elements detection of soils, we propose a method for a multielement quantitative analysis o...To obtain more stable spectral data for accurate quantitative analysis of multi-element,especially for the large-area in-situ elements detection of soils, we propose a method for a multielement quantitative analysis of soils using calibration-free laser-induced breakdown spectroscopy(CF-LIBS) based on data filtering. In this study, we analyze a standard soil sample doped with two heavy metal elements, Cu and Cd, with a specific focus on the line of Cu I324.75 nm for filtering the experimental data of multiple sample sets. Pre-and post-data filtering,the relative standard deviation for Cu decreased from 30% to 10%, The limits of detection(LOD)values for Cu and Cd decreased by 5% and 4%, respectively. Through CF-LIBS, a quantitative analysis was conducted to determine the relative content of elements in soils. Using Cu as a reference, the concentration of Cd was accurately calculated. The results show that post-data filtering, the average relative error of the Cd decreases from 11% to 5%, indicating the effectiveness of data filtering in improving the accuracy of quantitative analysis. Moreover, the content of Si, Fe and other elements can be accurately calculated using this method. To further correct the calculation, the results for Cd was used to provide a more precise calculation. This approach is of great importance for the large-area in-situ heavy metals and trace elements detection in soil, as well as for rapid and accurate quantitative analysis.展开更多
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations im...The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering algorithms.Although various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time applications.This paper presents an approach based on state-of-the-art machine-learning methods.In this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data reduction.The primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation efficiency.We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring.Our proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network.展开更多
文摘DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.
文摘With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques.
文摘This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can enhance the efficiency of bank data processing,enrich data types,and strengthen data analysis and application capabilities.In response to future development needs,it is necessary to strengthen data collection management,enhance data processing capabilities,innovate big data application models,and provide references for bank big data practices,promoting the transformation and upgrading of the banking industry in the context of legal digital currencies.
文摘In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This system restores the essential characteristics of currency while providing auxiliary services related to the formation,circulation,storage,application,and promotion of digital currency.Compared to traditional currency management technologies,big data analysis technology,which is primarily embedded in digital currency systems,enables the rapid acquisition of information.This facilitates the identification of standard associations within currency data and provides technical support for the operational framework of digital currency.
文摘The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pressure transient and rate transient data.The initial flowback involves producing back the fracturing fuid after hydraulic fracturing,while the second flowback involves producing back the preloading fluid injected into the parent wells before fracturing of child wells.The main objective of this research is to compare the initial and second flowback data to capture the changes in fracture volume after production and preload processes.Such a comparison is useful for evaluating well performance and optimizing frac-turing operations.We construct rate-normalized pressure(RNP)versus material balance time(MBT)diagnostic plots using both initial and second flowback data(FB;and FBs,respectively)of six multi-fractured horizontal wells completed in Niobrara and Codell formations in DJ Basin.In general,the slope of RNP plot during the FB,period is higher than that during the FB;period,indicating a potential loss of fracture volume from the FB;to the FB,period.We estimate the changes in effective fracture volume(Ver)by analyzing the changes in the RNP slope and total compressibility between these two flowback periods.Ver during FB,is in general 3%-45%lower than that during FB:.We also compare the drive mechanisms for the two flowback periods by calculating the compaction-drive index(CDI),hydrocarbon-drive index(HDI),and water-drive index(WDI).The dominant drive mechanism during both flowback periods is CDI,but its contribution is reduced by 16%in the FB,period.This drop is generally compensated by a relatively higher HDI during this period.The loss of effective fracture volume might be attributed to the pressure depletion in fractures,which occurs during the production period and can extend 800 days.
文摘When assessing seismic liquefaction potential with data-driven models,addressing the uncertainties of establishing models,interpreting cone penetration tests(CPT)data and decision threshold is crucial for avoiding biased data selection,ameliorating overconfident models,and being flexible to varying practical objectives,especially when the training and testing data are not identically distributed.A workflow characterized by leveraging Bayesian methodology was proposed to address these issues.Employing a Multi-Layer Perceptron(MLP)as the foundational model,this approach was benchmarked against empirical methods and advanced algorithms for its efficacy in simplicity,accuracy,and resistance to overfitting.The analysis revealed that,while MLP models optimized via maximum a posteriori algorithm suffices for straightforward scenarios,Bayesian neural networks showed great potential for preventing overfitting.Additionally,integrating decision thresholds through various evaluative principles offers insights for challenging decisions.Two case studies demonstrate the framework's capacity for nuanced interpretation of in situ data,employing a model committee for a detailed evaluation of liquefaction potential via Monte Carlo simulations and basic statistics.Overall,the proposed step-by-step workflow for analyzing seismic liquefaction incorporates multifold testing and real-world data validation,showing improved robustness against overfitting and greater versatility in addressing practical challenges.This research contributes to the seismic liquefaction assessment field by providing a structured,adaptable methodology for accurate and reliable analysis.
文摘Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduced and then enlarged through interpolation,followed by the embedding of secret data into the newly generated pixels.A general improving approach for embedding secret messages is proposed.The approach may be regarded a general model for enhancing the data embedding capacity of various existing image interpolation-based data hiding methods.This enhancement is achieved by expanding the range of pixel values available for embedding secret messages,removing the limitations of many existing methods,where the range is restricted to powers of two to facilitate the direct embedding of bit-based messages.This improvement is accomplished through the application of multiple-based number conversion to the secret message data.The method converts the message bits into a multiple-based number and uses an algorithm to embed each digit of this number into an individual pixel,thereby enhancing the message embedding efficiency,as proved by a theorem derived in this study.The proposed improvement method has been tested through experiments on three well-known image interpolation-based data hiding methods.The results show that the proposed method can enhance the three data embedding rates by approximately 14%,13%,and 10%,respectively,create stego-images with good quality,and resist RS steganalysis attacks.These experimental results indicate that the use of the multiple-based number conversion technique to improve the three interpolation-based methods for embedding secret messages increases the number of message bits embedded in the images.For many image interpolation-based data hiding methods,which use power-of-two pixel-value ranges for message embedding,other than the three tested ones,the proposed improvement method is also expected to be effective for enhancing their data embedding capabilities.
文摘With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis of these data and insight into user behavior patterns and preferences.This paper elaborates on the application of big data technology in the analysis of user behavior on e-commerce platforms,including the technical methods of data collection,storage,processing and analysis,as well as the specific applications in the construction of user profiles,precision marketing,personalized recommendation,user retention and churn analysis,etc.,and discusses the challenges and countermeasures faced in the application.Through the study of actual cases,it demonstrates the remarkable effectiveness of big data technology in enhancing the competitiveness of e-commerce platforms and user experience.
基金the National Natural Science Foundation of China(Grant Nos.52308403 and 52079068)the Yunlong Lake Laboratory of Deep Underground Science and Engineering(No.104023005)the China Postdoctoral Science Foundation(Grant No.2023M731998)for funding provided to this work.
文摘The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and apparatuses have been proposed over the past few decades.The objective of the present study is to summarize the status and development in theories,test apparatuses,data processing of the existing testing methods for UCS measurement.It starts with elaborating the theories of these test methods.Then the test apparatus and development trends for UCS measurement are summarized,followed by a discussion on rock specimens for test apparatus,and data processing methods.Next,the method selection for UCS measurement is recommended.It reveals that the rock failure mechanism in the UCS testing methods can be divided into compression-shear,compression-tension,composite failure mode,and no obvious failure mode.The trends of these apparatuses are towards automation,digitization,precision,and multi-modal test.Two size correction methods are commonly used.One is to develop empirical correlation between the measured indices and the specimen size.The other is to use a standard specimen to calculate the size correction factor.Three to five input parameters are commonly utilized in soft computation models to predict the UCS of rocks.The selection of the test methods for the UCS measurement can be carried out according to the testing scenario and the specimen size.The engineers can gain a comprehensive understanding of the UCS testing methods and its potential developments in various rock engineering endeavors.
基金supported in part by the National Key Research and Development Program of China under Grant 2024YFE0200600in part by the National Natural Science Foundation of China under Grant 62071425+3 种基金in part by the Zhejiang Key Research and Development Plan under Grant 2022C01093in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LR23F010005in part by the National Key Laboratory of Wireless Communications Foundation under Grant 2023KP01601in part by the Big Data and Intelligent Computing Key Lab of CQUPT under Grant BDIC-2023-B-001.
文摘Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism(e.g.,hybrid automatic repeat request[HARQ])becomes indispensable.In that regard,instead of discarding previously transmitted information,the incremental knowledge-based HARQ(IK-HARQ)is deemed as a more effective mechanism that could sufficiently utilize the information semantics.However,considering the possible existence of semantic ambiguity in image transmission,a simple bit-level cyclic redundancy check(CRC)might compromise the performance of IK-HARQ.Therefore,there emerges a strong incentive to revolutionize the CRC mechanism,thus more effectively reaping the benefits of both SemCom and HARQ.In this paper,built on top of swin transformer-based joint source-channel coding(JSCC)and IK-HARQ,we propose a semantic image transmission framework SC-TDA-HARQ.In particular,different from the conventional CRC,we introduce a topological data analysis(TDA)-based error detection method,which capably digs out the inner topological and geometric information of images,to capture semantic information and determine the necessity for re-transmission.Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework,especially under the limited bandwidth condition,and manifest the superiority of TDA-based error detection method in image transmission.
基金funded by the Bavarian State Ministry of ScienceResearch and Art(Grant number:H.2-F1116.WE/52/2)。
文摘The incremental capacity analysis(ICA)technique is notably limited by its sensitivity to variations in charging conditions,which constrains its practical applicability in real-world scenarios.This paper introduces an ICA-compensation technique to address this limitation and propose a generalized framework for assessing the state of health(SOH)of batteries based on ICA that is applicable under differing charging conditions.This novel approach calculates the voltage profile under quasi-static conditions by subtracting the voltage increase attributable to the additional polarization effects at high currents from the measured voltage profile.This approach's efficacy is contingent upon precisely acquiring the equivalent impedance.To obtain the equivalent impedance throughout the batteries'lifespan while minimizing testing costs,this study employs a current interrupt technique in conjunction with a long short-term memory(LSTM)network to develop a predictive model for equivalent impedance.Following the derivation of ICA curves using voltage profiles under quasi-static conditions,the research explores two scenarios for SOH estimation:one utilizing only incremental capacity(IC)features and the other incorporating both IC features and IC sampling.A genetic algorithm-optimized backpropagation neural network(GABPNN)is employed for the SOH estimation.The proposed generalized framework is validated using independent training and test datasets.Variable test conditions are applied for the test set to rigorously evaluate the methodology under challenging conditions.These evaluation results demonstrate that the proposed framework achieves an estimation accuracy of 1.04%for RMSE and 0.90%for MAPE across a spectrum of charging rates ranging from 0.1 C to 1 C and starting SOCs between 0%and 70%,which constitutes a major advancement compared to established ICA methods.It also significantly enhances the applicability of conventional ICA techniques in varying charging conditions and negates the necessity for separate testing protocols for each charging scenario.
基金supported by a project funded by the Hebei Provincial Central Guidance Local Science and Technology Development Fund(236Z7714G)。
文摘Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to human papilloma virus(HPV)infection,early detection relies on HPV screening;however,late-stage prognosis remains poor,underscoring the need for novel diagnostic and therapeutic targets^([2]).
基金by the National Key Research and Development Program of China(2023YFC3303701-02 and 2024YFC3306701)the National Natural Science Foundation of China(T2425014 and 32270667)+3 种基金the Natural Science Foundation of Fujian Province of China(2023J06013)the Major Project of the National Social Science Foundation of China granted to Chuan-Chao Wang(21&ZD285)Open Research Fund of State Key Laboratory of Genetic Engineering at Fudan University(SKLGE-2310)Open Research Fund of Forensic Genetics Key Laboratory of the Ministry of Public Security(2023FGKFKT07).
文摘The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utility of these ancient genomic datasets,a range of databases and advanced statistical models have been developed,including the Allen Ancient DNA Resource(AADR)(Mallick et al.,2024)and AdmixTools(Patterson et al.,2012).While upstream processes such as sequencing and raw data processing have been streamlined by resources like the AADR,the downstream analysis of these datasets-encompassing population genetics inference and spatiotemporal interpretation-remains a significant challenge.The AADR provides a unified collection of published ancient DNA(aDNA)data,yet its file-based format and reliance on command-line tools,such as those in Admix-Tools(Patterson et al.,2012),require advanced computational expertise for effective exploration and analysis.These requirements can present significant challenges forresearchers lackingadvanced computational expertise,limiting the accessibility and broader application of these valuable genomic resources.
文摘Gravitational wave detection is one of the most cutting-edge research areas in modern physics, with its success relying on advanced data analysis and signal processing techniques. This study provides a comprehensive review of data analysis methods and signal processing techniques in gravitational wave detection. The research begins by introducing the characteristics of gravitational wave signals and the challenges faced in their detection, such as extremely low signal-to-noise ratios and complex noise backgrounds. It then systematically analyzes the application of time-frequency analysis methods in extracting transient gravitational wave signals, including wavelet transforms and Hilbert-Huang transforms. The study focuses on discussing the crucial role of matched filtering techniques in improving signal detection sensitivity and explores strategies for template bank optimization. Additionally, the research evaluates the potential of machine learning algorithms, especially deep learning networks, in rapidly identifying and classifying gravitational wave events. The study also analyzes the application of Bayesian inference methods in parameter estimation and model selection, as well as their advantages in handling uncertainties. However, the research also points out the challenges faced by current technologies, such as dealing with non-Gaussian noise and improving computational efficiency. To address these issues, the study proposes a hybrid analysis framework combining physical models and data-driven methods. Finally, the research looks ahead to the potential applications of quantum computing in future gravitational wave data analysis. This study provides a comprehensive theoretical foundation for the optimization and innovation of gravitational wave data analysis methods, contributing to the advancement of gravitational wave astronomy.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
基金supported by STI 2030-Major Projects 2021ZD0200400National Natural Science Foundation of China(62276233 and 62072405)Key Research Project of Zhejiang Province(2023C01048).
文摘Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines.
基金supported in part by the MOST Major Research and Development Project(Grant No.2021YFB2900204)the National Natural Science Foundation of China(NSFC)(Grant No.62201123,No.62132004,No.61971102)+3 种基金China Postdoctoral Science Foundation(Grant No.2022TQ0056)in part by the financial support of the Sichuan Science and Technology Program(Grant No.2022YFH0022)Sichuan Major R&D Project(Grant No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2022D031)。
文摘Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.
基金funded by the National Natural Science Foundation of China(NSFC)the Chinese Academy of Sciences(CAS)(grant No.U2031209)the National Natural Science Foundation of China(NSFC,grant Nos.11872128,42174192,and 91952111)。
文摘Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanalysis database(ERA5)is used.Seeing calculated from ERA5 is compared consistently with the Differential Image Motion Monitor seeing at the height of 12 m.Results show that seeing decays exponentially with height at the Muztagh-Ata site.Seeing decays the fastest in fall in 2021 and most slowly with height in summer.The seeing condition is better in fall than in summer.The median value of seeing at 12 m is 0.89 arcsec,the maximum value is1.21 arcsec in August and the minimum is 0.66 arcsec in October.The median value of seeing at 12 m is 0.72arcsec in the nighttime and 1.08 arcsec in the daytime.Seeing is a combination of annual and about biannual variations with the same phase as temperature and wind speed indicating that seeing variation with time is influenced by temperature and wind speed.The Richardson number Ri is used to analyze the atmospheric stability and the variations of seeing are consistent with Ri between layers.These quantitative results can provide an important reference for a telescopic observation strategy.
基金supported by the Major Science and Technology Project of Gansu Province(No.22ZD6FA021-5)the Industrial Support Project of Gansu Province(Nos.2023CYZC-19 and 2021CYZC-22)the Science and Technology Project of Gansu Province(Nos.23YFFA0074,22JR5RA137 and 22JR5RA151).
文摘To obtain more stable spectral data for accurate quantitative analysis of multi-element,especially for the large-area in-situ elements detection of soils, we propose a method for a multielement quantitative analysis of soils using calibration-free laser-induced breakdown spectroscopy(CF-LIBS) based on data filtering. In this study, we analyze a standard soil sample doped with two heavy metal elements, Cu and Cd, with a specific focus on the line of Cu I324.75 nm for filtering the experimental data of multiple sample sets. Pre-and post-data filtering,the relative standard deviation for Cu decreased from 30% to 10%, The limits of detection(LOD)values for Cu and Cd decreased by 5% and 4%, respectively. Through CF-LIBS, a quantitative analysis was conducted to determine the relative content of elements in soils. Using Cu as a reference, the concentration of Cd was accurately calculated. The results show that post-data filtering, the average relative error of the Cd decreases from 11% to 5%, indicating the effectiveness of data filtering in improving the accuracy of quantitative analysis. Moreover, the content of Si, Fe and other elements can be accurately calculated using this method. To further correct the calculation, the results for Cd was used to provide a more precise calculation. This approach is of great importance for the large-area in-situ heavy metals and trace elements detection in soil, as well as for rapid and accurate quantitative analysis.
文摘The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering algorithms.Although various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time applications.This paper presents an approach based on state-of-the-art machine-learning methods.In this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data reduction.The primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation efficiency.We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring.Our proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network.