Introducing purifiers into hydrogen network can enhance the recovery and reuse of hydrogen in refineries, further reducing the consumption of fresh hydrogen. Based on previous graphical methods, this work proposes a s...Introducing purifiers into hydrogen network can enhance the recovery and reuse of hydrogen in refineries, further reducing the consumption of fresh hydrogen. Based on previous graphical methods, this work proposes a simple and unified graphical method for integration of hydrogen networks with purification processes. Scenarios with different hydrogen concentrations of purified product can be analyzed by the unified procedure. As a result, the maximum hydrogen saved by purification reuse can he identified and the corresponding purification process can be optimized, The proposed method is easy and non-iterative, and it is valid to purification processes with any feed concentration. A conventional hydrogen network is analyzed to test the effectiveness of the proposed method.展开更多
基金Supported by the National Basic Research Program of China(2012CB720500)the National Natural Science Foundation of China(21276204)
文摘Introducing purifiers into hydrogen network can enhance the recovery and reuse of hydrogen in refineries, further reducing the consumption of fresh hydrogen. Based on previous graphical methods, this work proposes a simple and unified graphical method for integration of hydrogen networks with purification processes. Scenarios with different hydrogen concentrations of purified product can be analyzed by the unified procedure. As a result, the maximum hydrogen saved by purification reuse can he identified and the corresponding purification process can be optimized, The proposed method is easy and non-iterative, and it is valid to purification processes with any feed concentration. A conventional hydrogen network is analyzed to test the effectiveness of the proposed method.