Clock difference between the ensemble pulsar timescale(PT)and the International Atomic Time(TAI)PT-TAI derived from the International Pulsar Timing Array(IPTA)data set indicates a very similar variation trend with the...Clock difference between the ensemble pulsar timescale(PT)and the International Atomic Time(TAI)PT-TAI derived from the International Pulsar Timing Array(IPTA)data set indicates a very similar variation trend with the Terrestrial Time TT(BIPMXXXX)-TAI but PT has larger measurement error.In this paper,we discuss the smoothing method of PT using a combined smoothing filter and compare the results with that from other filters.The clock difference sequence between PT-TAI and the first time derivative series of the TT(BIPMXXXX)-TAI can be combined by a combined smoothing filter to yield two smooth curves tied by the constraints assuring that the latter is the derivative of the former.The ensemble pulsar time IPTA2016 with respect to TAI published by G.Hobbs et al.and first time derivative series of the TT(BIPM2017)-TAI with quadratic polynomial terms removed are processed by combined smoothing filter in order to demonstrate the properties of the smoothed results.How to correctly estimate two smoothing coefficients is described and the output results of the combined smoothing filter are analyzed.The results show that the combined smoothing method efficiently removes high frequency noises of two input data series and the smoothed data of the PT-TAI combine long term fractional frequency stability of the pulsar time and frequency accuracy of the terrestrial time.Fractional frequency stability analysis indicates that both short and medium time interval stability of the smoothed PT-TAI is improved while keeping its original long term frequency stability level.The combined smoothing filter is more suitable for smoothing observational pulsar timescale data than any filter that only performs smoothing of a single pulsar time series.The smoothed pulsar time by combined smoothing filter is a pulsar atomic time combined timescale.This kind of combined timescale can also be used as terrestrial time.展开更多
This study proposes a method for calculating the probability distribution of structural responses at different intensities using the endurance time(ET)method.The results can be used to calculate the fragility curve of...This study proposes a method for calculating the probability distribution of structural responses at different intensities using the endurance time(ET)method.The results can be used to calculate the fragility curve of structural collapse.The ET method involves dynamic analysis of a structure under an intensifying record over time.While conventional ET methods can determine the median of the structural response,they lack the ability to calculate its dispersion.To address this limitation,the present study utilizes ET analysis and single-degree-of-freedom(SDOF)systems to develop a method that considers the record-to-record variability for calculating the probability distribution of structural response.The accuracy of this method is evaluated by comparing it with the incremental dynamic analysis(IDA)method using special moment frames.The results demonstrate that the proposed method achieves a reasonably accurate estimation of dispersion while significantly reducing the computational burden(by approximately 95%)compared to the IDA method.展开更多
Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instr...Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instrument function,is measured in X-ray Thom-son scattering(XRTS)experiments,which allow the study of electronic structure properties at the microscopic level.Among the various ab initio methods,linear-response time-dependent density-functional theory(LR-TDDFT)is a key framework for simulating the DSF.The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation.A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases,making LR-TDDFT impractical for modeling XRTS measurements over large energy scales,such as in backward scattering geometry.In this work,we consider and test an alternative approach to LR-TDDFT that employs the Liouville–Lanczos(LL)method for simulating the DSF of WDM.This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed.We compare the results obtained from the LL method with those from the solution of Dyson’s equation using the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen.Additionally,we utilize exact path integral Monte Carlo results for the imaginary-time density-density correlation function(ITCF)of warm dense hydrogen to rigorously benchmark the LL approach.We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers,the effects of pseudopotentials,and the role of Lorentzian smearing.The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape,supporting experimental efforts and advancing WDM theory.展开更多
In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)deriva...In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)derivative.The advection-diffusion equation,which governs the transport of mass,heat,or energy through combined advection and diffusion processes,is central to modeling physical systems with nonlocal behavior.Our numerical scheme employs the LT to transform the time-dependent time-fractional PDEs into a time-independent PDE in LT domain,eliminating the need for classical time-stepping methods that often suffer from stability constraints.For spatial discretization,we employ the CSCM,where the solution is approximated using Lagrange interpolation polynomial based on the Chebyshev collocation nodes,achieving exponential convergence that outperforms the algebraic convergence rates of finite difference and finite element methods.Finally,the solution is reverted to the time domain using contour integration technique.We also establish the existence and uniqueness of the solution for the proposed problem.The performance,efficiency,and accuracy of the proposed method are validated through various fractional advection-diffusion problems.The computed results demonstrate that the proposed method has less computational cost and is highly accurate.展开更多
Flutter and forced response, as two main branches of aeroelasticity, can lead to high-cycle fatigue failure of turbomachinery blades. Efficiently and accurately assessing aeroelastic performance of turbomachinery blad...Flutter and forced response, as two main branches of aeroelasticity, can lead to high-cycle fatigue failure of turbomachinery blades. Efficiently and accurately assessing aeroelastic performance of turbomachinery blades is essential in the routine design. In this work, the Time Collocation Method (TCM) which uses the cubic B-spline to approximate flow variables is first thoroughly studied and then combined with the moving grid technique to analyze aeroelastic flow fields. To showcase its advantage over the Harmonic Balance (HB) method which uses a truncated Fourier series to approximately represent flow variables, a matrix analysis of the one-dimensional advection equation is first performed. The results of stability analysis are verified by two test cases: the Durham linear oscillating turbine cascade and a two-blade-row transonic compressor. The vibration of the blade of the first case is driven by a motor while the excitation force of the second case comes from blade row interaction. The results show that the time collocation method has a faster convergence rate and is more stable than the harmonic balance method, especially for cases with a large maximum grid reduced frequency. More importantly, the time collocation method is capable of accurately predicting aeroelastic performance of turbomachinery blades.展开更多
Reasonable field acquisition geometry can not only guide seismic exploration to obtain sufficient geological information of target body,but also reduce acquisition cost to the maximum.In this study,building on convent...Reasonable field acquisition geometry can not only guide seismic exploration to obtain sufficient geological information of target body,but also reduce acquisition cost to the maximum.In this study,building on conventional ray-based geometry design methods,we incorporate imaging results as a constraint to optimize the geometry design and evaluate its effectiveness.Firstly,the geological model of the target layer is established based on the geological data of the study area and surface seismic data combined with exploration tasks.Then,the ray-tracing method is employed to simulate and assess the proposed geometry design,verifying whether its parameters meet the exploration requirements.Finally,the imaging effect of the designed geometry on the target layer is tested by the cross-well seismic reverse time migration method.This methodology was applied to design the cross-well seismic acquisition geometry for offshore deviated wells in the X Oilfield.The simulation results demonstrate that the imaging-driven geometry design approach effectively guides field operations,enhances the imaging quality of the target layer,and reduces acquisition costs.展开更多
In space probes,anomaly detection of sequence data collected by various sensors is essential to help detect potential faults promptly,improve the reliability of equipment operation,and ensure the smooth operation of t...In space probes,anomaly detection of sequence data collected by various sensors is essential to help detect potential faults promptly,improve the reliability of equipment operation,and ensure the smooth operation of the mission.However,sensors'signals often contain a superposition of various frequencies,changing fluctuations,and correlations between features.This complexity of data attributes makes building effective models challenging.This paper proposes a TimeEvolving Multi-Period Observational(TEMPO)anomaly detection method for space probes.First,fusing wavelet analysis and natural periods improves the ability to capture multi-period features in data.Then,the feature extraction framework proposed enhances the effectiveness of anomaly detection by comprehensively extracting the complex features of data through the multi-module synergy of temporal and channel.The results demonstrate that the proposed method enhances anomaly detection accuracy and its effectiveness is confirmed.Additionally,the ablation experiment results further validate the efficacy of each module.An evaluation of the algorithm's computational complexity confirms its suitability for real-time processing.展开更多
Leveraging big data signal processing offers a pathway to the development of artificial intelligencedriven equipment.The analysis of fluid flow signals and the characterization of fluid flow behavior are of critical i...Leveraging big data signal processing offers a pathway to the development of artificial intelligencedriven equipment.The analysis of fluid flow signals and the characterization of fluid flow behavior are of critical in two-phase flow studies.Significant research efforts have focused on discerning flow regimes using various signal analysis methods.In this review,recent advances in time series signals analysis algorithms for stirred tank reactors have been summarized,and the detailed methodologies are categorized into the frequency domain methods,time-frequency domain methods,and state space methods.The strengths,limitations,and notable findings of each algorithm are highlighted.Additionally,the interrelationships between these methodologies have also been discussed,as well as the present progress achieved in various applications.Future research directions and challenges are also predicted to provide an overview of current research trends in data mining of time series for analyzing flow regimes and chaotic signals.This review offers a comprehensive summary for extracting and characterizing fluid flow behavior and serves as a theoretical reference for optimizing the characterization of chaotic signals in future research endeavors.展开更多
Although the image dehazing problem has received considerable attention over recent years,the existing models often prioritise performance at the expense of complexity,making them unsuitable for real-world application...Although the image dehazing problem has received considerable attention over recent years,the existing models often prioritise performance at the expense of complexity,making them unsuitable for real-world applications,which require algorithms to be deployed on resource constrained-devices.To address this challenge,we propose WaveLiteDehaze-Network(WLD-Net),an end-to-end dehazing model that delivers performance comparable to complex models while operating in real time and using significantly fewer parameters.This approach capitalises on the insight that haze predominantly affects low-frequency infor-mation.By exclusively processing the image in the frequency domain using discrete wavelet transform(DWT),we segregate the image into high and low frequencies and process them separately.This allows us to preserve high-frequency details and recover low-frequency components affected by haze,distinguishing our method from existing approaches that use spatial domain processing as the backbone,with DWT serving as an auxiliary component.DWT is applied at multiple levels for better in-formation retention while also accelerating computation by downsampling feature maps.Subsequently,a learning-based fusion mechanism reintegrates the processed frequencies to reconstruct the dehazed image.Experiments show that WLD-Net out-performs other low-parameter models on real-world hazy images and rivals much larger models,achieving the highest PSNR and SSIM scores on the O-Haze dataset.Qualitatively,the proposed method demonstrates its effectiveness in handling a diverse range of haze types,delivering visually pleasing results and robust performance,while also generalising well across different scenarios.With only 0.385 million parameters(more than 100 times smaller than comparable dehazing methods),WLD-Net processes 1024×1024 images in just 0.045 s,highlighting its applicability across various real-world scenarios.The code is available at https://github.com/AliMurtaza29/WLD-Net.展开更多
Stratigraphic correlations are essential for the fine-scale characterization of reservoirs.However,conventional data-driven methods that rely solely on log data struggle to construct isochronous stratigraphic framewor...Stratigraphic correlations are essential for the fine-scale characterization of reservoirs.However,conventional data-driven methods that rely solely on log data struggle to construct isochronous stratigraphic frameworks for complex sedimentary environments and multi-source geological settings.In response,this study proposed an intelligent,automatic,log-seismic integrated stratigraphic correlation method that incorporates wavelet frequency-division transform(WFT)and dynamic time warping(DTW)(also referred to as the WFT-DTW method).This approach integrates seismic data as constraints into stratigraphic correlations,enabling accurate tracking of the seismic marker horizons through WFT.Under the constraints of framework construction,a DTW algorithm was introduced to correlate sublayer boundaries automatically.The effectiveness of the proposed method was verified through a stratigraphic correlation experiment on the SA0 Formation of the Xingshugang block in the Lasaxing oilfield,the Songliao Basin,China.In this block,the target layer exhibits sublayer thicknesses ranging from 5 m to 8 m,an average sandstone thickness of 2.1 m,and pronounced heterogeneity.The verification using 1760 layers in 160 post-test wells indicates that the WFT-DTW method intelligently compared sublayers in zones with underdeveloped faults and distinct marker horizons.As a result,the posterior correlation of 1682 layers was performed,with a coincidence rate of up to 95.6%.The proposed method can complement manual correlation efforts while also providing valuable technical support for the lithologic and sand body characterization of reservoirs.展开更多
Accurate detection of fashion design attributes is essential for trend analyses and recommendation systems.Among these attributes,the neckline style plays a key role in shaping garment aesthetics.However,the presence ...Accurate detection of fashion design attributes is essential for trend analyses and recommendation systems.Among these attributes,the neckline style plays a key role in shaping garment aesthetics.However,the presence of complex backgrounds and varied body postures in real-world fashion images presents challenges for reliable neckline detection.To address this problem,this research builds a comprehensive fashion neckline database from online shop images and proposes an efficient fashion neckline detection model based on the YOLOv8 architecture(FN-YOLO).First,the proposed model incorporates a BiFormer attention mechanism into the backbone,enhancing its feature extraction capability.Second,a lightweight multi-level asymmetry detector head(LADH)is designed to replace the original head,effectively reducing the computational complexity and accelerating the detection speed.Last,the original loss function is replaced with Wise-IoU,which improves the localization accuracy of the detection box.The experimental results demonstrate that FN-YOLO achieves a mean average precision(mAP)of 81.7%,showing an absolute improvement of 3.9%over the original YOLOv8 model,and a detection speed of 215.6 frame/s,confirming its suitability for real-time applications in fashion neckline detection.展开更多
The numerical dispersion phenomenon in the finite-difference forward modeling simulations of the wave equation significantly affects the imaging accuracy in acoustic reflection logging.This issue is particularly prono...The numerical dispersion phenomenon in the finite-difference forward modeling simulations of the wave equation significantly affects the imaging accuracy in acoustic reflection logging.This issue is particularly pronounced in the reverse time migration(RTM)method used for shear-wave(S-wave)logging imaging.This not only affects imaging accuracy but also introduces ambiguities in the interpretation of logging results.To address this challenge,this study proposes the use of a least-squares difference coefficient optimization algorithm aiming to suppress the numerical dispersion phenomenon in the RTM of S-wave reflection imaging logging.By optimizing the difference coefficients,the high-precision finite-difference algorithm serves as an effective operator for both forward and backward RTM processes.This approach is instrumental in eliminating migration illusions,which are often caused by numerical dispersion.The effectiveness of this optimized algorithm is demonstrated through numerical results,which indicate that it can achieve more accurate forward imaging results across various conditions,including high-and low-velocity strata,and is effective in both large and small spatial grids.The results of processing real data demonstrate that numerical dispersion optimization effectively reduces migration artifacts and diminishes ambiguities in logging interpretations.This optimization offers crucial technical support to the RTM method,enhancing its capability for accurately modeling and imaging S-wave reflections.展开更多
After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir develo...After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir development.Conventional numerical reservoir simulation methodologies typically employ static assumptions for model construction,presuming invariant reservoir geological parameters throughout the development process while neglecting the reservoir’s temporal evolution characteristics.Although such simplifications reduce computational complexity,they introduce substantial descriptive inaccuracies.Therefore,this paper proposes a meshless numerical simulation method for reservoirs that considers time-varying characteristics.This method avoids the meshing in traditional numerical simulation methods.From the fluid flow perspective,the reservoir’s computational domain is discretized into a series of connection units.An influence domain with a certain radius centered on the nodes is selected,and one-dimensional connection units are established between the nodes to achieve the characterization of the flow topology structure of the reservoir.In order to reflect the dynamic evolution of the reservoir’s physical properties during the water injection development process,the time-varying characteristics are incorporated into the formula of the seepage characteristic parameters in the meshless calculation.The change relationship of the permeability under different surface fluxes is considered to update the calculated connection conductivity in real time.By combining with the seepage control equation for solution,a time-varying meshless numerical simulation method is formed.The results show that compared with the numerical simulationmethod of the connection elementmethod(CEM)that only considers static parameters,this method has higher simulation accuracy and can better simulate the real migration and distribution of oil and water in the reservoir.Thismethod improves the accuracy of reservoir numerical simulation and the development effect of oilfields,providing a scientific basis for optimizing the water injection strategy,adjusting the production plan,and extending the effective production cycle of the oilfield.展开更多
This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the acc...This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the accuracy mismatch between tem-poral low-order finite difference and spatial high-order discre tization,the ir time collocation points must increase dramatically to solve highly oscillatory solutions of structural vibration,which results in a surge in computing time and a decrease in accuracy.To address this problem,we introduced the step-by-step idea in the space-time spectral method.The Chebyshev polynomials and Lagrange's equation were applied to derive discrete spatial goverming equations,and a matrix projection method was used to map the calculation results of prev ious steps as the initial conditions of the subsequent steps.A series of numerical experiments were carried out.The results of the proposed method were compared with those obtained by traditional space-time spectral methods,which showed that higher accuracy could be achieved in a shorter computation time than the latter in highly oscillatory cases.展开更多
The Richtmyer–Meshkov(RM)instability plays an important role in various natural and engineering fields such as inertial confinement fusion.In this study,the effect of relaxation time on the RM instability under resho...The Richtmyer–Meshkov(RM)instability plays an important role in various natural and engineering fields such as inertial confinement fusion.In this study,the effect of relaxation time on the RM instability under reshock impact is investigated using a two-component discrete Boltzmann method.The hydrodynamic and thermodynamic characteristics of the fluid system are comprehensively analyzed from the perspectives of the density gradient,vorticity,kinetic energy,mixing degree,mixing width and non-equilibrium intensity.Simulation results indicate that for longer relaxation time,the diffusion and dissipation are enhanced,the physical gradients decrease,and the growth of the interface is suppressed.Furthermore,the non-equilibrium manifestations show complex patterns,driven by the competitive physical mechanisms of the diffusion,dissipation,shock wave,rarefaction wave,transverse wave and fluid instabilities.These findings provide valuable insight into the fundamental mechanism of compressible fluid flows.展开更多
In the leakage detection of reservoir dam bodies,traditional geophysical methods can only achieve one-time detection.Meanwhile,due to the non-uniqueness of geophysicalin version,how to improve the fidelity of geophysi...In the leakage detection of reservoir dam bodies,traditional geophysical methods can only achieve one-time detection.Meanwhile,due to the non-uniqueness of geophysicalin version,how to improve the fidelity of geophysical detection inversion profiles has become a key challenge in the industry.This study aims to construct a long-term real-time monitoring system using the time-lapse resistivity method,reveal the spatiotemporal evolution law of dam leakage,and provide technical support for accurate treatment.By integrating the Internet of Things(IoT),5G technology,and AI technology,real-time data acquisition,real-time transmission,and automatic inversionare realized.Through dynamic imaging analysis of the electrical anomaly characteristics of the leakage area and comparison between corresponding rainfall events,the leakage range and resistivity changes,the reliability and efficiency of dam leakagedete ction are significantly improved.This achieves long-termdynamic monitoring of dam leakage and provides a new perspective for the safe operation and maintenance of reservoirs.展开更多
Elevation change monitoring of the Antarctic ice sheet has been a key issue in global change research.Satellite altimetry has been proven to be effective in detecting ice sheet variations. With the development of ICES...Elevation change monitoring of the Antarctic ice sheet has been a key issue in global change research.Satellite altimetry has been proven to be effective in detecting ice sheet variations. With the development of ICESat-2, many elevation observations can be used to derive elevation changes. However, the large amount of multitemporal data may include anomalous data points, increasing the uncertainty of the results. In this work, we improved the traditional repeat track method by introducing the Institute of Geodesy and Geophysics Ⅲ(IGGⅢ) method to obtain high-accuracy estimates of elevation change. The improved method was applied to analyze elevation changes along the transect from Zhongshan Station to Dome A in East Antarctica via ICESat-2 satellite altimetry data. The results show that the improved and traditional methods yield consistent numerical and spatial elevation change distributions. The elevation change calculated via the traditional method is 0.033 ± 0.131 m/yr, whereas the elevation change estimated via the IGGⅢ robust estimation method is 0.033 ± 0.109 m/yr from March 2019 to December 2021.In terms of spatial distribution, elevation changes in inland areas remain close to equilibrium, whereas regions with steeper ice sheet margins exhibit positive accumulation trends in elevation changes. The improved method reduces the standard error of the adjustment function from 0.975 to 0.691 m/yr. The improvement is particularly remarkable in the area between 72°S and 77°S. The results demonstrate that the IGGⅢ method effectively reduces errors caused by the inclusion of anomalous data and maintains the high data utilization rate of repeat-orbit methods.展开更多
The Lagrangian integral time scale(LITS)is a crucial characteristic for investigating the changes in fluid dynamics induced by the chaotic nature,and the finitetime Lyapunov exponent(FTLE)serves as a key measure in th...The Lagrangian integral time scale(LITS)is a crucial characteristic for investigating the changes in fluid dynamics induced by the chaotic nature,and the finitetime Lyapunov exponent(FTLE)serves as a key measure in the analysis of chaos.In this study,a new LITS model with an explicit theoretical basis and broad applicability is proposed based on the FTLE,along with a verification and evaluation criterion grounded in the Lagrangian velocity correlation coefficient.The model is used to cavitating the flow around a Clark-Y hydrofoil,and the LITS is investigated.It leads to the determination of model constants applicable to cavitating flow.The model is evaluated by the Lagrangian velocity correlation coefficient in comparison with other solution methods.All the results show that the LITS model can offer a new perspective and a new approach for studying the changes in fluid dynamics from a Lagrangian viewpoint.展开更多
A meshless particle method based on the smoothed particle hydrodynamics(SPH)method is first proposed for the numerical prediction of physical phenomena of nonlinear solitary wave propagation and complex phenomena aris...A meshless particle method based on the smoothed particle hydrodynamics(SPH)method is first proposed for the numerical prediction of physical phenomena of nonlinear solitary wave propagation and complex phenomena arising from the inelastic interactions of solitary waves.The method is a fully discrete implicit scheme.This method does not rely on a grid,avoids the need to solve for derivatives of kernel functions,and makes the calculation more convenient.Additionally,the unique solvability of the proposed implicit scheme is proved.To verify the effectiveness and flexibility of the proposed method,we apply it to solving various time fractional nonlinear Schrödinger equations(TF-NLSE)on both regular and irregular domains.This mainly includes general or coupled TF-NLSE with or without analytical solutions.Moreover,the proposed method is compared with the existing methods.Through examples,it has been verified that this method can effectively predict complex propagation phenomena generated by the collision of nonlinear solitary waves,such as the collapse phenomenon of solitary waves with increasing fractional-order parameters.Research results indicate that this method provides a new and effective meshless method for predicting the propagation of nonlinear solitary waves,which can better simulate TF-NLSE in complex domains.展开更多
In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured ...In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured data. Inspired by the classical Landweber iterative method and Fourier truncation technique, we develops a modified Landweber iterative regularization method to restore the continuous dependence of solution on the measurement data. Under the a-priori and a-posteriori choice rules for the regularized parameter, the convergence estimates for the regularization method are derived. Some results of numerical simulation are provided to verify the stability and feasibility of our method in dealing with the considered problem.展开更多
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(grant No.XDA0350502)the National SKA Program of China(grant No.2020SKA0120103)the National Natural Science Foundation of China(NSFC,Grant Nos.U1831130 and 11973046)。
文摘Clock difference between the ensemble pulsar timescale(PT)and the International Atomic Time(TAI)PT-TAI derived from the International Pulsar Timing Array(IPTA)data set indicates a very similar variation trend with the Terrestrial Time TT(BIPMXXXX)-TAI but PT has larger measurement error.In this paper,we discuss the smoothing method of PT using a combined smoothing filter and compare the results with that from other filters.The clock difference sequence between PT-TAI and the first time derivative series of the TT(BIPMXXXX)-TAI can be combined by a combined smoothing filter to yield two smooth curves tied by the constraints assuring that the latter is the derivative of the former.The ensemble pulsar time IPTA2016 with respect to TAI published by G.Hobbs et al.and first time derivative series of the TT(BIPM2017)-TAI with quadratic polynomial terms removed are processed by combined smoothing filter in order to demonstrate the properties of the smoothed results.How to correctly estimate two smoothing coefficients is described and the output results of the combined smoothing filter are analyzed.The results show that the combined smoothing method efficiently removes high frequency noises of two input data series and the smoothed data of the PT-TAI combine long term fractional frequency stability of the pulsar time and frequency accuracy of the terrestrial time.Fractional frequency stability analysis indicates that both short and medium time interval stability of the smoothed PT-TAI is improved while keeping its original long term frequency stability level.The combined smoothing filter is more suitable for smoothing observational pulsar timescale data than any filter that only performs smoothing of a single pulsar time series.The smoothed pulsar time by combined smoothing filter is a pulsar atomic time combined timescale.This kind of combined timescale can also be used as terrestrial time.
文摘This study proposes a method for calculating the probability distribution of structural responses at different intensities using the endurance time(ET)method.The results can be used to calculate the fragility curve of structural collapse.The ET method involves dynamic analysis of a structure under an intensifying record over time.While conventional ET methods can determine the median of the structural response,they lack the ability to calculate its dispersion.To address this limitation,the present study utilizes ET analysis and single-degree-of-freedom(SDOF)systems to develop a method that considers the record-to-record variability for calculating the probability distribution of structural response.The accuracy of this method is evaluated by comparing it with the incremental dynamic analysis(IDA)method using special moment frames.The results demonstrate that the proposed method achieves a reasonably accurate estimation of dispersion while significantly reducing the computational burden(by approximately 95%)compared to the IDA method.
基金supported by the Center for Advanced Systems Understanding(CASUS),financed by Germany’s Federal Ministry of Education and Research(BMBF)and the Saxon State Government out of the State Budget approved by the Saxon State Parliamentfunding from the European Research Council(ERC)under the European Union’s Horizon 2022 research and innovation programme(Grant Agreement No.101076233,“PREXTREME”)funding from the European Union’s Just Transition Fund(JTF)within the project Röntgenlaser-Optimierung der Laserfusion(ROLF),Contract No.5086999001,co-financed by the Saxon State Government out of the State Budget approved by the Saxon State Parliament.
文摘Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instrument function,is measured in X-ray Thom-son scattering(XRTS)experiments,which allow the study of electronic structure properties at the microscopic level.Among the various ab initio methods,linear-response time-dependent density-functional theory(LR-TDDFT)is a key framework for simulating the DSF.The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation.A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases,making LR-TDDFT impractical for modeling XRTS measurements over large energy scales,such as in backward scattering geometry.In this work,we consider and test an alternative approach to LR-TDDFT that employs the Liouville–Lanczos(LL)method for simulating the DSF of WDM.This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed.We compare the results obtained from the LL method with those from the solution of Dyson’s equation using the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen.Additionally,we utilize exact path integral Monte Carlo results for the imaginary-time density-density correlation function(ITCF)of warm dense hydrogen to rigorously benchmark the LL approach.We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers,the effects of pseudopotentials,and the role of Lorentzian smearing.The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape,supporting experimental efforts and advancing WDM theory.
基金extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/174/46.
文摘In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)derivative.The advection-diffusion equation,which governs the transport of mass,heat,or energy through combined advection and diffusion processes,is central to modeling physical systems with nonlocal behavior.Our numerical scheme employs the LT to transform the time-dependent time-fractional PDEs into a time-independent PDE in LT domain,eliminating the need for classical time-stepping methods that often suffer from stability constraints.For spatial discretization,we employ the CSCM,where the solution is approximated using Lagrange interpolation polynomial based on the Chebyshev collocation nodes,achieving exponential convergence that outperforms the algebraic convergence rates of finite difference and finite element methods.Finally,the solution is reverted to the time domain using contour integration technique.We also establish the existence and uniqueness of the solution for the proposed problem.The performance,efficiency,and accuracy of the proposed method are validated through various fractional advection-diffusion problems.The computed results demonstrate that the proposed method has less computational cost and is highly accurate.
基金supported by the Science Center for Gas Turbine Project,China(No.P2022-C-II-001-001)the National Science and Technology Major Project,Chinathe Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(No.CX2022045).
文摘Flutter and forced response, as two main branches of aeroelasticity, can lead to high-cycle fatigue failure of turbomachinery blades. Efficiently and accurately assessing aeroelastic performance of turbomachinery blades is essential in the routine design. In this work, the Time Collocation Method (TCM) which uses the cubic B-spline to approximate flow variables is first thoroughly studied and then combined with the moving grid technique to analyze aeroelastic flow fields. To showcase its advantage over the Harmonic Balance (HB) method which uses a truncated Fourier series to approximately represent flow variables, a matrix analysis of the one-dimensional advection equation is first performed. The results of stability analysis are verified by two test cases: the Durham linear oscillating turbine cascade and a two-blade-row transonic compressor. The vibration of the blade of the first case is driven by a motor while the excitation force of the second case comes from blade row interaction. The results show that the time collocation method has a faster convergence rate and is more stable than the harmonic balance method, especially for cases with a large maximum grid reduced frequency. More importantly, the time collocation method is capable of accurately predicting aeroelastic performance of turbomachinery blades.
基金funded by the Young Scientists Fund of the National Natural Science Foundation of China(42304135)the scientific research project of Gansu Coal Geology Bureau(2023-07).
文摘Reasonable field acquisition geometry can not only guide seismic exploration to obtain sufficient geological information of target body,but also reduce acquisition cost to the maximum.In this study,building on conventional ray-based geometry design methods,we incorporate imaging results as a constraint to optimize the geometry design and evaluate its effectiveness.Firstly,the geological model of the target layer is established based on the geological data of the study area and surface seismic data combined with exploration tasks.Then,the ray-tracing method is employed to simulate and assess the proposed geometry design,verifying whether its parameters meet the exploration requirements.Finally,the imaging effect of the designed geometry on the target layer is tested by the cross-well seismic reverse time migration method.This methodology was applied to design the cross-well seismic acquisition geometry for offshore deviated wells in the X Oilfield.The simulation results demonstrate that the imaging-driven geometry design approach effectively guides field operations,enhances the imaging quality of the target layer,and reduces acquisition costs.
基金supported by the National Natural Science Foundation of China(Nos.92467108,62141604,62032016,92467206)Beijing Nova Program,China No.(20220484106,20230484451)。
文摘In space probes,anomaly detection of sequence data collected by various sensors is essential to help detect potential faults promptly,improve the reliability of equipment operation,and ensure the smooth operation of the mission.However,sensors'signals often contain a superposition of various frequencies,changing fluctuations,and correlations between features.This complexity of data attributes makes building effective models challenging.This paper proposes a TimeEvolving Multi-Period Observational(TEMPO)anomaly detection method for space probes.First,fusing wavelet analysis and natural periods improves the ability to capture multi-period features in data.Then,the feature extraction framework proposed enhances the effectiveness of anomaly detection by comprehensively extracting the complex features of data through the multi-module synergy of temporal and channel.The results demonstrate that the proposed method enhances anomaly detection accuracy and its effectiveness is confirmed.Additionally,the ablation experiment results further validate the efficacy of each module.An evaluation of the algorithm's computational complexity confirms its suitability for real-time processing.
基金the National Natural Science Foundation of China(22078030)the National Key Research and Development Project(2019YFC1905802,2022YFB3504305)+1 种基金the Joint Funds of the National Natural Science Foundation of China(U1802255,CSTB2022NSCQ-LZX0014)the Key Project of Independent Research Project of State Key Laboratory of Coal Mine Disaster Dynamics and Control(2011DA105287-zd201902).
文摘Leveraging big data signal processing offers a pathway to the development of artificial intelligencedriven equipment.The analysis of fluid flow signals and the characterization of fluid flow behavior are of critical in two-phase flow studies.Significant research efforts have focused on discerning flow regimes using various signal analysis methods.In this review,recent advances in time series signals analysis algorithms for stirred tank reactors have been summarized,and the detailed methodologies are categorized into the frequency domain methods,time-frequency domain methods,and state space methods.The strengths,limitations,and notable findings of each algorithm are highlighted.Additionally,the interrelationships between these methodologies have also been discussed,as well as the present progress achieved in various applications.Future research directions and challenges are also predicted to provide an overview of current research trends in data mining of time series for analyzing flow regimes and chaotic signals.This review offers a comprehensive summary for extracting and characterizing fluid flow behavior and serves as a theoretical reference for optimizing the characterization of chaotic signals in future research endeavors.
基金Japan International Cooperation Agency(JICA)via Malaysia-Japan Linkage Research Grant 2024.
文摘Although the image dehazing problem has received considerable attention over recent years,the existing models often prioritise performance at the expense of complexity,making them unsuitable for real-world applications,which require algorithms to be deployed on resource constrained-devices.To address this challenge,we propose WaveLiteDehaze-Network(WLD-Net),an end-to-end dehazing model that delivers performance comparable to complex models while operating in real time and using significantly fewer parameters.This approach capitalises on the insight that haze predominantly affects low-frequency infor-mation.By exclusively processing the image in the frequency domain using discrete wavelet transform(DWT),we segregate the image into high and low frequencies and process them separately.This allows us to preserve high-frequency details and recover low-frequency components affected by haze,distinguishing our method from existing approaches that use spatial domain processing as the backbone,with DWT serving as an auxiliary component.DWT is applied at multiple levels for better in-formation retention while also accelerating computation by downsampling feature maps.Subsequently,a learning-based fusion mechanism reintegrates the processed frequencies to reconstruct the dehazed image.Experiments show that WLD-Net out-performs other low-parameter models on real-world hazy images and rivals much larger models,achieving the highest PSNR and SSIM scores on the O-Haze dataset.Qualitatively,the proposed method demonstrates its effectiveness in handling a diverse range of haze types,delivering visually pleasing results and robust performance,while also generalising well across different scenarios.With only 0.385 million parameters(more than 100 times smaller than comparable dehazing methods),WLD-Net processes 1024×1024 images in just 0.045 s,highlighting its applicability across various real-world scenarios.The code is available at https://github.com/AliMurtaza29/WLD-Net.
基金funded by the Major Science and Technology Project of China National Petroleum Corporation(No.2023ZZ22YJ01).
文摘Stratigraphic correlations are essential for the fine-scale characterization of reservoirs.However,conventional data-driven methods that rely solely on log data struggle to construct isochronous stratigraphic frameworks for complex sedimentary environments and multi-source geological settings.In response,this study proposed an intelligent,automatic,log-seismic integrated stratigraphic correlation method that incorporates wavelet frequency-division transform(WFT)and dynamic time warping(DTW)(also referred to as the WFT-DTW method).This approach integrates seismic data as constraints into stratigraphic correlations,enabling accurate tracking of the seismic marker horizons through WFT.Under the constraints of framework construction,a DTW algorithm was introduced to correlate sublayer boundaries automatically.The effectiveness of the proposed method was verified through a stratigraphic correlation experiment on the SA0 Formation of the Xingshugang block in the Lasaxing oilfield,the Songliao Basin,China.In this block,the target layer exhibits sublayer thicknesses ranging from 5 m to 8 m,an average sandstone thickness of 2.1 m,and pronounced heterogeneity.The verification using 1760 layers in 160 post-test wells indicates that the WFT-DTW method intelligently compared sublayers in zones with underdeveloped faults and distinct marker horizons.As a result,the posterior correlation of 1682 layers was performed,with a coincidence rate of up to 95.6%.The proposed method can complement manual correlation efforts while also providing valuable technical support for the lithologic and sand body characterization of reservoirs.
基金Fundamental Research Funds for the Central Universities,China(Nos.2232020G-08 and 2232020E-03)Shanghai University Knowledge Service Platform,China(No.13S107024)。
文摘Accurate detection of fashion design attributes is essential for trend analyses and recommendation systems.Among these attributes,the neckline style plays a key role in shaping garment aesthetics.However,the presence of complex backgrounds and varied body postures in real-world fashion images presents challenges for reliable neckline detection.To address this problem,this research builds a comprehensive fashion neckline database from online shop images and proposes an efficient fashion neckline detection model based on the YOLOv8 architecture(FN-YOLO).First,the proposed model incorporates a BiFormer attention mechanism into the backbone,enhancing its feature extraction capability.Second,a lightweight multi-level asymmetry detector head(LADH)is designed to replace the original head,effectively reducing the computational complexity and accelerating the detection speed.Last,the original loss function is replaced with Wise-IoU,which improves the localization accuracy of the detection box.The experimental results demonstrate that FN-YOLO achieves a mean average precision(mAP)of 81.7%,showing an absolute improvement of 3.9%over the original YOLOv8 model,and a detection speed of 215.6 frame/s,confirming its suitability for real-time applications in fashion neckline detection.
基金supported by Scientific Research and Technology Development Project of CNPC(2021DJ4002,2022DJ3908).
文摘The numerical dispersion phenomenon in the finite-difference forward modeling simulations of the wave equation significantly affects the imaging accuracy in acoustic reflection logging.This issue is particularly pronounced in the reverse time migration(RTM)method used for shear-wave(S-wave)logging imaging.This not only affects imaging accuracy but also introduces ambiguities in the interpretation of logging results.To address this challenge,this study proposes the use of a least-squares difference coefficient optimization algorithm aiming to suppress the numerical dispersion phenomenon in the RTM of S-wave reflection imaging logging.By optimizing the difference coefficients,the high-precision finite-difference algorithm serves as an effective operator for both forward and backward RTM processes.This approach is instrumental in eliminating migration illusions,which are often caused by numerical dispersion.The effectiveness of this optimized algorithm is demonstrated through numerical results,which indicate that it can achieve more accurate forward imaging results across various conditions,including high-and low-velocity strata,and is effective in both large and small spatial grids.The results of processing real data demonstrate that numerical dispersion optimization effectively reduces migration artifacts and diminishes ambiguities in logging interpretations.This optimization offers crucial technical support to the RTM method,enhancing its capability for accurately modeling and imaging S-wave reflections.
基金funded by the 14th Five-Year Plan Major Science and Technology Project of CNOOC project number KJGG2021-0506.
文摘After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir development.Conventional numerical reservoir simulation methodologies typically employ static assumptions for model construction,presuming invariant reservoir geological parameters throughout the development process while neglecting the reservoir’s temporal evolution characteristics.Although such simplifications reduce computational complexity,they introduce substantial descriptive inaccuracies.Therefore,this paper proposes a meshless numerical simulation method for reservoirs that considers time-varying characteristics.This method avoids the meshing in traditional numerical simulation methods.From the fluid flow perspective,the reservoir’s computational domain is discretized into a series of connection units.An influence domain with a certain radius centered on the nodes is selected,and one-dimensional connection units are established between the nodes to achieve the characterization of the flow topology structure of the reservoir.In order to reflect the dynamic evolution of the reservoir’s physical properties during the water injection development process,the time-varying characteristics are incorporated into the formula of the seepage characteristic parameters in the meshless calculation.The change relationship of the permeability under different surface fluxes is considered to update the calculated connection conductivity in real time.By combining with the seepage control equation for solution,a time-varying meshless numerical simulation method is formed.The results show that compared with the numerical simulationmethod of the connection elementmethod(CEM)that only considers static parameters,this method has higher simulation accuracy and can better simulate the real migration and distribution of oil and water in the reservoir.Thismethod improves the accuracy of reservoir numerical simulation and the development effect of oilfields,providing a scientific basis for optimizing the water injection strategy,adjusting the production plan,and extending the effective production cycle of the oilfield.
基金supported by the Advance Research Project of Civil Aerospace Technology(Grant No.D020304)National Nat-ural Science Foundation of China(Grant Nos.52205257 and U22B2083).
文摘This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the accuracy mismatch between tem-poral low-order finite difference and spatial high-order discre tization,the ir time collocation points must increase dramatically to solve highly oscillatory solutions of structural vibration,which results in a surge in computing time and a decrease in accuracy.To address this problem,we introduced the step-by-step idea in the space-time spectral method.The Chebyshev polynomials and Lagrange's equation were applied to derive discrete spatial goverming equations,and a matrix projection method was used to map the calculation results of prev ious steps as the initial conditions of the subsequent steps.A series of numerical experiments were carried out.The results of the proposed method were compared with those obtained by traditional space-time spectral methods,which showed that higher accuracy could be achieved in a shorter computation time than the latter in highly oscillatory cases.
基金supported by the National Natural Science Foundation of China(Grant No.U2242214)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2024A1515010927)+3 种基金the Humanities and Social Science Foundation of the Ministry of Education in China(Grant No.24YJCZH163)the Fujian Provincial Units Special Funds for Education and Research(Grant No.2022639)Fundamental Research Funds for the Central Universities,Sun Yatsen University(Grant No.24qnpy044)partly supported by the Open Research Fund of Key Laboratory of Analytical Mathematics and Applications(Fujian Normal University),Ministry of Education,P.R.China(Grant No.JAM2405)。
文摘The Richtmyer–Meshkov(RM)instability plays an important role in various natural and engineering fields such as inertial confinement fusion.In this study,the effect of relaxation time on the RM instability under reshock impact is investigated using a two-component discrete Boltzmann method.The hydrodynamic and thermodynamic characteristics of the fluid system are comprehensively analyzed from the perspectives of the density gradient,vorticity,kinetic energy,mixing degree,mixing width and non-equilibrium intensity.Simulation results indicate that for longer relaxation time,the diffusion and dissipation are enhanced,the physical gradients decrease,and the growth of the interface is suppressed.Furthermore,the non-equilibrium manifestations show complex patterns,driven by the competitive physical mechanisms of the diffusion,dissipation,shock wave,rarefaction wave,transverse wave and fluid instabilities.These findings provide valuable insight into the fundamental mechanism of compressible fluid flows.
文摘In the leakage detection of reservoir dam bodies,traditional geophysical methods can only achieve one-time detection.Meanwhile,due to the non-uniqueness of geophysicalin version,how to improve the fidelity of geophysical detection inversion profiles has become a key challenge in the industry.This study aims to construct a long-term real-time monitoring system using the time-lapse resistivity method,reveal the spatiotemporal evolution law of dam leakage,and provide technical support for accurate treatment.By integrating the Internet of Things(IoT),5G technology,and AI technology,real-time data acquisition,real-time transmission,and automatic inversionare realized.Through dynamic imaging analysis of the electrical anomaly characteristics of the leakage area and comparison between corresponding rainfall events,the leakage range and resistivity changes,the reliability and efficiency of dam leakagedete ction are significantly improved.This achieves long-termdynamic monitoring of dam leakage and provides a new perspective for the safe operation and maintenance of reservoirs.
基金supported by the National Key Research and Development Program of China under grant number 2023YFC2809103the Fundamental Research Funds for the Central Universities under grant numbers 2042022kf1204, 2042022kf1069, 2042023gf0012, 2042022dx0001+1 种基金the Hubei Provincial Natural Science Foundation of China under grant number 2022CFB081the State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology under grant number SKLGED2023-2-6
文摘Elevation change monitoring of the Antarctic ice sheet has been a key issue in global change research.Satellite altimetry has been proven to be effective in detecting ice sheet variations. With the development of ICESat-2, many elevation observations can be used to derive elevation changes. However, the large amount of multitemporal data may include anomalous data points, increasing the uncertainty of the results. In this work, we improved the traditional repeat track method by introducing the Institute of Geodesy and Geophysics Ⅲ(IGGⅢ) method to obtain high-accuracy estimates of elevation change. The improved method was applied to analyze elevation changes along the transect from Zhongshan Station to Dome A in East Antarctica via ICESat-2 satellite altimetry data. The results show that the improved and traditional methods yield consistent numerical and spatial elevation change distributions. The elevation change calculated via the traditional method is 0.033 ± 0.131 m/yr, whereas the elevation change estimated via the IGGⅢ robust estimation method is 0.033 ± 0.109 m/yr from March 2019 to December 2021.In terms of spatial distribution, elevation changes in inland areas remain close to equilibrium, whereas regions with steeper ice sheet margins exhibit positive accumulation trends in elevation changes. The improved method reduces the standard error of the adjustment function from 0.975 to 0.691 m/yr. The improvement is particularly remarkable in the area between 72°S and 77°S. The results demonstrate that the IGGⅢ method effectively reduces errors caused by the inclusion of anomalous data and maintains the high data utilization rate of repeat-orbit methods.
基金Project supported by the Key Project of the National Natural Science Foundation of China(No.52336001)the Natural Science Foundation of Zhejiang Province of China(No.LR20E090001)。
文摘The Lagrangian integral time scale(LITS)is a crucial characteristic for investigating the changes in fluid dynamics induced by the chaotic nature,and the finitetime Lyapunov exponent(FTLE)serves as a key measure in the analysis of chaos.In this study,a new LITS model with an explicit theoretical basis and broad applicability is proposed based on the FTLE,along with a verification and evaluation criterion grounded in the Lagrangian velocity correlation coefficient.The model is used to cavitating the flow around a Clark-Y hydrofoil,and the LITS is investigated.It leads to the determination of model constants applicable to cavitating flow.The model is evaluated by the Lagrangian velocity correlation coefficient in comparison with other solution methods.All the results show that the LITS model can offer a new perspective and a new approach for studying the changes in fluid dynamics from a Lagrangian viewpoint.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(Grant No.2024D01C44).
文摘A meshless particle method based on the smoothed particle hydrodynamics(SPH)method is first proposed for the numerical prediction of physical phenomena of nonlinear solitary wave propagation and complex phenomena arising from the inelastic interactions of solitary waves.The method is a fully discrete implicit scheme.This method does not rely on a grid,avoids the need to solve for derivatives of kernel functions,and makes the calculation more convenient.Additionally,the unique solvability of the proposed implicit scheme is proved.To verify the effectiveness and flexibility of the proposed method,we apply it to solving various time fractional nonlinear Schrödinger equations(TF-NLSE)on both regular and irregular domains.This mainly includes general or coupled TF-NLSE with or without analytical solutions.Moreover,the proposed method is compared with the existing methods.Through examples,it has been verified that this method can effectively predict complex propagation phenomena generated by the collision of nonlinear solitary waves,such as the collapse phenomenon of solitary waves with increasing fractional-order parameters.Research results indicate that this method provides a new and effective meshless method for predicting the propagation of nonlinear solitary waves,which can better simulate TF-NLSE in complex domains.
基金supported by the NSF of Ningxia(2022AAC03234)the NSF of China(11761004),the Construction Project of First-Class Disciplines in Ningxia Higher Education(NXYLXK2017B09)the Postgraduate Innovation Project of North Minzu University(YCX23074).
文摘In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured data. Inspired by the classical Landweber iterative method and Fourier truncation technique, we develops a modified Landweber iterative regularization method to restore the continuous dependence of solution on the measurement data. Under the a-priori and a-posteriori choice rules for the regularized parameter, the convergence estimates for the regularization method are derived. Some results of numerical simulation are provided to verify the stability and feasibility of our method in dealing with the considered problem.