Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision...Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
Natural gas hydrate(NGH)has a bright future as a clean energy source with huge reserves.Coring is one of the most direct methods for NGH exploration and research.Preserving the in-situ properties of the core as much a...Natural gas hydrate(NGH)has a bright future as a clean energy source with huge reserves.Coring is one of the most direct methods for NGH exploration and research.Preserving the in-situ properties of the core as much as possible during the coring process is crucial for the assessment of NGH resources.However,most existing NGH coring techniques cannot preserve the in-situ temperature of NGH,leading to distortion of the physical properties of the obtained core,which makes it difficult to effectively guide NGH exploration and development.To overcome this limitation,this study introduces an innovative active temperature-preserved coring method for NGH utilizing phase change materials(PCM).An active temperature-preserved corer(ATPC)is designed and developed,and an indoor experimental system is established to investigate the heat transfer during the coring process.Based on the experimental results under different environment temperatures,a heat transfer model for the entire ATPC coring process has been established.The indoor experimental results are consistent with the theoretical predictions of the heat transfer model,confirming its validity.This model has reconstructed the temperature changes of the NGH core during the coring process,demonstrating that compared to the traditional coring method with only passive temperature-preserved measures,ATPC can effectively reduce the core temperature by more than 5.25℃.With ATPC,at environment temperatures of 15,20,25,and 30℃,the duration of low-temperature state for the NGH core is 53.85,32.87,20.32,and 11.83 min,respectively.These findings provide new perspectives on temperature-preserving core sampling in NGH and provide technical support for exploration and development in NGH.展开更多
In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimizatio...In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems.展开更多
Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of un...Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.展开更多
In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introduc...In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.展开更多
This paper proposes a non-intrusive computational method for mechanical dynamic systems involving a large-scale of interval uncertain parameters,aiming to reduce the computational costs and improve accuracy in determi...This paper proposes a non-intrusive computational method for mechanical dynamic systems involving a large-scale of interval uncertain parameters,aiming to reduce the computational costs and improve accuracy in determining bounds of system response.The screening method is firstly used to reduce the scale of active uncertain parameters.The sequential high-order polynomials surrogate models are then used to approximate the dynamic system’s response at each time step.To reduce the sampling cost of constructing surrogate model,the interaction effect among uncertain parameters is gradually added to the surrogate model by sequentially incorporating samples from a candidate set,which is composed of vertices and inner grid points.Finally,the points that may produce the bounds of the system response at each time step are searched using the surrogate models.The optimization algorithm is used to locate extreme points,which contribute to determining the inner points producing system response bounds.Additionally,all vertices are also checked using the surrogate models.A vehicle nonlinear dynamic model with 72 uncertain parameters is presented to demonstrate the accuracy and efficiency of the proposed uncertain computational method.展开更多
Walnuts are rich in a variety of nutritional components.However,due to their high content of unsaturated fatty acids(UFAs),the quality of walnuts tends to decline during storage,which adversely affects the development...Walnuts are rich in a variety of nutritional components.However,due to their high content of unsaturated fatty acids(UFAs),the quality of walnuts tends to decline during storage,which adversely affects the development of the walnut industry.This study was aimed to investigate the impacts of temperature and packaging methods on the storage quality and oxidative stability of walnuts.The Wen 185 walnut variety was selected,and the physical-chemical and nutritional indexes of walnuts stored for 42 weeks under different temperatures(18℃,4℃,and room temperature)and packaging methods(vacuum light-exposed,vacuum light-proof,vacuum-ra-diation light-exposed,vacuum-radiation light-proof,nitrogen-filled light-exposed,nitrogen-filled light-proof)were measured.The results showed that low temperatures,especially18℃,in combination with vacuum lightproof packaging,could effectively suppress the increase in oxidative stability indicators such as acid value(AV)and peroxide value(PV),and maintain high retention rates of nutritional indicators like tocopherol and phytosterol.This study has elucidated that low temperatures and appropriate packaging methods play the crucial roles in maintaining the quality and oxidative stability of walnuts during storage.It has provided comprehensive and valuable data support and theoretical basis for the scientific storage of walnuts,contributing to the devel-opment of the walnut industry and the guarantee of product quality.展开更多
Erratum to:Research Methods Used for Developing Academic Wordlists:A Systematic Review of Studies Published Between 2000 and 2020,Chinese Journal of Applied Linguistics,Volume 48,Issue 3,2025,pp.425-450,doi:10.1515/CJ...Erratum to:Research Methods Used for Developing Academic Wordlists:A Systematic Review of Studies Published Between 2000 and 2020,Chinese Journal of Applied Linguistics,Volume 48,Issue 3,2025,pp.425-450,doi:10.1515/CJAL-2025-0210.展开更多
This paper introduces a kind of substitute bench testing method for vehicle application development and testing method of the test requirements,including battery fast conversion cycle test equipment,enter type incubat...This paper introduces a kind of substitute bench testing method for vehicle application development and testing method of the test requirements,including battery fast conversion cycle test equipment,enter type incubator,liquid-cooled machine and ancillary equipment composed of a set of test system,through the walk-in constant temperature box to simulate the new energy vehicles under different environmental conditions of the test requirements,Liquid-cooled machine and auxiliary parts to complete the battery thermal management system need cooling fluid conditions,the battery conversion cycle test equipment to simulate the dc fast charging way of filling pile,complete battery thermal management system test,shorten the filling fast charging time and improve battery fast charge security,for troubleshooting and data collection and analysis,Improve work efficiency,save costs,and eliminate customer anxiety about battery life and charging time.展开更多
Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven...Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven method has become a very popular computing method.However,due to lack of necessary mechanism information of the traditional pure data-driven methods based on neural network,its numerical accuracy cannot be guaranteed for strong nonlinear system.Therefore,this work proposes a mechanism-data hybrid-driven strategy for solving nonlinear multibody system based on physics-informed neural network to overcome the limitation of traditional data-driven methods.The strategy proposed in this paper introduces scaling coefficients to introduce the dynamic model of multibody system into neural network,ensuring that the training results of neural network conform to the mechanics principle of the system,thereby ensuring the good reliability of the data-driven method.Finally,the stability,generalization ability and numerical accuracy of the proposed method are discussed and analyzed using three typical multibody systems,and the constrained default situations can be controlled within the range of 10^(-2)-10^(-4).展开更多
Currently,the cranes used at sea do not have enough flexibility,efficiency,and safety.Thus,this study proposed a floating multirobot coordinated towing system to meet the demands for offshore towing.Because of the fle...Currently,the cranes used at sea do not have enough flexibility,efficiency,and safety.Thus,this study proposed a floating multirobot coordinated towing system to meet the demands for offshore towing.Because of the flexibility of rope-driven robots,the one-way pulling characteristics of the rope,and the floating characteristics of the base,towing robots are easily overturned.First,the spatial configuration of the towing system was established according to the towing task,and the kinematic model of the towing system was established using the coordinate transformation.Then,the dynamic model of the towing system was established according to the rigid-body dynamics and hydrodynamic theory.Finally,the stability of the towing system was analyzed using the stability cone method.The simulation experiments provide a reference for the practical application of the floating multirobot coordinated towing system,which can improve the stability of towing systems by changing the configuration of the towing robot.展开更多
This paper is concerned with event-triggered control of discrete-time systems with or without input saturation.First,an accumulative-error-based event-triggered scheme is devised for control updates.When the accumulat...This paper is concerned with event-triggered control of discrete-time systems with or without input saturation.First,an accumulative-error-based event-triggered scheme is devised for control updates.When the accumulated error between the current state and the latest control update exceeds a certain threshold,an event is triggered.Such a scheme can ensure the event-generator works at a relatively low rate rather than falls into hibernation especially after the system steps into its steady state.Second,the looped functional method for continuous-time systems is extended to discrete-time systems.By introducing an innovative looped functional that links the event-triggered scheme,some sufficient conditions for the co-design of control gain and event-triggered parameters are obtained in terms of linear matrix inequalities with a couple of tuning parameters.Then,the proposed method is applied to discrete-time systems with input saturation.As a result,both suitable control gains and event-triggered parameters are also co-designed to ensure the system trajectories converge to the region of attraction.Finally,an unstable reactor system and an inverted pendulum system are given to show the effectiveness of the proposed method.展开更多
Recently,inspired by a modified generalized shift-splitting iteration method for complex symmetric linear systems,we propose two variants of the modified generalized shift-splitting iteration(MGSS)methods for solving ...Recently,inspired by a modified generalized shift-splitting iteration method for complex symmetric linear systems,we propose two variants of the modified generalized shift-splitting iteration(MGSS)methods for solving com-plex symmetric linear systems.One is a parameterized MGSS iteration method and the other is a modified parameterized MGSS iteration method.We prove that the proposed methods are convergent under appropriate constraints on the parameters.In addition,we also give the eigenvalue distributions of differ-ent preconditioned matrices to verify the effectiveness of the preconditioners proposed in this paper.展开更多
A novel parameter identification method for magnetic levitation bearing rotor systems is proposed,based on the modulation function method.The fundamental principle of the modulation function method for parameter ident...A novel parameter identification method for magnetic levitation bearing rotor systems is proposed,based on the modulation function method.The fundamental principle of the modulation function method for parameter identification is derived on the basis of the characteristics of the modulation function.The transformation of the differential equation model of a continuous system into a general algebraic equation model is effectively achieved,thereby avoiding the influence of errors introduced by the initial value and differential derivation of the system.Modulation function method parameter identification models have been established for single-degree-of-freedom and multi-degree-of-freedom magnetic levitation bearing rotor systems.The influence of different parameters of Hartley modulation function on the accuracy of system parameter identification has been investigated,thus providing a basis for the design of Hartley modulation function parameters.Simulation and experimental results demonstrate that the modulation function method can effectively identify system parameters despite the presence of system noise.展开更多
Gas turbine rotors are complex dynamic systems with high-dimensional,discrete,and multi-source nonlinear coupling characteristics.Significant amounts of resources and time are spent during the process of solving dynam...Gas turbine rotors are complex dynamic systems with high-dimensional,discrete,and multi-source nonlinear coupling characteristics.Significant amounts of resources and time are spent during the process of solving dynamic characteristics.Therefore,it is necessary to design a lowdimensional model that can well reflect the dynamic characteristics of high-dimensional system.To build such a low-dimensional model,this study developed a dimensionality reduction method considering global order energy distribution by modifying the proper orthogonal decomposition theory.First,sensitivity analysis of key dimensionality reduction parameters to the energy distribution was conducted.Then a high-dimensional rotor-bearing system considering the nonlinear stiffness and oil film force was reduced,and the accuracy and the reusability of the low-dimensional model under different operating conditions were examined.Finally,the response results of a multi-disk rotor-bearing test bench were reduced using the proposed method,and spectrum results were then compared experimentally.Numerical and experimental results demonstrate that,during the dimensionality reduction process,the solution period of dynamic response results has the most significant influence on the accuracy of energy preservation.The transient signal in the transformation matrix mainly affects the high-order energy distribution of the rotor system.The larger the proportion of steady-state signals is,the closer the energy tends to accumulate towards lower orders.The low-dimensional rotor model accurately reflects the frequency response characteristics of the original high-dimensional system with an accuracy of up to 98%.The proposed dimensionality reduction method exhibits significant application potential in the dynamic analysis of highdimensional systems coupled with strong nonlinearities under variable operating conditions.展开更多
Most reliability studies assume large samples or independence among components,but these assump-tions often fail in practice,leading to imprecise inference.We address this issue by constructing confidence intervals(CI...Most reliability studies assume large samples or independence among components,but these assump-tions often fail in practice,leading to imprecise inference.We address this issue by constructing confidence intervals(CIs)for the reliability of two-component systems with Weibull distributed failure times under a copula-frailty framework.Our construction integrates gamma-distributed frailties to capture unobserved heterogeneity and a copula-based dependence structure for correlated failures.The main contribution of this work is to derive adjusted CIs that explicitly incorporate the copula parameter in the variance-covariance matrix,achieving near-nominal coverage probabilities even in small samples or highly dependent settings.Through simulation studies,we show that,although traditional methods may suffice with moderate dependence and large samples,the proposed CIs offer notable benefits when dependence is strong or data are sparse.We further illustrate our construction with a synthetic example illustrating how penalized estimation can mitigate the issue of a degenerate Hessian matrix under high dependence and limited observations,so enabling uncertainty quantification despite deviations from nominal assumptions.Overall,our results fill a gap in reliability modeling for systems prone to correlated failures,and contribute to more robust inference in engineering,industrial,and biomedical applications.展开更多
The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critica...The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.展开更多
The learning of English academic vocabulary has been the focus of numerous studies from the time Coxhead(2000)developed the academic word list to the present day.Various researchers have emphasized the importance of p...The learning of English academic vocabulary has been the focus of numerous studies from the time Coxhead(2000)developed the academic word list to the present day.Various researchers have emphasized the importance of possessing academic vocabulary knowledge for academic success.Recognizing this importance,it is crucial for researchers,teachers,and learners to understand the progress made in academic word lists.This systematic review first identifies,describes,appraises,and synthesizes the development of academic word lists from 2000 to 2020.It then examines the methods used by researchers in developing academic word lists among 56 studies that meet the pre-established criteria.The word lists were classified based on some criteria such as word counting units,corpora types/sizes,and exclusion criteria.Limitations,suggestions for further study,and implications are also discussed.Additionally,recommendations for future word list establishment are provided to help advance the field of word list development.展开更多
基金funded by the Beijing Engineering Research Center of Electric Rail Transportation.
文摘Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
基金financially supported by Shenzhen Science and Technology Program(Nos.JSGG20220831105002005 and KJZD20231025152759002)the National Natural Science Foundation of China(Nos.52274133 and 523B2101).
文摘Natural gas hydrate(NGH)has a bright future as a clean energy source with huge reserves.Coring is one of the most direct methods for NGH exploration and research.Preserving the in-situ properties of the core as much as possible during the coring process is crucial for the assessment of NGH resources.However,most existing NGH coring techniques cannot preserve the in-situ temperature of NGH,leading to distortion of the physical properties of the obtained core,which makes it difficult to effectively guide NGH exploration and development.To overcome this limitation,this study introduces an innovative active temperature-preserved coring method for NGH utilizing phase change materials(PCM).An active temperature-preserved corer(ATPC)is designed and developed,and an indoor experimental system is established to investigate the heat transfer during the coring process.Based on the experimental results under different environment temperatures,a heat transfer model for the entire ATPC coring process has been established.The indoor experimental results are consistent with the theoretical predictions of the heat transfer model,confirming its validity.This model has reconstructed the temperature changes of the NGH core during the coring process,demonstrating that compared to the traditional coring method with only passive temperature-preserved measures,ATPC can effectively reduce the core temperature by more than 5.25℃.With ATPC,at environment temperatures of 15,20,25,and 30℃,the duration of low-temperature state for the NGH core is 53.85,32.87,20.32,and 11.83 min,respectively.These findings provide new perspectives on temperature-preserving core sampling in NGH and provide technical support for exploration and development in NGH.
基金sponsored by R&D Program of Beijing Municipal Education Commission(KM202410009013).
文摘In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems.
基金supported by the National Natural Science Foundation of China(No.92252201)the Fundamental Research Funds for the Central Universitiesthe Academic Excellence Foundation of Beihang University(BUAA)for PhD Students。
文摘Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.
基金Supported by the National Natural Science Foundation of China(12061048)NSF of Jiangxi Province(20232BAB201026,20232BAB201018)。
文摘In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.
基金supported by the National Natural Science Foundation of China(Grant No.12272142)Fundamental Research Funds for the Central Universities(Grant No.2172021XXJS048)。
文摘This paper proposes a non-intrusive computational method for mechanical dynamic systems involving a large-scale of interval uncertain parameters,aiming to reduce the computational costs and improve accuracy in determining bounds of system response.The screening method is firstly used to reduce the scale of active uncertain parameters.The sequential high-order polynomials surrogate models are then used to approximate the dynamic system’s response at each time step.To reduce the sampling cost of constructing surrogate model,the interaction effect among uncertain parameters is gradually added to the surrogate model by sequentially incorporating samples from a candidate set,which is composed of vertices and inner grid points.Finally,the points that may produce the bounds of the system response at each time step are searched using the surrogate models.The optimization algorithm is used to locate extreme points,which contribute to determining the inner points producing system response bounds.Additionally,all vertices are also checked using the surrogate models.A vehicle nonlinear dynamic model with 72 uncertain parameters is presented to demonstrate the accuracy and efficiency of the proposed uncertain computational method.
基金Key Technology Research and Development Program in Autonomous Region(2022A02009)Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI).
文摘Walnuts are rich in a variety of nutritional components.However,due to their high content of unsaturated fatty acids(UFAs),the quality of walnuts tends to decline during storage,which adversely affects the development of the walnut industry.This study was aimed to investigate the impacts of temperature and packaging methods on the storage quality and oxidative stability of walnuts.The Wen 185 walnut variety was selected,and the physical-chemical and nutritional indexes of walnuts stored for 42 weeks under different temperatures(18℃,4℃,and room temperature)and packaging methods(vacuum light-exposed,vacuum light-proof,vacuum-ra-diation light-exposed,vacuum-radiation light-proof,nitrogen-filled light-exposed,nitrogen-filled light-proof)were measured.The results showed that low temperatures,especially18℃,in combination with vacuum lightproof packaging,could effectively suppress the increase in oxidative stability indicators such as acid value(AV)and peroxide value(PV),and maintain high retention rates of nutritional indicators like tocopherol and phytosterol.This study has elucidated that low temperatures and appropriate packaging methods play the crucial roles in maintaining the quality and oxidative stability of walnuts during storage.It has provided comprehensive and valuable data support and theoretical basis for the scientific storage of walnuts,contributing to the devel-opment of the walnut industry and the guarantee of product quality.
文摘Erratum to:Research Methods Used for Developing Academic Wordlists:A Systematic Review of Studies Published Between 2000 and 2020,Chinese Journal of Applied Linguistics,Volume 48,Issue 3,2025,pp.425-450,doi:10.1515/CJAL-2025-0210.
文摘This paper introduces a kind of substitute bench testing method for vehicle application development and testing method of the test requirements,including battery fast conversion cycle test equipment,enter type incubator,liquid-cooled machine and ancillary equipment composed of a set of test system,through the walk-in constant temperature box to simulate the new energy vehicles under different environmental conditions of the test requirements,Liquid-cooled machine and auxiliary parts to complete the battery thermal management system need cooling fluid conditions,the battery conversion cycle test equipment to simulate the dc fast charging way of filling pile,complete battery thermal management system test,shorten the filling fast charging time and improve battery fast charge security,for troubleshooting and data collection and analysis,Improve work efficiency,save costs,and eliminate customer anxiety about battery life and charging time.
基金supported by the National Natural Science Foundation of China(Grant No.U2241263)the fellowship of China Postdoctoral Science Foundation(Grant No.2024M750310).
文摘Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven method has become a very popular computing method.However,due to lack of necessary mechanism information of the traditional pure data-driven methods based on neural network,its numerical accuracy cannot be guaranteed for strong nonlinear system.Therefore,this work proposes a mechanism-data hybrid-driven strategy for solving nonlinear multibody system based on physics-informed neural network to overcome the limitation of traditional data-driven methods.The strategy proposed in this paper introduces scaling coefficients to introduce the dynamic model of multibody system into neural network,ensuring that the training results of neural network conform to the mechanics principle of the system,thereby ensuring the good reliability of the data-driven method.Finally,the stability,generalization ability and numerical accuracy of the proposed method are discussed and analyzed using three typical multibody systems,and the constrained default situations can be controlled within the range of 10^(-2)-10^(-4).
基金Supported by the National Natural Science Foundation of China under Grant No.51965032the Natural Science Foundation of Gansu Province of China under Grant No.22JR5RA319+2 种基金the Excellent Doctoral Student Foundation of Gansu Province of China under Grant No.23JRRA842the Sichuan Province Engineering Technology Research Center of General Aircraft Maintenance under Grant No.GAMRC2023YB05the Key Research and Development Project of Lanzhou Jiaotong University under Grant No.LZJTUZDYF2302.
文摘Currently,the cranes used at sea do not have enough flexibility,efficiency,and safety.Thus,this study proposed a floating multirobot coordinated towing system to meet the demands for offshore towing.Because of the flexibility of rope-driven robots,the one-way pulling characteristics of the rope,and the floating characteristics of the base,towing robots are easily overturned.First,the spatial configuration of the towing system was established according to the towing task,and the kinematic model of the towing system was established using the coordinate transformation.Then,the dynamic model of the towing system was established according to the rigid-body dynamics and hydrodynamic theory.Finally,the stability of the towing system was analyzed using the stability cone method.The simulation experiments provide a reference for the practical application of the floating multirobot coordinated towing system,which can improve the stability of towing systems by changing the configuration of the towing robot.
基金supported in part by the National Natural Science Foundation of China(62473221)the Natural Science Foundation of Shandong Province,China(ZR2024MF006)Qingdao Natural Science Foundation(24-4-4-zrjj-165-jch)。
文摘This paper is concerned with event-triggered control of discrete-time systems with or without input saturation.First,an accumulative-error-based event-triggered scheme is devised for control updates.When the accumulated error between the current state and the latest control update exceeds a certain threshold,an event is triggered.Such a scheme can ensure the event-generator works at a relatively low rate rather than falls into hibernation especially after the system steps into its steady state.Second,the looped functional method for continuous-time systems is extended to discrete-time systems.By introducing an innovative looped functional that links the event-triggered scheme,some sufficient conditions for the co-design of control gain and event-triggered parameters are obtained in terms of linear matrix inequalities with a couple of tuning parameters.Then,the proposed method is applied to discrete-time systems with input saturation.As a result,both suitable control gains and event-triggered parameters are also co-designed to ensure the system trajectories converge to the region of attraction.Finally,an unstable reactor system and an inverted pendulum system are given to show the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant No.12371378)by the Natural Science Foundation of Fujian Province(Grant Nos.2024J01980,2024J08242).
文摘Recently,inspired by a modified generalized shift-splitting iteration method for complex symmetric linear systems,we propose two variants of the modified generalized shift-splitting iteration(MGSS)methods for solving com-plex symmetric linear systems.One is a parameterized MGSS iteration method and the other is a modified parameterized MGSS iteration method.We prove that the proposed methods are convergent under appropriate constraints on the parameters.In addition,we also give the eigenvalue distributions of differ-ent preconditioned matrices to verify the effectiveness of the preconditioners proposed in this paper.
基金supported by the National Science and Technology Major Project(Grant No.J2019-Ⅳ-0003-0070).
文摘A novel parameter identification method for magnetic levitation bearing rotor systems is proposed,based on the modulation function method.The fundamental principle of the modulation function method for parameter identification is derived on the basis of the characteristics of the modulation function.The transformation of the differential equation model of a continuous system into a general algebraic equation model is effectively achieved,thereby avoiding the influence of errors introduced by the initial value and differential derivation of the system.Modulation function method parameter identification models have been established for single-degree-of-freedom and multi-degree-of-freedom magnetic levitation bearing rotor systems.The influence of different parameters of Hartley modulation function on the accuracy of system parameter identification has been investigated,thus providing a basis for the design of Hartley modulation function parameters.Simulation and experimental results demonstrate that the modulation function method can effectively identify system parameters despite the presence of system noise.
基金supported by the China Postdoctoral Science Foundation(No.2024M764171)the Postdoctoral Research Start-up Funds,China(No.AUGA5710027424)+1 种基金the National Natural Science Foundation of China(No.U2341237)the Development and construction funds for the School of Mechatronics Engineering of HIT,China(No.CBQQ8880103624)。
文摘Gas turbine rotors are complex dynamic systems with high-dimensional,discrete,and multi-source nonlinear coupling characteristics.Significant amounts of resources and time are spent during the process of solving dynamic characteristics.Therefore,it is necessary to design a lowdimensional model that can well reflect the dynamic characteristics of high-dimensional system.To build such a low-dimensional model,this study developed a dimensionality reduction method considering global order energy distribution by modifying the proper orthogonal decomposition theory.First,sensitivity analysis of key dimensionality reduction parameters to the energy distribution was conducted.Then a high-dimensional rotor-bearing system considering the nonlinear stiffness and oil film force was reduced,and the accuracy and the reusability of the low-dimensional model under different operating conditions were examined.Finally,the response results of a multi-disk rotor-bearing test bench were reduced using the proposed method,and spectrum results were then compared experimentally.Numerical and experimental results demonstrate that,during the dimensionality reduction process,the solution period of dynamic response results has the most significant influence on the accuracy of energy preservation.The transient signal in the transformation matrix mainly affects the high-order energy distribution of the rotor system.The larger the proportion of steady-state signals is,the closer the energy tends to accumulate towards lower orders.The low-dimensional rotor model accurately reflects the frequency response characteristics of the original high-dimensional system with an accuracy of up to 98%.The proposed dimensionality reduction method exhibits significant application potential in the dynamic analysis of highdimensional systems coupled with strong nonlinearities under variable operating conditions.
基金supported by the Colombian government through COLCIENCIA scholarships,National Doctoral Program,Call 727 of 2015C.Castro gratefully acknowledges partial financial support from the Centro de Matematica da Universidade do Minho(CMAT/UM),through UID/00013V.Leiva acknowledges funding from the Agencia Nacional de Investigacion y Desarrollo(ANID)of the Chilean Ministry of Science,Technology,Knowledge and Innovation,through FONDECYT project grant 1200525.
文摘Most reliability studies assume large samples or independence among components,but these assump-tions often fail in practice,leading to imprecise inference.We address this issue by constructing confidence intervals(CIs)for the reliability of two-component systems with Weibull distributed failure times under a copula-frailty framework.Our construction integrates gamma-distributed frailties to capture unobserved heterogeneity and a copula-based dependence structure for correlated failures.The main contribution of this work is to derive adjusted CIs that explicitly incorporate the copula parameter in the variance-covariance matrix,achieving near-nominal coverage probabilities even in small samples or highly dependent settings.Through simulation studies,we show that,although traditional methods may suffice with moderate dependence and large samples,the proposed CIs offer notable benefits when dependence is strong or data are sparse.We further illustrate our construction with a synthetic example illustrating how penalized estimation can mitigate the issue of a degenerate Hessian matrix under high dependence and limited observations,so enabling uncertainty quantification despite deviations from nominal assumptions.Overall,our results fill a gap in reliability modeling for systems prone to correlated failures,and contribute to more robust inference in engineering,industrial,and biomedical applications.
基金National Key R&D Program of China(No.2017YFB1304000)Fundamental Research Funds for the Central Universities,China(No.2232023G-05-1)。
文摘The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.
文摘The learning of English academic vocabulary has been the focus of numerous studies from the time Coxhead(2000)developed the academic word list to the present day.Various researchers have emphasized the importance of possessing academic vocabulary knowledge for academic success.Recognizing this importance,it is crucial for researchers,teachers,and learners to understand the progress made in academic word lists.This systematic review first identifies,describes,appraises,and synthesizes the development of academic word lists from 2000 to 2020.It then examines the methods used by researchers in developing academic word lists among 56 studies that meet the pre-established criteria.The word lists were classified based on some criteria such as word counting units,corpora types/sizes,and exclusion criteria.Limitations,suggestions for further study,and implications are also discussed.Additionally,recommendations for future word list establishment are provided to help advance the field of word list development.