Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re...Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size.展开更多
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim...To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.展开更多
Accurately simulating water flow movement in vadose zone is crucial for effective water resources assessment.Richards'equation,which describes the movement of water flow in the vadose zone,is highly nonlinear and ...Accurately simulating water flow movement in vadose zone is crucial for effective water resources assessment.Richards'equation,which describes the movement of water flow in the vadose zone,is highly nonlinear and challenging to solve.Existing numerical methods often face issues such as numerical dispersion,oscillation,and mass non-conservation when spatial and temporal discretization conditions are not appropriately configured.To address these problems and achieve accurate and stable numerical solutions,a finite analytic method based on water content-based Richards'equation(FAM-W)is proposed.The performance of the FAM-W is compared with analytical solutions,Finite Difference Method(FDM),and Finite Analytic Method based on the pressure Head-based Richards'equation(FAM-H).Compared to analytical solution and other numerical methods(FDM and FAM-H),FAM-W demonstrates superior accuracy and efficiency in controlling mass balance errors,regardless of spatial step sizes.This study introduces a novel approach for modelling water flow in the vadose zone,offering significant benefits for water resources management.展开更多
Sheet metal spinning is an incremental forming process for producing axisymmetric thinwalled parts through continuous local deformation under the action of rollers.While studying the spinning process by finite element...Sheet metal spinning is an incremental forming process for producing axisymmetric thinwalled parts through continuous local deformation under the action of rollers.While studying the spinning process by finite element(FE)method,a critical bottleneck is the enormous simulation time.For beating off this challenge,a novel multi-mesh method is developed.The method can dynamically track the movement of rollers and adaptively refine the mesh.Thus,a locally refined quadrilateral computation mesh can be generated in the locally-deforming zone and reduce the unnecessary fine elements outside the locally-deforming zone.In the multi-mesh system,the fine elements and coarse elements are extracted from a storage mesh and a background mesh,respectively.Meanwhile,the hanging nodes in the locally refined mesh are removed by designing 4-refinement templates.Between computation mesh and storage mesh,a bi-cubic parametric surface fitting algorithm and accurate remapping methods are conducted to transmit geometric information and physical fields.The proposed method has been verified by two spinning processes.The results suggest that the method can save time by up to about 67%with satisfactory accuracy,especially for distributions of thickness and strain compared with the fully refined mesh.展开更多
As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-s...As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-sulfur bauxite were simulated using the computational particle fluid dynamics(CPFD) method.The effect of primary air flow velocity on particle velocity,particle volume distribution,furnace temperature distribution and pressure distribution were investigated.Under the condition of the same total flow of natural gas,the impact of the number of inlets on the desulfurization efficiency,atmosphere mass fraction distribution and temperature distribution in the furnace was further investigated.展开更多
After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir develo...After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir development.Conventional numerical reservoir simulation methodologies typically employ static assumptions for model construction,presuming invariant reservoir geological parameters throughout the development process while neglecting the reservoir’s temporal evolution characteristics.Although such simplifications reduce computational complexity,they introduce substantial descriptive inaccuracies.Therefore,this paper proposes a meshless numerical simulation method for reservoirs that considers time-varying characteristics.This method avoids the meshing in traditional numerical simulation methods.From the fluid flow perspective,the reservoir’s computational domain is discretized into a series of connection units.An influence domain with a certain radius centered on the nodes is selected,and one-dimensional connection units are established between the nodes to achieve the characterization of the flow topology structure of the reservoir.In order to reflect the dynamic evolution of the reservoir’s physical properties during the water injection development process,the time-varying characteristics are incorporated into the formula of the seepage characteristic parameters in the meshless calculation.The change relationship of the permeability under different surface fluxes is considered to update the calculated connection conductivity in real time.By combining with the seepage control equation for solution,a time-varying meshless numerical simulation method is formed.The results show that compared with the numerical simulationmethod of the connection elementmethod(CEM)that only considers static parameters,this method has higher simulation accuracy and can better simulate the real migration and distribution of oil and water in the reservoir.Thismethod improves the accuracy of reservoir numerical simulation and the development effect of oilfields,providing a scientific basis for optimizing the water injection strategy,adjusting the production plan,and extending the effective production cycle of the oilfield.展开更多
In this paper,a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints,utilizing the Solid Isotropic Material with Penalization approach.Element densities are reg...In this paper,a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints,utilizing the Solid Isotropic Material with Penalization approach.Element densities are regulated through sensitivity filtering tomitigate numerical instabilities associatedwith stress concentrations.Ap-norm aggregation function is employed to globalize local stress constraints,and a normalization technique linearly weights strain energy and stress,transforming the multi-objective problem into a single-objective formulation.The sensitivity of the objective function with respect to design variables is rigorously derived.Three numerical examples are presented,comparing the optimized structures in terms of strain energy,mass,and stress across five different mathematical models with varying combinations of optimization objectives.The results validate the effectiveness and feasibility of the proposed method for achieving a balanced design between structural stiffness and strength.This approach offers a new perspective for future research on stiffness-strength coordinated structural optimization.展开更多
At low-Reynolds-number,the performance of airfoil is known to be greatly affected by the formation and burst of a laminar separation bubble(LSB),which requires a more precise simulation of the delicate flow structures...At low-Reynolds-number,the performance of airfoil is known to be greatly affected by the formation and burst of a laminar separation bubble(LSB),which requires a more precise simulation of the delicate flow structures.A framework based on the interior penalty discontinuous Galerkin method and large eddy simulation approach was adopted in the present study.The performances of various subgrid models,including the Smagorinsky(SM)model,the dynamic Smagorinsky(DSM)model,the wall-adapting local-eddy-viscosity(WALE)model,and the VREMAN model,have been analyzed through flow simulations of the SD7003 airfoil at a Reynolds number of 60000.It turns out that the SM model fails to predict the emergence of LSB,even modified by the Van-Driest damping function.On the contrary,the best agreement is generally achieved by the WALE model in terms of flow separation,reattachment,and transition locations,together with the aerodynamic loads.Furthermore,the influence of numerical dissipation has also been discussed through the comparison of skin friction and resolved Reynolds stresses.As numerical dissipation decreases,the prediction accuracy of the WALE model degrades.Meanwhile,nonlinear variation could be observed from the performances of the DSM model,which could be attributed to the interaction between the numerical dissipation and the subgrid model.展开更多
Deepwater drilling riser is the key equipment connecting the subsea wellhead and floating drilling platform.Due to complex marine environment,vortex-induced vibration(ViV)will be generated on riser,which will induce f...Deepwater drilling riser is the key equipment connecting the subsea wellhead and floating drilling platform.Due to complex marine environment,vortex-induced vibration(ViV)will be generated on riser,which will induce fatigue failure and even cause unpredictable drilling accidents.Therefore,it is important to study the ViV characteristics of deepwater drilling riser and reveal the main controlling factors for ensuring the safe and efficient operation of deepwater drilling engineering.In this paper,the ViV of deepwater drilling riser is numerically simulated in time domain based on the discrete vortex method(DvM).A hydrodynamic analysis model and governing equation of VIV is proposed with considering the effect of riser motion using DVM and slice method,where the governing equation is solved by Runge-Kutta method.Model validation is performed,which verified the correctness and accuracy of the mechanical model and the solution method.On this basis,the influence of the number of control points,current velocity,riser outer diameter,shear flow and top tension on the ViV characteristics of deepwater drilling risers are discussed in detail.The results show that with the increase of current velocity,the vibration amplitude of deepwater drilling riser decreases obviously,while the vibration frequency increases gradually.However,if the outer diameter of riser increases,the vibration amplitude increases,while the vibration frequency decreases gradually.The top tension also has great influence on the VIV of riser.When the top tension is 1.25 G,the VIV is suppressed to a certain extent.This study has guiding significance for optimal design and engineering control of deepwater drilling riser.展开更多
The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critica...The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.展开更多
The electromagnetic(EM)telemetry systems,employed for real-time data transmission from the borehole and the earth surface during drilling,are widely used in measurement-while-drilling(MWD)and logging-while-drilling(LW...The electromagnetic(EM)telemetry systems,employed for real-time data transmission from the borehole and the earth surface during drilling,are widely used in measurement-while-drilling(MWD)and logging-while-drilling(LWD).Several numerical methods,including the method of moments(MoM),the electric field integral equation(EFIE)method,and the finite-element(FE)method have been developed for the simulation of EM telemetry systems.The computational process of these methods is complicated and time-consuming.To solve this problem,we introduce an axisymmetric semi-analytical FE method(SAFEM)in the cylindrical coordinate system with the virtual layering technique for rapid simulation of EM telemetry in a layered earth.The proposed method divides the computational domain into a series of homogeneous layers.For each layer,only its cross-section is discretized,and a high-precision integration method based on Riccati equations is employed for the calculation of longitudinally homogeneous sections.The block-tridiagonal structure of the global coefficient matrix enables the use of the block Thomas algorithm,facilitating the efficient simulation of EM telemetry problems in layered media.After the theoretical development,we validate the accuracy and efficiency of our algorithm through a series of numerical experiments and comparisons with the Multiphysics modeling software COMSOL.We also discussed the impact of system parameters on EM telemetry signal and demonstrated the applicability of our method by testing it on a field dataset acquired from Dezhou,Shandong Province,China.展开更多
The March 28,2025 Myanmar earthquake generated ground shaking that was perceptible throughout Myanmar and adjacent regions.This study simulated three-component ground motions across the affected region using an improv...The March 28,2025 Myanmar earthquake generated ground shaking that was perceptible throughout Myanmar and adjacent regions.This study simulated three-component ground motions across the affected region using an improved stochastic finite-fault method to systematically assess seismic impacts.Observed near-field recordings at MM.NGU station was used to determine the reliability of the theoretically derived stress drop as input for simulation.Far-field recordings constrained the frequency-dependent S-wave quality factors(Q(f)=283.305f^(0.588))for anelastic attenuation modeling.Comparisons of peak accelerations between simulation and empirical ground-motion models showed good agreement at moderate-to-large distances.However,lower near-fault simulations indicate a weaker-than-average source effect.Analysis of simulated instrumental seismic intensity revealed key patterns.Maximum intensity(Ⅹ)occurred in isolated patches within the ruptured fault projection,correlating with shallow high-slip areas.TheⅨ-intensity zone formed a north-south elongated band centered on fault projection.Significant asymmetry inⅧ-intensity distribution perpendicular to the fault strike was observed,with a wider western extension attributed to lower shear-wave velocities west of the fault.Supershear rupture behavior enhanced ground motions,expanding intensity ranges by~20%compared to sub-shear rupture.This study reveals the integrated effects of fault geometry,slip spatial distribution,rupture velocity,and site condition in governing ground motion patterns.展开更多
The accumulation of^(222)Rn and^(220)Rn progeny in poorly ventilated environments poses the risk of natural radiation exposure to the public.A previous study indicated that satisfactory results in determining the^(222...The accumulation of^(222)Rn and^(220)Rn progeny in poorly ventilated environments poses the risk of natural radiation exposure to the public.A previous study indicated that satisfactory results in determining the^(222)Rn and^(220)Rn progeny concentrations by measuring the total alpha counts at five time intervals within 560 min should be expected only in the case of high progeny concentrations in air.To complete the measurement within a relatively short period and adapt it for simultaneous measurements at comparatively lower^(222)Rn and^(220)Rn progeny concentrations,a novel mathematical model was proposed based on the radioactive decay law.This model employs a nonlinear fitting method to distinguish nuclides with overlapping spectra by utilizing the alpha particle counts of non-overlapping spectra within consecutive measurement cycles to obtain the concentrations of^(222)Rn and^(220)Rn progeny in air.Several verification experiments were conducted using an alpha spectrometer.The experimental results demonstrate that the concentrations of^(222)Rn and^(220)Rn progeny calculated by the new method align more closely with the actual circumstances than those calculated by the total count method,and their relative uncertainties are all within±16%.Furthermore,the measurement time was reduced to 90 min,representing an acceleration of 84%.The improved capability of the new method in distinguishing alpha particles with similar energies emitted from ^(218)Po and^(212)Bi,both approximately 6 MeV,contributed to realizing more accurate results.The proposed method has the potential advantage of measuring relatively low concentrations of^(222)Rn and^(220)Rn progeny in air more quickly via air filtration.展开更多
The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most s...The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2].展开更多
0 INTRODUCTION In recent years,modern railways have been actively under construction in the complex mountainous area of Southwest China.However,rockfall poses a significant threat to both construction and operation ph...0 INTRODUCTION In recent years,modern railways have been actively under construction in the complex mountainous area of Southwest China.However,rockfall poses a significant threat to both construction and operation phases of railway projects(Yan et al.,2023;Chen et al.,2022;Fanos and Pradhan,2018).展开更多
The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat...The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.展开更多
In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy...In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.展开更多
As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura...As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.展开更多
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a...Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12302435 and 12221002)。
文摘Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271317 and 52071149)the Fundamental Research Funds for the Central Universities(HUST:2019kfy XJJS007)。
文摘To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.
基金supported by the National Natural Science Foundation of China(No.42372287 and No.U24A20178)the Fundamental Research Funds for the Central Universities CHD(No.2024SHEEAR002)+3 种基金the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province(No.2020024)the China Postdoctoral Science Foundation(GZC20232955,2024M753472,and 2024MD763937)the Science-Technology Foundation for Young Scientists of Gansu Province,China(No.24JRRA097)the Study of biodiversity survey and limiting factor analysis of Yinkentala(2023ZL01).
文摘Accurately simulating water flow movement in vadose zone is crucial for effective water resources assessment.Richards'equation,which describes the movement of water flow in the vadose zone,is highly nonlinear and challenging to solve.Existing numerical methods often face issues such as numerical dispersion,oscillation,and mass non-conservation when spatial and temporal discretization conditions are not appropriately configured.To address these problems and achieve accurate and stable numerical solutions,a finite analytic method based on water content-based Richards'equation(FAM-W)is proposed.The performance of the FAM-W is compared with analytical solutions,Finite Difference Method(FDM),and Finite Analytic Method based on the pressure Head-based Richards'equation(FAM-H).Compared to analytical solution and other numerical methods(FDM and FAM-H),FAM-W demonstrates superior accuracy and efficiency in controlling mass balance errors,regardless of spatial step sizes.This study introduces a novel approach for modelling water flow in the vadose zone,offering significant benefits for water resources management.
基金co-supported by the supports of Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120047)the National Natural Science Foundation of China(No.52130507)。
文摘Sheet metal spinning is an incremental forming process for producing axisymmetric thinwalled parts through continuous local deformation under the action of rollers.While studying the spinning process by finite element(FE)method,a critical bottleneck is the enormous simulation time.For beating off this challenge,a novel multi-mesh method is developed.The method can dynamically track the movement of rollers and adaptively refine the mesh.Thus,a locally refined quadrilateral computation mesh can be generated in the locally-deforming zone and reduce the unnecessary fine elements outside the locally-deforming zone.In the multi-mesh system,the fine elements and coarse elements are extracted from a storage mesh and a background mesh,respectively.Meanwhile,the hanging nodes in the locally refined mesh are removed by designing 4-refinement templates.Between computation mesh and storage mesh,a bi-cubic parametric surface fitting algorithm and accurate remapping methods are conducted to transmit geometric information and physical fields.The proposed method has been verified by two spinning processes.The results suggest that the method can save time by up to about 67%with satisfactory accuracy,especially for distributions of thickness and strain compared with the fully refined mesh.
基金supported by the National Key Research and Development Program of China(2022YFC2904400)Guangxi Science and Technology Major Project(Gui Ke AA23023033)。
文摘As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-sulfur bauxite were simulated using the computational particle fluid dynamics(CPFD) method.The effect of primary air flow velocity on particle velocity,particle volume distribution,furnace temperature distribution and pressure distribution were investigated.Under the condition of the same total flow of natural gas,the impact of the number of inlets on the desulfurization efficiency,atmosphere mass fraction distribution and temperature distribution in the furnace was further investigated.
基金funded by the 14th Five-Year Plan Major Science and Technology Project of CNOOC project number KJGG2021-0506.
文摘After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir development.Conventional numerical reservoir simulation methodologies typically employ static assumptions for model construction,presuming invariant reservoir geological parameters throughout the development process while neglecting the reservoir’s temporal evolution characteristics.Although such simplifications reduce computational complexity,they introduce substantial descriptive inaccuracies.Therefore,this paper proposes a meshless numerical simulation method for reservoirs that considers time-varying characteristics.This method avoids the meshing in traditional numerical simulation methods.From the fluid flow perspective,the reservoir’s computational domain is discretized into a series of connection units.An influence domain with a certain radius centered on the nodes is selected,and one-dimensional connection units are established between the nodes to achieve the characterization of the flow topology structure of the reservoir.In order to reflect the dynamic evolution of the reservoir’s physical properties during the water injection development process,the time-varying characteristics are incorporated into the formula of the seepage characteristic parameters in the meshless calculation.The change relationship of the permeability under different surface fluxes is considered to update the calculated connection conductivity in real time.By combining with the seepage control equation for solution,a time-varying meshless numerical simulation method is formed.The results show that compared with the numerical simulationmethod of the connection elementmethod(CEM)that only considers static parameters,this method has higher simulation accuracy and can better simulate the real migration and distribution of oil and water in the reservoir.Thismethod improves the accuracy of reservoir numerical simulation and the development effect of oilfields,providing a scientific basis for optimizing the water injection strategy,adjusting the production plan,and extending the effective production cycle of the oilfield.
基金funded by National Nature Science Foundation of China(92266203)National Nature Science Foundation of China(52205278)+1 种基金Key Projects of Shijiazhuang Basic Research Program(241791077A)Central Guide Local Science and Technology Development Fund Project of Hebei Province(246Z1022G).
文摘In this paper,a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints,utilizing the Solid Isotropic Material with Penalization approach.Element densities are regulated through sensitivity filtering tomitigate numerical instabilities associatedwith stress concentrations.Ap-norm aggregation function is employed to globalize local stress constraints,and a normalization technique linearly weights strain energy and stress,transforming the multi-objective problem into a single-objective formulation.The sensitivity of the objective function with respect to design variables is rigorously derived.Three numerical examples are presented,comparing the optimized structures in terms of strain energy,mass,and stress across five different mathematical models with varying combinations of optimization objectives.The results validate the effectiveness and feasibility of the proposed method for achieving a balanced design between structural stiffness and strength.This approach offers a new perspective for future research on stiffness-strength coordinated structural optimization.
基金This work was supported by the National Key R&D Program of China(Grant No.2022YFE0207000)the National Natural Science Foundation of China(Grant Nos.12372289,11972250,and 12102298)+1 种基金the China Postdoctoral Science Foundation(Grant No.2021M702443)Tianjin Natural Science Foundation(Grant No.22JCZDJC00910).
文摘At low-Reynolds-number,the performance of airfoil is known to be greatly affected by the formation and burst of a laminar separation bubble(LSB),which requires a more precise simulation of the delicate flow structures.A framework based on the interior penalty discontinuous Galerkin method and large eddy simulation approach was adopted in the present study.The performances of various subgrid models,including the Smagorinsky(SM)model,the dynamic Smagorinsky(DSM)model,the wall-adapting local-eddy-viscosity(WALE)model,and the VREMAN model,have been analyzed through flow simulations of the SD7003 airfoil at a Reynolds number of 60000.It turns out that the SM model fails to predict the emergence of LSB,even modified by the Van-Driest damping function.On the contrary,the best agreement is generally achieved by the WALE model in terms of flow separation,reattachment,and transition locations,together with the aerodynamic loads.Furthermore,the influence of numerical dissipation has also been discussed through the comparison of skin friction and resolved Reynolds stresses.As numerical dissipation decreases,the prediction accuracy of the WALE model degrades.Meanwhile,nonlinear variation could be observed from the performances of the DSM model,which could be attributed to the interaction between the numerical dissipation and the subgrid model.
基金the financial support from National Key R&D Program of China(Grant number:2024YFC2815100)Natural Science Foundation of China(Grant number:52322110)Beijing Nova Program(Grant number:20230484341).
文摘Deepwater drilling riser is the key equipment connecting the subsea wellhead and floating drilling platform.Due to complex marine environment,vortex-induced vibration(ViV)will be generated on riser,which will induce fatigue failure and even cause unpredictable drilling accidents.Therefore,it is important to study the ViV characteristics of deepwater drilling riser and reveal the main controlling factors for ensuring the safe and efficient operation of deepwater drilling engineering.In this paper,the ViV of deepwater drilling riser is numerically simulated in time domain based on the discrete vortex method(DvM).A hydrodynamic analysis model and governing equation of VIV is proposed with considering the effect of riser motion using DVM and slice method,where the governing equation is solved by Runge-Kutta method.Model validation is performed,which verified the correctness and accuracy of the mechanical model and the solution method.On this basis,the influence of the number of control points,current velocity,riser outer diameter,shear flow and top tension on the ViV characteristics of deepwater drilling risers are discussed in detail.The results show that with the increase of current velocity,the vibration amplitude of deepwater drilling riser decreases obviously,while the vibration frequency increases gradually.However,if the outer diameter of riser increases,the vibration amplitude increases,while the vibration frequency decreases gradually.The top tension also has great influence on the VIV of riser.When the top tension is 1.25 G,the VIV is suppressed to a certain extent.This study has guiding significance for optimal design and engineering control of deepwater drilling riser.
基金National Key R&D Program of China(No.2017YFB1304000)Fundamental Research Funds for the Central Universities,China(No.2232023G-05-1)。
文摘The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.
基金supported by the Major Research Project on Scientific Instrument Development of the National Natural Science Foundation of China(42327901)National Natural Science Foundation of China(42030806,42074120,41904104,423B2405).
文摘The electromagnetic(EM)telemetry systems,employed for real-time data transmission from the borehole and the earth surface during drilling,are widely used in measurement-while-drilling(MWD)and logging-while-drilling(LWD).Several numerical methods,including the method of moments(MoM),the electric field integral equation(EFIE)method,and the finite-element(FE)method have been developed for the simulation of EM telemetry systems.The computational process of these methods is complicated and time-consuming.To solve this problem,we introduce an axisymmetric semi-analytical FE method(SAFEM)in the cylindrical coordinate system with the virtual layering technique for rapid simulation of EM telemetry in a layered earth.The proposed method divides the computational domain into a series of homogeneous layers.For each layer,only its cross-section is discretized,and a high-precision integration method based on Riccati equations is employed for the calculation of longitudinally homogeneous sections.The block-tridiagonal structure of the global coefficient matrix enables the use of the block Thomas algorithm,facilitating the efficient simulation of EM telemetry problems in layered media.After the theoretical development,we validate the accuracy and efficiency of our algorithm through a series of numerical experiments and comparisons with the Multiphysics modeling software COMSOL.We also discussed the impact of system parameters on EM telemetry signal and demonstrated the applicability of our method by testing it on a field dataset acquired from Dezhou,Shandong Province,China.
基金National Key R&D Program of China under Grant No.2022YFC3003601。
文摘The March 28,2025 Myanmar earthquake generated ground shaking that was perceptible throughout Myanmar and adjacent regions.This study simulated three-component ground motions across the affected region using an improved stochastic finite-fault method to systematically assess seismic impacts.Observed near-field recordings at MM.NGU station was used to determine the reliability of the theoretically derived stress drop as input for simulation.Far-field recordings constrained the frequency-dependent S-wave quality factors(Q(f)=283.305f^(0.588))for anelastic attenuation modeling.Comparisons of peak accelerations between simulation and empirical ground-motion models showed good agreement at moderate-to-large distances.However,lower near-fault simulations indicate a weaker-than-average source effect.Analysis of simulated instrumental seismic intensity revealed key patterns.Maximum intensity(Ⅹ)occurred in isolated patches within the ruptured fault projection,correlating with shallow high-slip areas.TheⅨ-intensity zone formed a north-south elongated band centered on fault projection.Significant asymmetry inⅧ-intensity distribution perpendicular to the fault strike was observed,with a wider western extension attributed to lower shear-wave velocities west of the fault.Supershear rupture behavior enhanced ground motions,expanding intensity ranges by~20%compared to sub-shear rupture.This study reveals the integrated effects of fault geometry,slip spatial distribution,rupture velocity,and site condition in governing ground motion patterns.
基金supported by the National Natural Science Foundation of China(No.12075112)Natural Science Foundation of Hunan(No.2023JJ50121),Natural Science Foundation of Hunan Province(No.2023JJ50091)Key Projects of Hunan Provincial Department of Education(No.23A0516).
文摘The accumulation of^(222)Rn and^(220)Rn progeny in poorly ventilated environments poses the risk of natural radiation exposure to the public.A previous study indicated that satisfactory results in determining the^(222)Rn and^(220)Rn progeny concentrations by measuring the total alpha counts at five time intervals within 560 min should be expected only in the case of high progeny concentrations in air.To complete the measurement within a relatively short period and adapt it for simultaneous measurements at comparatively lower^(222)Rn and^(220)Rn progeny concentrations,a novel mathematical model was proposed based on the radioactive decay law.This model employs a nonlinear fitting method to distinguish nuclides with overlapping spectra by utilizing the alpha particle counts of non-overlapping spectra within consecutive measurement cycles to obtain the concentrations of^(222)Rn and^(220)Rn progeny in air.Several verification experiments were conducted using an alpha spectrometer.The experimental results demonstrate that the concentrations of^(222)Rn and^(220)Rn progeny calculated by the new method align more closely with the actual circumstances than those calculated by the total count method,and their relative uncertainties are all within±16%.Furthermore,the measurement time was reduced to 90 min,representing an acceleration of 84%.The improved capability of the new method in distinguishing alpha particles with similar energies emitted from ^(218)Po and^(212)Bi,both approximately 6 MeV,contributed to realizing more accurate results.The proposed method has the potential advantage of measuring relatively low concentrations of^(222)Rn and^(220)Rn progeny in air more quickly via air filtration.
基金financial support from the National Key R&D Program of China(2021YFB3500700)the National Natural Science Foundation of China(22473042,22003016,and 92145302).
文摘The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2].
基金supported by the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(No.2022KDZ03)the Science and Technology Projects of Yunnan Provincial Science and Technology Department(No.202401AT070328)+1 种基金the Young talents project of“Xingdian Talent Support Program”in Yunnan Province(No.YNWR-QNBJ-2020-019)the Fund Project of China Academy of Railway Sciences Co.,Ltd.(No.2021YJ178)。
文摘0 INTRODUCTION In recent years,modern railways have been actively under construction in the complex mountainous area of Southwest China.However,rockfall poses a significant threat to both construction and operation phases of railway projects(Yan et al.,2023;Chen et al.,2022;Fanos and Pradhan,2018).
基金The financial supports from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant No.52022112)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program,Grant No.YJ20220219)。
文摘The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.
文摘In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.
基金supported by the National Natural Science Foundation of China(Grant No.42277165)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821)the National Overseas Study Fund(Grant No.202106410040).
文摘As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.
基金the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_0621)the National Natural Science Foundation of China(Grant No.52209130)Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.