In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery...Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
A submodel method was proposed that works from computational models of marine gear cases to verify that the proposed bolts will give it sufficient structural integrity. Calculations for marine equipment using this sys...A submodel method was proposed that works from computational models of marine gear cases to verify that the proposed bolts will give it sufficient structural integrity. Calculations for marine equipment using this system accorded well with conventional results. As an example, an anti-shock computation was processed for a gear case, and the submodel was then employed to check the strength of individual components. The results showed that the gear case connecting structure can satisfy relative anti-shock requirements, and the dynamic response characteristics seen in the bolt structures had a close relationship with the method used for attaching the bolt. This provides a new means for checking the strength of connecting structures on large-scale equipment and thus has significant reference value.展开更多
For the gray attributes of the equipment program and its difficulty to carry out the quantitative assessment of the equipment program information, the gray relation projection method is simply reviewed. Combining the ...For the gray attributes of the equipment program and its difficulty to carry out the quantitative assessment of the equipment program information, the gray relation projection method is simply reviewed. Combining the super-data envelopment analysis(DEA) model and the gray system theory, a new super-DEA for measuring the weight is proposed, and a gray relation projection model is established to rank the equipment programs. Finally, this approach is used to evaluate the equipment program. The results are verified valid and can provide a new way for evaluating the equipment program.展开更多
The influencing factors of the equipment support activity process have the characteristics of nonlinearity, high dimension, many constraints, random uncertainty and fuzzy uncertainty. Monte Carlo method can solve the ...The influencing factors of the equipment support activity process have the characteristics of nonlinearity, high dimension, many constraints, random uncertainty and fuzzy uncertainty. Monte Carlo method can solve the above problems commendably. This paper analyzes the main equipment support activity process and establishes the sampling plan and simulation model of the medium maintenance process based on Monte Carlo method, and the simulation result verifies a fact that the medium maintenance time can be effectively reduced when parallel operation on some procedures is used. It has a practical value and can give good advice to achieve the capability of equipment supportability.展开更多
A systematic safety analysis method is presented to guide the whole analysis process starting with safety analysis requirement and ending with technical and economical evaluation of the knowledge model and the arrange...A systematic safety analysis method is presented to guide the whole analysis process starting with safety analysis requirement and ending with technical and economical evaluation of the knowledge model and the arrangement of sensors. The method consists of five phases, including data acquisition on factual evidence and collecting design, manufacturing, and installation data of equipment; establishing knowledge model; measurable analysis and selection of sensors as well cost evaluation; knowledge description; and overall evaluation. The proposed method is used for safety analysis of hydraulic power generating units and the analysis results validate the method very well.展开更多
Double packer equipment for hydraulic test can be used to measure pressure of test zone directly, and it is frequently used to perform many kinds of hydraulic tests and take groundwater sample from borehole. The test ...Double packer equipment for hydraulic test can be used to measure pressure of test zone directly, and it is frequently used to perform many kinds of hydraulic tests and take groundwater sample from borehole. The test method of this equipment mainly includes the test design, implementation, interpretation and synthetic analysis. By adopting the double packer equipment for hydraulic test, the parameter distribution of rock permeability along borehole can be acquired, as well as the connectivity, water conductivity and water bearing capacity of the disclosed structure and the chemical characteristics of the deep groundwater. It is a necessary method for the research and evaluation of the complex hypotonicity terrace site selection under geological conditions. This method is not only suitable for the geological disposal of high level radioactive waste, but also can be used in the site selection of underground facilities such as storage of petroleum and carbon dioxide. Meanwhile, it has a good application prospect in other hydrogeological investigation fields.展开更多
Equipment management is one of the important parts of business administra- tion of coal. Most of coal mines take no account of their equipment management, and have no comprehensive and effective evaluation index syste...Equipment management is one of the important parts of business administra- tion of coal. Most of coal mines take no account of their equipment management, and have no comprehensive and effective evaluation index system. Based on the analysis of the equipment evaluation measures of reform and the applications, the paper built up a comprehensive and effective evaluation index system of coal mine equipment, and im- proved the evaluation method with the use of fuzzy theory, analytic hierarchy process and entropy method.展开更多
In this paper establishing model of the fault diagnosis of hydraulic equipment isdescribed in details. It also studies the advantage of the recursion least square method. When theLSM is used in compuring the fault of...In this paper establishing model of the fault diagnosis of hydraulic equipment isdescribed in details. It also studies the advantage of the recursion least square method. When theLSM is used in compuring the fault of hydraulic equipment, not only does it save the computerCPU-time and memory, but it also has a high computation speed and,makes it easy to identifythe estimation parameters.展开更多
Through the long time track examination and disintegration to SF6 circuit breaker, we obtain the massive monitor data and massive pictures. The criteria of resuming insulation discharge failure conforming to CSO2/CH2S...Through the long time track examination and disintegration to SF6 circuit breaker, we obtain the massive monitor data and massive pictures. The criteria of resuming insulation discharge failure conforming to CSO2/CH2S>7, is quite broad to SO2 and the H2S concentration permission. Even if it reaches 100μL/L, it will not be in danger immediately to the safe operation of equipment. We may plan, arrange, and overhaul calmly. When obtaining the bare conductor overheating failure, it has not involved the resuming insulation. We may use the resuming insulation discharge failure criterion.展开更多
The determination of maintenance mode of complex equipment in nuclear power plant is an essential work for reliability analysis and maintenance decision. Currently, the main decision method of maintenance mode is reli...The determination of maintenance mode of complex equipment in nuclear power plant is an essential work for reliability analysis and maintenance decision. Currently, the main decision method of maintenance mode is reliability centered maintenance( RCM) logic decision-making process, but the process is a qualitative analysis process. Based on a comprehensive analysis of factors affecting equipment reliability and maintenance work, it adopts a fuzzy synthesis decision method to establish a maintenance decision model,which uses the maximum subordination principle and expert assessment method to determine the maintenance mode of complex equipment. Combined with a concrete example of generators in nuclear power plant,a description of maintenance decision method was proposed in the application of complex equipment. The research shows that the method is feasible and reliable.展开更多
Mahalanobis-Taguchi system(MTS)is a kind of data mining and pattern recognition method which can identify the attribute characteristics of multidimensional data by constructing Mahalanobis distance(MD)measurement scal...Mahalanobis-Taguchi system(MTS)is a kind of data mining and pattern recognition method which can identify the attribute characteristics of multidimensional data by constructing Mahalanobis distance(MD)measurement scale.In this paper,considering the influence of irregular distribution of the sample data and abnormal variation of the normal data on accuracy of MTS,a feature recognition and selection model of the equipment state based on the improved MTS is proposed,and two aspects of the model namely construction of the original Mahalanobis space(MS)and determination of the threshold are studied.Firstly,the original training sample space is statistically controlled by the X-bar-S control chart,and extreme data of the single characteristic attribute is filtered to reduce the impact of extreme condition on the accuracy of the model,so as to construct a more robust MS.Furthermore,the box plot method is used to determine the threshold of the model.And the stability of the model and the tolerance to the extreme condition are improved by leaving sufficient range of the variation for the extreme condition which is identified as in the normal range.Finally,the improved model is compared with the traditional one based on the unimproved MTS by using the data from the literature.The result shows that compared with the traditional model,the accuracy and sensitivity of the improved model for state identification can be greatly enhanced.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings...On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings of traditional absolute measuring methods but also greatly improve the accuracy of dielectric loss angle measurement. However, synthetic relative measuring methods based on two or three pieces of capacitive equipment do not have the characteristic of generality. In this paper, a principle of synthetic relative measuring method is presented. The example of application for synthetic relative methods based on three and four pieces of capacitive equipment running in the same phase is taken to present the failure judgment matrices for N pieces of equipment. According to these matrices, the fault condition of N pieces of capacitive equipment can be watched, which is more general. Then some problems needing to be concerned along with two diagnostic methods used in diagnostic system are introduced. Finally, two programmable flow charts for the two methods are given and corresponding examples demonstrate their feasibility in practice.展开更多
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
The spacecraequipment layout optimization design(SELOD)problems with complicated performance con-straints and diversity are studied in this paper.The previous literature uses the gradient-based algorithm to obtain op...The spacecraequipment layout optimization design(SELOD)problems with complicated performance con-straints and diversity are studied in this paper.The previous literature uses the gradient-based algorithm to obtain optimized non-overlap layout schemes from randomly initialized cases eectively.However,these local optimal solutions are too dicult to jump out of their current relative geometry relationships,signicantly limiting their further improvement in performance indicators.Therefore,considering the geometric diversity of layout schemes is put forward to alleviate this limitation.First,similarity measures,including modied cosine similarity and gaussian kernel function similarity,are introduced into the layout optimization process.Then the optimization produces a set of feasible layout candidates with the most remarkable dierence in geometric distribution and the most representative schemes are sampled.Finally,these feasible geometric solutions are used as initial solutions to optimize the physical performance indicators of the spacecra,and diversied layout schemes of spacecraequipment are generated for the engineering practice.The validity and eectiveness of the proposed methodology are demonstrated by two SELOD applications.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金Supported by the Natural Science Foundation of Guangxi Province(Grant Nos.2023GXNSFAA026067,2024GXN SFAA010521)the National Natural Science Foundation of China(Nos.12361079,12201149,12261026).
文摘Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金Supported by the Shipbuilding Industry of National Defense Science and Technology Research Projects in Advance (07J1.5.3)
文摘A submodel method was proposed that works from computational models of marine gear cases to verify that the proposed bolts will give it sufficient structural integrity. Calculations for marine equipment using this system accorded well with conventional results. As an example, an anti-shock computation was processed for a gear case, and the submodel was then employed to check the strength of individual components. The results showed that the gear case connecting structure can satisfy relative anti-shock requirements, and the dynamic response characteristics seen in the bolt structures had a close relationship with the method used for attaching the bolt. This provides a new means for checking the strength of connecting structures on large-scale equipment and thus has significant reference value.
基金supported by the National Natural Science Foundation of China(7107307971222106+2 种基金70901069)the Research Foundation of the National Excellent Doctoral Dissertation of Chinathe Research Fund for the Doctoral Program of Higher Education(20133402110028)
文摘For the gray attributes of the equipment program and its difficulty to carry out the quantitative assessment of the equipment program information, the gray relation projection method is simply reviewed. Combining the super-data envelopment analysis(DEA) model and the gray system theory, a new super-DEA for measuring the weight is proposed, and a gray relation projection model is established to rank the equipment programs. Finally, this approach is used to evaluate the equipment program. The results are verified valid and can provide a new way for evaluating the equipment program.
基金the Special Research Fund for the Research on Armored Vehicle Supportability Requirement Analysis(No.51319050302)
文摘The influencing factors of the equipment support activity process have the characteristics of nonlinearity, high dimension, many constraints, random uncertainty and fuzzy uncertainty. Monte Carlo method can solve the above problems commendably. This paper analyzes the main equipment support activity process and establishes the sampling plan and simulation model of the medium maintenance process based on Monte Carlo method, and the simulation result verifies a fact that the medium maintenance time can be effectively reduced when parallel operation on some procedures is used. It has a practical value and can give good advice to achieve the capability of equipment supportability.
基金the National Natural Science Foundation of China(No.51175284)the Science and Technology Program of Education Committee of Beijing Municipality(No.SQKM201211232002)
文摘A systematic safety analysis method is presented to guide the whole analysis process starting with safety analysis requirement and ending with technical and economical evaluation of the knowledge model and the arrangement of sensors. The method consists of five phases, including data acquisition on factual evidence and collecting design, manufacturing, and installation data of equipment; establishing knowledge model; measurable analysis and selection of sensors as well cost evaluation; knowledge description; and overall evaluation. The proposed method is used for safety analysis of hydraulic power generating units and the analysis results validate the method very well.
文摘Double packer equipment for hydraulic test can be used to measure pressure of test zone directly, and it is frequently used to perform many kinds of hydraulic tests and take groundwater sample from borehole. The test method of this equipment mainly includes the test design, implementation, interpretation and synthetic analysis. By adopting the double packer equipment for hydraulic test, the parameter distribution of rock permeability along borehole can be acquired, as well as the connectivity, water conductivity and water bearing capacity of the disclosed structure and the chemical characteristics of the deep groundwater. It is a necessary method for the research and evaluation of the complex hypotonicity terrace site selection under geological conditions. This method is not only suitable for the geological disposal of high level radioactive waste, but also can be used in the site selection of underground facilities such as storage of petroleum and carbon dioxide. Meanwhile, it has a good application prospect in other hydrogeological investigation fields.
文摘Equipment management is one of the important parts of business administra- tion of coal. Most of coal mines take no account of their equipment management, and have no comprehensive and effective evaluation index system. Based on the analysis of the equipment evaluation measures of reform and the applications, the paper built up a comprehensive and effective evaluation index system of coal mine equipment, and im- proved the evaluation method with the use of fuzzy theory, analytic hierarchy process and entropy method.
文摘In this paper establishing model of the fault diagnosis of hydraulic equipment isdescribed in details. It also studies the advantage of the recursion least square method. When theLSM is used in compuring the fault of hydraulic equipment, not only does it save the computerCPU-time and memory, but it also has a high computation speed and,makes it easy to identifythe estimation parameters.
文摘Through the long time track examination and disintegration to SF6 circuit breaker, we obtain the massive monitor data and massive pictures. The criteria of resuming insulation discharge failure conforming to CSO2/CH2S>7, is quite broad to SO2 and the H2S concentration permission. Even if it reaches 100μL/L, it will not be in danger immediately to the safe operation of equipment. We may plan, arrange, and overhaul calmly. When obtaining the bare conductor overheating failure, it has not involved the resuming insulation. We may use the resuming insulation discharge failure criterion.
文摘The determination of maintenance mode of complex equipment in nuclear power plant is an essential work for reliability analysis and maintenance decision. Currently, the main decision method of maintenance mode is reliability centered maintenance( RCM) logic decision-making process, but the process is a qualitative analysis process. Based on a comprehensive analysis of factors affecting equipment reliability and maintenance work, it adopts a fuzzy synthesis decision method to establish a maintenance decision model,which uses the maximum subordination principle and expert assessment method to determine the maintenance mode of complex equipment. Combined with a concrete example of generators in nuclear power plant,a description of maintenance decision method was proposed in the application of complex equipment. The research shows that the method is feasible and reliable.
基金the National Natural Science Foundation of China(No.71401016)the Shaanxi Provincial Natural Science Foundation of China(No.2019JM-495)the Fundamental Research Funds for Central Universities of Chang'an University(Nos.300102228110 and 300102228402)。
文摘Mahalanobis-Taguchi system(MTS)is a kind of data mining and pattern recognition method which can identify the attribute characteristics of multidimensional data by constructing Mahalanobis distance(MD)measurement scale.In this paper,considering the influence of irregular distribution of the sample data and abnormal variation of the normal data on accuracy of MTS,a feature recognition and selection model of the equipment state based on the improved MTS is proposed,and two aspects of the model namely construction of the original Mahalanobis space(MS)and determination of the threshold are studied.Firstly,the original training sample space is statistically controlled by the X-bar-S control chart,and extreme data of the single characteristic attribute is filtered to reduce the impact of extreme condition on the accuracy of the model,so as to construct a more robust MS.Furthermore,the box plot method is used to determine the threshold of the model.And the stability of the model and the tolerance to the extreme condition are improved by leaving sufficient range of the variation for the extreme condition which is identified as in the normal range.Finally,the improved model is compared with the traditional one based on the unimproved MTS by using the data from the literature.The result shows that compared with the traditional model,the accuracy and sensitivity of the improved model for state identification can be greatly enhanced.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
文摘On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings of traditional absolute measuring methods but also greatly improve the accuracy of dielectric loss angle measurement. However, synthetic relative measuring methods based on two or three pieces of capacitive equipment do not have the characteristic of generality. In this paper, a principle of synthetic relative measuring method is presented. The example of application for synthetic relative methods based on three and four pieces of capacitive equipment running in the same phase is taken to present the failure judgment matrices for N pieces of equipment. According to these matrices, the fault condition of N pieces of capacitive equipment can be watched, which is more general. Then some problems needing to be concerned along with two diagnostic methods used in diagnostic system are introduced. Finally, two programmable flow charts for the two methods are given and corresponding examples demonstrate their feasibility in practice.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
基金supported by Aerospace Frontier Inspiration Project (Grant No.KY0505072113) from College of Aerospace Science and Engineering,NUDT,which are gratefully acknowledged by the authors.
文摘The spacecraequipment layout optimization design(SELOD)problems with complicated performance con-straints and diversity are studied in this paper.The previous literature uses the gradient-based algorithm to obtain optimized non-overlap layout schemes from randomly initialized cases eectively.However,these local optimal solutions are too dicult to jump out of their current relative geometry relationships,signicantly limiting their further improvement in performance indicators.Therefore,considering the geometric diversity of layout schemes is put forward to alleviate this limitation.First,similarity measures,including modied cosine similarity and gaussian kernel function similarity,are introduced into the layout optimization process.Then the optimization produces a set of feasible layout candidates with the most remarkable dierence in geometric distribution and the most representative schemes are sampled.Finally,these feasible geometric solutions are used as initial solutions to optimize the physical performance indicators of the spacecra,and diversied layout schemes of spacecraequipment are generated for the engineering practice.The validity and eectiveness of the proposed methodology are demonstrated by two SELOD applications.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.