The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environmen...The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environment and con-tribute to global climate change.However,there remain considerable research gaps in the accurate measurement of NCGs emissions from agricultural fields,hindering the development of effective emission reduction strategies.We improved an open-top dynamic chambers(OTDCs)system and evaluated the performance by comparing the measured and given fluxes of the NCGs.The results showed that the measured fluxes of NO,N_(2)O and NH_(3)were 1%,2%and 7%lower than the given fluxes,respectively.For the determination of NH_(3) concentration,we employed a stripping coil-ion chromatograph(SC-IC)analytical technique,which demonstrated an absorption efficiency for atmospheric NH_(3) exceeding 96.1%across sampling durations of 6 to 60 min.In the summer maize season,we utilized the OTDCs system to measure the exchange fluxes of NO,NH_(3),and N_(2)O from the soil in the North China Plain.Substantial emissions of NO,NH_(3) and N_(2)O were recorded following fertilization,with peaks of 107,309,1239 ng N/(m^(2)·s),respectively.Notably,significant NCGs emissions were observed following sus-tained heavy rainfall one month after fertilization,particularly with NH_(3) peak being 4.5 times higher than that observed immediately after fertilization.Our results demonstrate that the OTDCs system accurately reflects the emission characteristics of soil NCGs and meets the requirements for long-term and continuous flux observation.展开更多
To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Un...To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical m...In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing.展开更多
Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision...Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systema...At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systematically and quantitatively evaluated,which limits the effective implementation of environmental monitoring.In response to this key technical gap,this study aimed to establish a standardized method for determining antimony in groundwater using Hydride Generation–Atomic Fluorescence Spectrometry(HG-AFS).Ten laboratories participated in inter-laboratory collaborative tests,and the statistical analysis of the test data was carried out in strict accordance with the technical specifications of GB/T 6379.2—2004 and GB/T 6379.4—2006.The consistency and outliers of the data were tested by Mandel's h and k statistics,the Grubbs test and the Cochran test,and the outliers were removed to optimize the data,thereby significantly improving the reliability and accuracy.Based on the optimized data,parameters such as the repeatability limit(r),reproducibility limit(R),and method bias value(δ)were determined,and the trueness of the method was statistically evaluated.At the same time,precision-function relationships were established,and all results met the requirements.The results show that the lower the antimony content,the lower the repeatability limit(r)and reproducibility limit(R),indicating that the measurement error mainly originates from the detection limit of the method and instrument sensitivity.Therefore,improving the instrument sensitivity and reducing the detection limit are the keys to controlling the analytical error and improving precision.This study provides reliable data support and a solid technical foundation for the establishment and evaluation of standardized methods for the determination of antimony content in groundwater.展开更多
The Hamilton-Jacobi method for solving ordinary differential equations is presented in this paper. A system of ordinary differential equations of first order or second order can be expressed as a Hamilton system under...The Hamilton-Jacobi method for solving ordinary differential equations is presented in this paper. A system of ordinary differential equations of first order or second order can be expressed as a Hamilton system under certain conditions. Then the Hamilton-Jacobi method is used in the integration of the Hamilton system and the solution of the original ordinary differential equations can be found. Finally, an example is given to illustrate the application of the result.展开更多
The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular dom...The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular domain are solved directly. Then the completeness of the eigenfunction system is proved, which offers a theoretic guarantee of the feasibility of variable separation method based on a Hamiltonian system for isotropic plane magnetoelectroelastic solids. Finally, the general solution for the equation in the rectangular domain is obtained by using the symplectic Fourier expansion method.展开更多
In this study, the effects of magnetic field and nanoparticle on the Jeffery- Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes eq...In this study, the effects of magnetic field and nanoparticle on the Jeffery- Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes equation of fluid mechanics and Maxwell's electromagnetism governing equations are reduced to nonlinear ordinary differential equations to model the problem. The obtained results are well agreed with that of the Runge-Kutta method. The present plots confirm that the method has high accuracy for different a, Ha, and Re numbers. The flow field inside the divergent channel is studied for various values of Hartmann :number and angle of channel. The effect of nanoparticle volume fraction in the absence of magnetic field is investigated.展开更多
The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the ...The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the continuous finite element method (CFEM) belongs to the later. We find and prove the equivalence of one kind of the implicit RK method and the CFEM, give the coefficient table of the CFEM to simplify its computation, propose a new standard to measure algorithms for Hamiltonian systems, and define another class of algorithms --the regular method. Finally, numerical experiments are given to verify the theoretical results.展开更多
For classical Hamiltonian with general form H = 1/2∑ijMijpipj+1/2∑ijLijqiqj we find a new convenient way to obtain its normal coordinates, namely, let H be quantised and then employ the invariant eigen-operator (...For classical Hamiltonian with general form H = 1/2∑ijMijpipj+1/2∑ijLijqiqj we find a new convenient way to obtain its normal coordinates, namely, let H be quantised and then employ the invariant eigen-operator (IEO) method (Fan et al. 2004 Phys. Lett. A 321 75) to derive them. The general matrix equation, which relies on M and L, for obtaining the normal coordinates of H is derived.展开更多
Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are establi...Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.展开更多
The kernel energy method(KEM) has been shown to provide fast and accurate molecular energy calculations for molecules at their equilibrium geometries.KEM breaks a molecule into smaller subsets,called kernels,for the p...The kernel energy method(KEM) has been shown to provide fast and accurate molecular energy calculations for molecules at their equilibrium geometries.KEM breaks a molecule into smaller subsets,called kernels,for the purposes of calculation.The results from the kernels are summed according to an expression characteristic of KEM to obtain the full molecule energy.A generalization of the kernel expansion to density matrices provides the full molecule density matrix and orbitals.In this study,the kernel expansion for the density matrix is examined in the context of density functional theory(DFT) Kohn-Sham(KS) calculations.A kernel expansion for the one-body density matrix analogous to the kernel expansion for energy is defined,and is then converted into a normalizedprojector by using the Clinton algorithm.Such normalized projectors are factorizable into linear combination of atomic orbitals(LCAO) matrices that deliver full-molecule Kohn-Sham molecular orbitals in the atomic orbital basis.Both straightforward KEM energies and energies from a normalized,idempotent density matrix obtained from a density matrix kernel expansion to which the Clinton algorithm has been applied are compared to reference energies obtained from calculations on the full system without any kernel expansion.Calculations were performed both for a simple proof-of-concept system consisting of three atoms in a linear configuration and for a water cluster consisting of twelve water molecules.In the case of the proof-of-concept system,calculations were performed using the STO-3 G and6-31 G(d,p) bases over a range of atomic separations,some very far from equilibrium.The water cluster was calculated in the 6-31 G(d,p) basis at an equilibrium geometry.The normalized projector density energies are more accurate than the straightforward KEM energy results in nearly all cases.In the case of the water cluster,the energy of the normalized projector is approximately four times more accurate than the straightforward KEM energy result.The KS density matrices of this study are applicable to quantum crystallography.展开更多
The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect ...The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect of the mean flow and geometry (length of expansion chamber and expansion ratio)on acoustic attenuation performance is discussed, the predicted values of transmission loss of expansion chamber without and with mean flow are compared with those reported in the literature and they agree well. The accuracy of the prediction of transmission loss implies that finite element approximations are applicable to a lot of practical applications.展开更多
Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown tha...Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.展开更多
A nonlinear transformation of the Whitham-Broer-Kaup (WBK) model equations in the shallow water small-amplitude regime is derived by using a simplified homogeneous balance method. The WBK model equations are linearize...A nonlinear transformation of the Whitham-Broer-Kaup (WBK) model equations in the shallow water small-amplitude regime is derived by using a simplified homogeneous balance method. The WBK model equations are linearized under the nonlinear transformation. Various exact solutions of the WBK model equations are obtained via the nonlinear transformation with the aid of solutions for the linear equation.展开更多
In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation...In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation mathematical model of fluid-structure interaction(FSI)was developed.Then,the transfer matrix method(TMM)was used to calculate the modal frequency,modal shape and frequency response.The results were compared with that in experiment to verify the correctness of the TMM and the results show that the fluid-structure coupling has a greater impact on the modal frequencies than the modal shape.Finally,the influence on the response spectrum of different damping ratios was studied and the results show that the natural frequency under different damping ratios has changed little but there is a big difference for the pressure spectrum.With the decreasing of damping ratio,the damping of the system on frequency spectrum is more and more significant and the dispersion and dissipation is more and more apparent.Therefore the appropriate damping ratio should be selected to minimize the effects of the vibration of the FSI.The results provide references for the theory research of FSI in the transient process.展开更多
We study approximate solutions of a nonlinear integral equation of Hammerstein type. We describe the principle of discrete Adomian decomposition method (DADM). DADM is considered in the case we evaluate numerical inte...We study approximate solutions of a nonlinear integral equation of Hammerstein type. We describe the principle of discrete Adomian decomposition method (DADM). DADM is considered in the case we evaluate numerical integration by using Chebyshev roots. This technique gives an accurate solutions as will shown by illustrate examples.展开更多
基金supported by the National Key Research and Develop-ment Program(No.2022YFC3701103)the National Natural Science Foundation of China(Nos.42130714 and 41931287).
文摘The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environment and con-tribute to global climate change.However,there remain considerable research gaps in the accurate measurement of NCGs emissions from agricultural fields,hindering the development of effective emission reduction strategies.We improved an open-top dynamic chambers(OTDCs)system and evaluated the performance by comparing the measured and given fluxes of the NCGs.The results showed that the measured fluxes of NO,N_(2)O and NH_(3)were 1%,2%and 7%lower than the given fluxes,respectively.For the determination of NH_(3) concentration,we employed a stripping coil-ion chromatograph(SC-IC)analytical technique,which demonstrated an absorption efficiency for atmospheric NH_(3) exceeding 96.1%across sampling durations of 6 to 60 min.In the summer maize season,we utilized the OTDCs system to measure the exchange fluxes of NO,NH_(3),and N_(2)O from the soil in the North China Plain.Substantial emissions of NO,NH_(3) and N_(2)O were recorded following fertilization,with peaks of 107,309,1239 ng N/(m^(2)·s),respectively.Notably,significant NCGs emissions were observed following sus-tained heavy rainfall one month after fertilization,particularly with NH_(3) peak being 4.5 times higher than that observed immediately after fertilization.Our results demonstrate that the OTDCs system accurately reflects the emission characteristics of soil NCGs and meets the requirements for long-term and continuous flux observation.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2023YJS053)the National Natural Science Foundation of China(Grant No.52278386).
文摘To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金supported by Anhui Provincial Natural Science Foundation(2408085QA030)Natural Science Research Project of Anhui Educational Committee,China(2022AH050825)+3 种基金Medical Special Cultivation Project of Anhui University of Science and Technology(YZ2023H2C008)the Excellent Research and Innovation Team of Anhui Province,China(2022AH010052)the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology,China(2021yjrc51)Collaborative Innovation Program of Hefei Science Center,CAS,China(2019HSC-CIP006).
文摘In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing.
基金funded by the Beijing Engineering Research Center of Electric Rail Transportation.
文摘Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金supported by the National Natural Science Foundation of China(Project No.42307555).
文摘At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systematically and quantitatively evaluated,which limits the effective implementation of environmental monitoring.In response to this key technical gap,this study aimed to establish a standardized method for determining antimony in groundwater using Hydride Generation–Atomic Fluorescence Spectrometry(HG-AFS).Ten laboratories participated in inter-laboratory collaborative tests,and the statistical analysis of the test data was carried out in strict accordance with the technical specifications of GB/T 6379.2—2004 and GB/T 6379.4—2006.The consistency and outliers of the data were tested by Mandel's h and k statistics,the Grubbs test and the Cochran test,and the outliers were removed to optimize the data,thereby significantly improving the reliability and accuracy.Based on the optimized data,parameters such as the repeatability limit(r),reproducibility limit(R),and method bias value(δ)were determined,and the trueness of the method was statistically evaluated.At the same time,precision-function relationships were established,and all results met the requirements.The results show that the lower the antimony content,the lower the repeatability limit(r)and reproducibility limit(R),indicating that the measurement error mainly originates from the detection limit of the method and instrument sensitivity.Therefore,improving the instrument sensitivity and reducing the detection limit are the keys to controlling the analytical error and improving precision.This study provides reliable data support and a solid technical foundation for the establishment and evaluation of standardized methods for the determination of antimony content in groundwater.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10272021, 10572021) and the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022).
文摘The Hamilton-Jacobi method for solving ordinary differential equations is presented in this paper. A system of ordinary differential equations of first order or second order can be expressed as a Hamilton system under certain conditions. Then the Hamilton-Jacobi method is used in the integration of the Hamilton system and the solution of the original ordinary differential equations can be found. Finally, an example is given to illustrate the application of the result.
基金supported by the National Natural Science Foundation of China (Grant No 10562002)the Natural Science Foundation of Inner Mongolia, China (Grant No 200508010103)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070126002)the Inner Mongolia University Doctoral Scientific Research Starting Foundation
文摘The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular domain are solved directly. Then the completeness of the eigenfunction system is proved, which offers a theoretic guarantee of the feasibility of variable separation method based on a Hamiltonian system for isotropic plane magnetoelectroelastic solids. Finally, the general solution for the equation in the rectangular domain is obtained by using the symplectic Fourier expansion method.
文摘In this study, the effects of magnetic field and nanoparticle on the Jeffery- Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes equation of fluid mechanics and Maxwell's electromagnetism governing equations are reduced to nonlinear ordinary differential equations to model the problem. The obtained results are well agreed with that of the Runge-Kutta method. The present plots confirm that the method has high accuracy for different a, Ha, and Re numbers. The flow field inside the divergent channel is studied for various values of Hartmann :number and angle of channel. The effect of nanoparticle volume fraction in the absence of magnetic field is investigated.
基金Project supported by the National Natural Science Foundation of China (No. 11071067)the Hunan Graduate Student Science and Technology Innovation Project (No. CX2011B184)
文摘The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the continuous finite element method (CFEM) belongs to the later. We find and prove the equivalence of one kind of the implicit RK method and the CFEM, give the coefficient table of the CFEM to simplify its computation, propose a new standard to measure algorithms for Hamiltonian systems, and define another class of algorithms --the regular method. Finally, numerical experiments are given to verify the theoretical results.
基金supported by the National Natural Science Foundation of China (Grant No.10874174)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20070358009)
文摘For classical Hamiltonian with general form H = 1/2∑ijMijpipj+1/2∑ijLijqiqj we find a new convenient way to obtain its normal coordinates, namely, let H be quantised and then employ the invariant eigen-operator (IEO) method (Fan et al. 2004 Phys. Lett. A 321 75) to derive them. The general matrix equation, which relies on M and L, for obtaining the normal coordinates of H is derived.
基金Project supported by the National Natural Science Foundation of China(No.11432010)the Doctoral Program Foundation of Education Ministry of China(No.20126102110023)+2 种基金the 111Project of China(No.B07050)the Fundamental Research Funds for the Central Universities(No.310201401JCQ01001)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX201517)
文摘Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.
文摘The kernel energy method(KEM) has been shown to provide fast and accurate molecular energy calculations for molecules at their equilibrium geometries.KEM breaks a molecule into smaller subsets,called kernels,for the purposes of calculation.The results from the kernels are summed according to an expression characteristic of KEM to obtain the full molecule energy.A generalization of the kernel expansion to density matrices provides the full molecule density matrix and orbitals.In this study,the kernel expansion for the density matrix is examined in the context of density functional theory(DFT) Kohn-Sham(KS) calculations.A kernel expansion for the one-body density matrix analogous to the kernel expansion for energy is defined,and is then converted into a normalizedprojector by using the Clinton algorithm.Such normalized projectors are factorizable into linear combination of atomic orbitals(LCAO) matrices that deliver full-molecule Kohn-Sham molecular orbitals in the atomic orbital basis.Both straightforward KEM energies and energies from a normalized,idempotent density matrix obtained from a density matrix kernel expansion to which the Clinton algorithm has been applied are compared to reference energies obtained from calculations on the full system without any kernel expansion.Calculations were performed both for a simple proof-of-concept system consisting of three atoms in a linear configuration and for a water cluster consisting of twelve water molecules.In the case of the proof-of-concept system,calculations were performed using the STO-3 G and6-31 G(d,p) bases over a range of atomic separations,some very far from equilibrium.The water cluster was calculated in the 6-31 G(d,p) basis at an equilibrium geometry.The normalized projector density energies are more accurate than the straightforward KEM energy results in nearly all cases.In the case of the water cluster,the energy of the normalized projector is approximately four times more accurate than the straightforward KEM energy result.The KS density matrices of this study are applicable to quantum crystallography.
文摘The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect of the mean flow and geometry (length of expansion chamber and expansion ratio)on acoustic attenuation performance is discussed, the predicted values of transmission loss of expansion chamber without and with mean flow are compared with those reported in the literature and they agree well. The accuracy of the prediction of transmission loss implies that finite element approximations are applicable to a lot of practical applications.
基金This work was supported by the National Natural Science Foundation of China (No.G60474001) the Research Fund for Doctoral Program of Chinese Higher Education (No.G20040422059).
文摘Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.
文摘A nonlinear transformation of the Whitham-Broer-Kaup (WBK) model equations in the shallow water small-amplitude regime is derived by using a simplified homogeneous balance method. The WBK model equations are linearized under the nonlinear transformation. Various exact solutions of the WBK model equations are obtained via the nonlinear transformation with the aid of solutions for the linear equation.
文摘In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation mathematical model of fluid-structure interaction(FSI)was developed.Then,the transfer matrix method(TMM)was used to calculate the modal frequency,modal shape and frequency response.The results were compared with that in experiment to verify the correctness of the TMM and the results show that the fluid-structure coupling has a greater impact on the modal frequencies than the modal shape.Finally,the influence on the response spectrum of different damping ratios was studied and the results show that the natural frequency under different damping ratios has changed little but there is a big difference for the pressure spectrum.With the decreasing of damping ratio,the damping of the system on frequency spectrum is more and more significant and the dispersion and dissipation is more and more apparent.Therefore the appropriate damping ratio should be selected to minimize the effects of the vibration of the FSI.The results provide references for the theory research of FSI in the transient process.
文摘We study approximate solutions of a nonlinear integral equation of Hammerstein type. We describe the principle of discrete Adomian decomposition method (DADM). DADM is considered in the case we evaluate numerical integration by using Chebyshev roots. This technique gives an accurate solutions as will shown by illustrate examples.