Regard to the real-time dynamic digital twin modelling problem of a new-type distribution network that includes distributed resources such as distributed photovoltaic,energy storage,charging pile,and electric vehicle,...Regard to the real-time dynamic digital twin modelling problem of a new-type distribution network that includes distributed resources such as distributed photovoltaic,energy storage,charging pile,and electric vehicle,a new-type distribution network digital twin topology modeling method based on Common Information Model(CIM)specifications and spectral clustering is proposed.Firstly,according to the specifications of the CIM standard,the digital twin topology models of distributed resources are extended and established.Secondly,based on the digital twin topology models of distributed resources,a digital twin aggregation modelling method for new-type distribution network is proposed based on spectral clustering.Furthermore,an online linked update strategy for the digital twin model of new-type distribution network that integrates real-time topology states is proposed.Finally,a case study is conducted on a distribution network in a certain demonstration area in China,and the results verify the practicability and effectiveness of the method proposed in this paper.This lays the foundation for the application of electrical network twin analysis,such as power flow calculation,optimal power flow,economic dispatch,and safety check,in a new-type distribution network that includes diversified distributed resources.展开更多
针对山东大学市政排水管网长期存在的道路积水、监测手段滞后等问题,本文提出一种基于城市信息模型(City Information Modeling,CIM)的智能监测模式。以济南地区市政排水项目为依托,融合地理信息系统(Geographical Information System,GIS...针对山东大学市政排水管网长期存在的道路积水、监测手段滞后等问题,本文提出一种基于城市信息模型(City Information Modeling,CIM)的智能监测模式。以济南地区市政排水项目为依托,融合地理信息系统(Geographical Information System,GIS)与大数据分析技术,构建覆盖管网全生命周期的可视化监测平台。该排水管网智能监测平台能够实时监控管网排水情况,优化泵站排水量,提高排水管网运行效率。展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical m...In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing.展开更多
Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision...Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training.展开更多
The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environmen...The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environment and con-tribute to global climate change.However,there remain considerable research gaps in the accurate measurement of NCGs emissions from agricultural fields,hindering the development of effective emission reduction strategies.We improved an open-top dynamic chambers(OTDCs)system and evaluated the performance by comparing the measured and given fluxes of the NCGs.The results showed that the measured fluxes of NO,N_(2)O and NH_(3)were 1%,2%and 7%lower than the given fluxes,respectively.For the determination of NH_(3) concentration,we employed a stripping coil-ion chromatograph(SC-IC)analytical technique,which demonstrated an absorption efficiency for atmospheric NH_(3) exceeding 96.1%across sampling durations of 6 to 60 min.In the summer maize season,we utilized the OTDCs system to measure the exchange fluxes of NO,NH_(3),and N_(2)O from the soil in the North China Plain.Substantial emissions of NO,NH_(3) and N_(2)O were recorded following fertilization,with peaks of 107,309,1239 ng N/(m^(2)·s),respectively.Notably,significant NCGs emissions were observed following sus-tained heavy rainfall one month after fertilization,particularly with NH_(3) peak being 4.5 times higher than that observed immediately after fertilization.Our results demonstrate that the OTDCs system accurately reflects the emission characteristics of soil NCGs and meets the requirements for long-term and continuous flux observation.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systema...At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systematically and quantitatively evaluated,which limits the effective implementation of environmental monitoring.In response to this key technical gap,this study aimed to establish a standardized method for determining antimony in groundwater using Hydride Generation–Atomic Fluorescence Spectrometry(HG-AFS).Ten laboratories participated in inter-laboratory collaborative tests,and the statistical analysis of the test data was carried out in strict accordance with the technical specifications of GB/T 6379.2—2004 and GB/T 6379.4—2006.The consistency and outliers of the data were tested by Mandel's h and k statistics,the Grubbs test and the Cochran test,and the outliers were removed to optimize the data,thereby significantly improving the reliability and accuracy.Based on the optimized data,parameters such as the repeatability limit(r),reproducibility limit(R),and method bias value(δ)were determined,and the trueness of the method was statistically evaluated.At the same time,precision-function relationships were established,and all results met the requirements.The results show that the lower the antimony content,the lower the repeatability limit(r)and reproducibility limit(R),indicating that the measurement error mainly originates from the detection limit of the method and instrument sensitivity.Therefore,improving the instrument sensitivity and reducing the detection limit are the keys to controlling the analytical error and improving precision.This study provides reliable data support and a solid technical foundation for the establishment and evaluation of standardized methods for the determination of antimony content in groundwater.展开更多
Because ice-high foundation soil is widely distributed in permafrost regions,the correct preparation of ice-high specimens is of critical interest in engineering design for foundation stability.Past research has shown...Because ice-high foundation soil is widely distributed in permafrost regions,the correct preparation of ice-high specimens is of critical interest in engineering design for foundation stability.Past research has shown that the uniaxial compression strength of ice-high frozen soils changes as the ice or total water content increases; the differences of different methods of specimen preparation are analyzed here and the advantages and disadvantages of them are presented.It is confirmed that the role of crushed ice is significantly different from that of naturally frozen ice in frozen soils,and the size and amount of crushed ice will influence the strength and deformation mechanism of frozen soils.Therefore,it is strongly recommended that when a ice-high specimen is artificially prepared,the ice should be frozen through natural means and not be replaced with crushed ice.展开更多
Based on Nantun Coal Preparation Plant CIMS engineering, the system integrating strategy and methods of implementing CIMS are described. Combining the process of developing the syste, the information and function inte...Based on Nantun Coal Preparation Plant CIMS engineering, the system integrating strategy and methods of implementing CIMS are described. Combining the process of developing the syste, the information and function integration are discussed.展开更多
Despite the CaCO<sub>3</sub> estimation using titration method was not reliable, but up to the present time, some soil laboratories in Sudan still used this method. The objective of this study was to compa...Despite the CaCO<sub>3</sub> estimation using titration method was not reliable, but up to the present time, some soil laboratories in Sudan still used this method. The objective of this study was to compare and assess the results of calcimetric and titrimetric methods of quantitative estimation for soil calcium carbonate of different soils in Sudan. 26 soil samples from five soil profiles were collected from different climatological and ecological regions in central Sudan. CaCO<sub>3</sub> equivalent was estimated using calcimeter and titration methods in order to find accurate, rapid and suitable method for soils of Sudan. The results revealed that there are no significant differences between calcimeter and titration methods for calcium carbonate estimation in all studied samples except in samples from Gedaref area. We concluded that when the Calcimeter method used for CaCO<sub>3</sub> estimation, the differences between one person and another in detecting titration end point would be avoided, rapid and accurate results would be obtained compared to titration method. Additionally, time would be saved;fewer amounts of chemicals would be used. From this study, we highly recommend using calcimeter method for CaCO<sub>3</sub> estimation for soils of Sudan.展开更多
Conventional methods for hollow cylinder apparatus (HCA) specimen preparation are not applicable for T J-1 lunar soil simulant due to its wide particle size distribution. A novel method to prepare uniform T J-1 spec...Conventional methods for hollow cylinder apparatus (HCA) specimen preparation are not applicable for T J-1 lunar soil simulant due to its wide particle size distribution. A novel method to prepare uniform T J-1 specimen for HCA tests is put forward. The method is a combination of the multi-layering dry-rodding method and a new under-compaction criterion in the multi-layer with under-compaction method (UCM). In the novel method, the specimen is prepared with 5 layers by dry-rodding and the UCM is used to determine the height after each layer is compacted. The density uniformity of specimen is evaluated by the freezing method to find out the best under-compaction criterion. Two HCA specimens with the same target density are prepared by the novel method and examined in the tests of pure rotation of the principal stresses. Their conformable mechanical behaviors ascertain the effectiveness of the method to produce uniform and reproducible HCA specimens. Four groups of HCA tests are carried out to investigate the anisotropic and non-coaxial behaviors of TJ-I lunar soil simulant. The results indicate that the principal stress direction, the deviator stress ratio, the stress level and the coefficient of the intermediate principal stress significantly influence the strength and deformation properties of T J-1 lunar soil simulant.展开更多
The N-1 criterion is a critical factor for ensuring the reliable and resilient operation of electric power distribution networks.However,the increasing complexity of distribution networks and the associated growth in ...The N-1 criterion is a critical factor for ensuring the reliable and resilient operation of electric power distribution networks.However,the increasing complexity of distribution networks and the associated growth in data size have created a significant challenge for distribution network planners.To address this issue,we propose a fast N-1 verification procedure for urban distribution networks that combines CIM file data analysis with MILP-based mathematical modeling.Our proposed method leverages the principles of CIM file analysis for distribution network N-1 analysis.We develop a mathematical model of distribution networks based on CIM data and transfer it into MILP.We also take into account the characteristics of medium voltage distribution networks after a line failure and select the feeder section at the exit of each substation with a high load rate to improve the efficiency of N-1 analysis.We validate our approach through a series of case studies and demonstrate its scalability and superiority over traditional N-1 analysis and heuristic optimization algorithms.By enabling online N-1 analysis,our approach significantly improves the work efficiency of distribution network planners.In summary,our proposed method provides a valuable tool for distribution network planners to enhance the accuracy and efficiency of their N-1 analyses.By leveraging the advantages of CIM file data analysis and MILP-based mathematical modeling,our approach contributes to the development of more resilient and reliable electric power distribution networks.展开更多
堆石混凝土作为我国自主研发的新一代大体积混凝土筑坝技术,其智能化质量控制与自动化(无人或少人)施工技术的研发,是推动其高质量快速建设乃至发展为下一代筑坝技术的必然条件。基于此,引入物联网、大数据、人工智能、云计算等新一代...堆石混凝土作为我国自主研发的新一代大体积混凝土筑坝技术,其智能化质量控制与自动化(无人或少人)施工技术的研发,是推动其高质量快速建设乃至发展为下一代筑坝技术的必然条件。基于此,引入物联网、大数据、人工智能、云计算等新一代信息技术,研发了面向参建各方的堆石混凝土智能信息化施工技术与系统(Construction Information Modeling for RFC,CIM4R),重点解决堆石混凝土坝堆石入仓、高自密实性能混凝土浇筑、温控防裂以及层面处理等四条施工主线的实时监控、快速评价、报警预警和反馈控制等问题,以期实现相关工程的“提质-降本-增效”,为堆石混凝土坝智能建造技术的发展打下基础,推动我国下一代筑坝技术与新质生产力的发展。展开更多
Damage in a rock mass is heavily dependent on the existence and growth of joints,which are also influenced by the complex stress states induced by human activities(e.g.,tunneling and excavation).A proper representatio...Damage in a rock mass is heavily dependent on the existence and growth of joints,which are also influenced by the complex stress states induced by human activities(e.g.,tunneling and excavation).A proper representation of the loading path is essential for understanding the mechanical behaviors of rock masses.Based on the discrete element method(DEM),the influence of the loading path on the cracking process of a rock specimen containing an open flaw is examined.The effectiveness of the model is confirmed by comparing the simulation results under a uniaxial compression test to existing research findings,where wing crack initiates first and secondary cracks contribute to the failure of the specimen.Simulation results confirm that the cracking process is dependent upon both the confining pressure and the loading path.Under the axial loading test,a higher confining pressure suppresses the development of tensile wing cracks and forces the formation of secondary cracks in the form of shear bands perpendicular to the flaw.Increase of confining pressure also decreases the influence of the loading path on the cracking process.Reduction of confining pressure during an unloading test amplifies the concentration of tensile stress and ultimately promotes the appearance of a tensile splitting fracture at meso-scale.Confining pressure at the failure stage is well predicted by the Hoek-Brown failure criterion under quasi-static conditions.展开更多
基金Supported by Science and Technology Project of State Grid Corporation of China(5108-202218280A-2-396-XG).
文摘Regard to the real-time dynamic digital twin modelling problem of a new-type distribution network that includes distributed resources such as distributed photovoltaic,energy storage,charging pile,and electric vehicle,a new-type distribution network digital twin topology modeling method based on Common Information Model(CIM)specifications and spectral clustering is proposed.Firstly,according to the specifications of the CIM standard,the digital twin topology models of distributed resources are extended and established.Secondly,based on the digital twin topology models of distributed resources,a digital twin aggregation modelling method for new-type distribution network is proposed based on spectral clustering.Furthermore,an online linked update strategy for the digital twin model of new-type distribution network that integrates real-time topology states is proposed.Finally,a case study is conducted on a distribution network in a certain demonstration area in China,and the results verify the practicability and effectiveness of the method proposed in this paper.This lays the foundation for the application of electrical network twin analysis,such as power flow calculation,optimal power flow,economic dispatch,and safety check,in a new-type distribution network that includes diversified distributed resources.
文摘针对山东大学市政排水管网长期存在的道路积水、监测手段滞后等问题,本文提出一种基于城市信息模型(City Information Modeling,CIM)的智能监测模式。以济南地区市政排水项目为依托,融合地理信息系统(Geographical Information System,GIS)与大数据分析技术,构建覆盖管网全生命周期的可视化监测平台。该排水管网智能监测平台能够实时监控管网排水情况,优化泵站排水量,提高排水管网运行效率。
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金supported by Anhui Provincial Natural Science Foundation(2408085QA030)Natural Science Research Project of Anhui Educational Committee,China(2022AH050825)+3 种基金Medical Special Cultivation Project of Anhui University of Science and Technology(YZ2023H2C008)the Excellent Research and Innovation Team of Anhui Province,China(2022AH010052)the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology,China(2021yjrc51)Collaborative Innovation Program of Hefei Science Center,CAS,China(2019HSC-CIP006).
文摘In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing.
基金funded by the Beijing Engineering Research Center of Electric Rail Transportation.
文摘Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training.
基金supported by the National Key Research and Develop-ment Program(No.2022YFC3701103)the National Natural Science Foundation of China(Nos.42130714 and 41931287).
文摘The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environment and con-tribute to global climate change.However,there remain considerable research gaps in the accurate measurement of NCGs emissions from agricultural fields,hindering the development of effective emission reduction strategies.We improved an open-top dynamic chambers(OTDCs)system and evaluated the performance by comparing the measured and given fluxes of the NCGs.The results showed that the measured fluxes of NO,N_(2)O and NH_(3)were 1%,2%and 7%lower than the given fluxes,respectively.For the determination of NH_(3) concentration,we employed a stripping coil-ion chromatograph(SC-IC)analytical technique,which demonstrated an absorption efficiency for atmospheric NH_(3) exceeding 96.1%across sampling durations of 6 to 60 min.In the summer maize season,we utilized the OTDCs system to measure the exchange fluxes of NO,NH_(3),and N_(2)O from the soil in the North China Plain.Substantial emissions of NO,NH_(3) and N_(2)O were recorded following fertilization,with peaks of 107,309,1239 ng N/(m^(2)·s),respectively.Notably,significant NCGs emissions were observed following sus-tained heavy rainfall one month after fertilization,particularly with NH_(3) peak being 4.5 times higher than that observed immediately after fertilization.Our results demonstrate that the OTDCs system accurately reflects the emission characteristics of soil NCGs and meets the requirements for long-term and continuous flux observation.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金supported by the National Natural Science Foundation of China(Project No.42307555).
文摘At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systematically and quantitatively evaluated,which limits the effective implementation of environmental monitoring.In response to this key technical gap,this study aimed to establish a standardized method for determining antimony in groundwater using Hydride Generation–Atomic Fluorescence Spectrometry(HG-AFS).Ten laboratories participated in inter-laboratory collaborative tests,and the statistical analysis of the test data was carried out in strict accordance with the technical specifications of GB/T 6379.2—2004 and GB/T 6379.4—2006.The consistency and outliers of the data were tested by Mandel's h and k statistics,the Grubbs test and the Cochran test,and the outliers were removed to optimize the data,thereby significantly improving the reliability and accuracy.Based on the optimized data,parameters such as the repeatability limit(r),reproducibility limit(R),and method bias value(δ)were determined,and the trueness of the method was statistically evaluated.At the same time,precision-function relationships were established,and all results met the requirements.The results show that the lower the antimony content,the lower the repeatability limit(r)and reproducibility limit(R),indicating that the measurement error mainly originates from the detection limit of the method and instrument sensitivity.Therefore,improving the instrument sensitivity and reducing the detection limit are the keys to controlling the analytical error and improving precision.This study provides reliable data support and a solid technical foundation for the establishment and evaluation of standardized methods for the determination of antimony content in groundwater.
基金supported by the Excellent National Key Laboratory Special Fund of China (No.41023003)the National Natural Science Foundation of China (No.41101068)+1 种基金the National Key Basic Research Program of China (973 Program) (No.2012CB026102)the project of the State Key Laboratory of Frozen Soil Engineering (No.SKLFSE-ZT-07)
文摘Because ice-high foundation soil is widely distributed in permafrost regions,the correct preparation of ice-high specimens is of critical interest in engineering design for foundation stability.Past research has shown that the uniaxial compression strength of ice-high frozen soils changes as the ice or total water content increases; the differences of different methods of specimen preparation are analyzed here and the advantages and disadvantages of them are presented.It is confirmed that the role of crushed ice is significantly different from that of naturally frozen ice in frozen soils,and the size and amount of crushed ice will influence the strength and deformation mechanism of frozen soils.Therefore,it is strongly recommended that when a ice-high specimen is artificially prepared,the ice should be frozen through natural means and not be replaced with crushed ice.
文摘Based on Nantun Coal Preparation Plant CIMS engineering, the system integrating strategy and methods of implementing CIMS are described. Combining the process of developing the syste, the information and function integration are discussed.
文摘Despite the CaCO<sub>3</sub> estimation using titration method was not reliable, but up to the present time, some soil laboratories in Sudan still used this method. The objective of this study was to compare and assess the results of calcimetric and titrimetric methods of quantitative estimation for soil calcium carbonate of different soils in Sudan. 26 soil samples from five soil profiles were collected from different climatological and ecological regions in central Sudan. CaCO<sub>3</sub> equivalent was estimated using calcimeter and titration methods in order to find accurate, rapid and suitable method for soils of Sudan. The results revealed that there are no significant differences between calcimeter and titration methods for calcium carbonate estimation in all studied samples except in samples from Gedaref area. We concluded that when the Calcimeter method used for CaCO<sub>3</sub> estimation, the differences between one person and another in detecting titration end point would be avoided, rapid and accurate results would be obtained compared to titration method. Additionally, time would be saved;fewer amounts of chemicals would be used. From this study, we highly recommend using calcimeter method for CaCO<sub>3</sub> estimation for soils of Sudan.
基金Supported by the China National Funds for Distinguished Young Scientists(51025932)the National Natural Science Foundation of China(51179128)Program of Shanghai Academic Chief Scientist(11XD1405200)
文摘Conventional methods for hollow cylinder apparatus (HCA) specimen preparation are not applicable for T J-1 lunar soil simulant due to its wide particle size distribution. A novel method to prepare uniform T J-1 specimen for HCA tests is put forward. The method is a combination of the multi-layering dry-rodding method and a new under-compaction criterion in the multi-layer with under-compaction method (UCM). In the novel method, the specimen is prepared with 5 layers by dry-rodding and the UCM is used to determine the height after each layer is compacted. The density uniformity of specimen is evaluated by the freezing method to find out the best under-compaction criterion. Two HCA specimens with the same target density are prepared by the novel method and examined in the tests of pure rotation of the principal stresses. Their conformable mechanical behaviors ascertain the effectiveness of the method to produce uniform and reproducible HCA specimens. Four groups of HCA tests are carried out to investigate the anisotropic and non-coaxial behaviors of TJ-I lunar soil simulant. The results indicate that the principal stress direction, the deviator stress ratio, the stress level and the coefficient of the intermediate principal stress significantly influence the strength and deformation properties of T J-1 lunar soil simulant.
基金supported by the National Natural Science Foundation of China(52207105)。
文摘The N-1 criterion is a critical factor for ensuring the reliable and resilient operation of electric power distribution networks.However,the increasing complexity of distribution networks and the associated growth in data size have created a significant challenge for distribution network planners.To address this issue,we propose a fast N-1 verification procedure for urban distribution networks that combines CIM file data analysis with MILP-based mathematical modeling.Our proposed method leverages the principles of CIM file analysis for distribution network N-1 analysis.We develop a mathematical model of distribution networks based on CIM data and transfer it into MILP.We also take into account the characteristics of medium voltage distribution networks after a line failure and select the feeder section at the exit of each substation with a high load rate to improve the efficiency of N-1 analysis.We validate our approach through a series of case studies and demonstrate its scalability and superiority over traditional N-1 analysis and heuristic optimization algorithms.By enabling online N-1 analysis,our approach significantly improves the work efficiency of distribution network planners.In summary,our proposed method provides a valuable tool for distribution network planners to enhance the accuracy and efficiency of their N-1 analyses.By leveraging the advantages of CIM file data analysis and MILP-based mathematical modeling,our approach contributes to the development of more resilient and reliable electric power distribution networks.
文摘堆石混凝土作为我国自主研发的新一代大体积混凝土筑坝技术,其智能化质量控制与自动化(无人或少人)施工技术的研发,是推动其高质量快速建设乃至发展为下一代筑坝技术的必然条件。基于此,引入物联网、大数据、人工智能、云计算等新一代信息技术,研发了面向参建各方的堆石混凝土智能信息化施工技术与系统(Construction Information Modeling for RFC,CIM4R),重点解决堆石混凝土坝堆石入仓、高自密实性能混凝土浇筑、温控防裂以及层面处理等四条施工主线的实时监控、快速评价、报警预警和反馈控制等问题,以期实现相关工程的“提质-降本-增效”,为堆石混凝土坝智能建造技术的发展打下基础,推动我国下一代筑坝技术与新质生产力的发展。
基金supported by the Shandong Provincial Natural Science Foundation of China(No.ZR2020YQ44)the National Natural Science Foundation of China(No.51909138)。
文摘Damage in a rock mass is heavily dependent on the existence and growth of joints,which are also influenced by the complex stress states induced by human activities(e.g.,tunneling and excavation).A proper representation of the loading path is essential for understanding the mechanical behaviors of rock masses.Based on the discrete element method(DEM),the influence of the loading path on the cracking process of a rock specimen containing an open flaw is examined.The effectiveness of the model is confirmed by comparing the simulation results under a uniaxial compression test to existing research findings,where wing crack initiates first and secondary cracks contribute to the failure of the specimen.Simulation results confirm that the cracking process is dependent upon both the confining pressure and the loading path.Under the axial loading test,a higher confining pressure suppresses the development of tensile wing cracks and forces the formation of secondary cracks in the form of shear bands perpendicular to the flaw.Increase of confining pressure also decreases the influence of the loading path on the cracking process.Reduction of confining pressure during an unloading test amplifies the concentration of tensile stress and ultimately promotes the appearance of a tensile splitting fracture at meso-scale.Confining pressure at the failure stage is well predicted by the Hoek-Brown failure criterion under quasi-static conditions.