Polar marine equipment plays an important role in Arctic engineering,especially in the development of polar ships and ice-class propellers.When polar ships navigate in brash ice channels,the brash ice not only increas...Polar marine equipment plays an important role in Arctic engineering,especially in the development of polar ships and ice-class propellers.When polar ships navigate in brash ice channels,the brash ice not only increases resistance but also has adverse effects on their propulsion performance.On the basis of coupled computational fluid dynamics(CFD)and the discrete element method(DEM),this paper aims to numerically investigate the resistance and propulsion performance of a polar in a brash ice channel while considering the rotation status of the propeller by both experimental and numerical methods.Both ship resistance and ice motion under Froude numbers of 0.0557,0.0696,0.0836,0.975,and 0.1114 are studied when the propeller does not rotate.The influences of the rotating propeller on the ice brash resistance and flow are discussed.The thrust due to the propeller and ice resistance in the equilibrium state are also predicted.The errors between the thrust and total resistance are approximately 1.0%,and the maximum error between the simulated and predicted total resistance is 3.7%,which validates the CFD-DEM coupling method quite well.This work could provide a theoretical basis for the initial design of polar ships with low ice class notation and assist in planning navigation for merchant polar ships in brash ice fields.展开更多
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
港口粉尘污染来源包括静态起尘和动态起尘两个方面,现阶段利用计算流体力学(CFD)数值模拟研究港口静态起尘已取得丰硕成果,但在动态起尘方面的研究仍处在发展阶段,尤其是较少考虑堆取料机转速、风况等因素的影响。采用离散元法(DEM)与CF...港口粉尘污染来源包括静态起尘和动态起尘两个方面,现阶段利用计算流体力学(CFD)数值模拟研究港口静态起尘已取得丰硕成果,但在动态起尘方面的研究仍处在发展阶段,尤其是较少考虑堆取料机转速、风况等因素的影响。采用离散元法(DEM)与CFD相结合的方法研究港口起尘有很大前景。以江苏某干散货港区煤炭堆垛和WUD 400700型号输煤斗轮机为对象,采用CFD-DEM流固耦合模拟研究斗轮机作业对动态起尘的影响。结果表明,起尘量随斗轮机转速和风速增加均呈指数增长,建议采用转速8~9 r min作业兼顾经济与环境效益;起尘量随风向先增后减,建议在使用传统动态起尘经验公式时增加考虑风向对起尘的影响,并结合实测及试验数据对该公式进行适当修正。展开更多
To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Un...To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0107000)the Fundamental Research Funds for the Central Universities(Grant No.HYGJXM202319).
文摘Polar marine equipment plays an important role in Arctic engineering,especially in the development of polar ships and ice-class propellers.When polar ships navigate in brash ice channels,the brash ice not only increases resistance but also has adverse effects on their propulsion performance.On the basis of coupled computational fluid dynamics(CFD)and the discrete element method(DEM),this paper aims to numerically investigate the resistance and propulsion performance of a polar in a brash ice channel while considering the rotation status of the propeller by both experimental and numerical methods.Both ship resistance and ice motion under Froude numbers of 0.0557,0.0696,0.0836,0.975,and 0.1114 are studied when the propeller does not rotate.The influences of the rotating propeller on the ice brash resistance and flow are discussed.The thrust due to the propeller and ice resistance in the equilibrium state are also predicted.The errors between the thrust and total resistance are approximately 1.0%,and the maximum error between the simulated and predicted total resistance is 3.7%,which validates the CFD-DEM coupling method quite well.This work could provide a theoretical basis for the initial design of polar ships with low ice class notation and assist in planning navigation for merchant polar ships in brash ice fields.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
文摘港口粉尘污染来源包括静态起尘和动态起尘两个方面,现阶段利用计算流体力学(CFD)数值模拟研究港口静态起尘已取得丰硕成果,但在动态起尘方面的研究仍处在发展阶段,尤其是较少考虑堆取料机转速、风况等因素的影响。采用离散元法(DEM)与CFD相结合的方法研究港口起尘有很大前景。以江苏某干散货港区煤炭堆垛和WUD 400700型号输煤斗轮机为对象,采用CFD-DEM流固耦合模拟研究斗轮机作业对动态起尘的影响。结果表明,起尘量随斗轮机转速和风速增加均呈指数增长,建议采用转速8~9 r min作业兼顾经济与环境效益;起尘量随风向先增后减,建议在使用传统动态起尘经验公式时增加考虑风向对起尘的影响,并结合实测及试验数据对该公式进行适当修正。
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2023YJS053)the National Natural Science Foundation of China(Grant No.52278386).
文摘To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.