期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Thermodynamic assessment of hydrogen production via solar thermochemical cycle based on MoO2/Mo by methane reduction
1
作者 Jiahui JIN Lei WANG +2 位作者 Mingkai FU Xin LI Yuanwei LU 《Frontiers in Energy》 SCIE CSCD 2020年第1期71-80,共10页
Inspired by the promising hydrogen production in the solar thermochemical(STC)cycle based on non-stoichiometric oxides and the operation temperature decreasing effect of methane reduction,a high-fuel-selectivity and C... Inspired by the promising hydrogen production in the solar thermochemical(STC)cycle based on non-stoichiometric oxides and the operation temperature decreasing effect of methane reduction,a high-fuel-selectivity and CH4-introduced solar thermochemical cycle based on MoO2/Mo is studied.By performing HSC simulations,the energy upgradation and energy conversion potential under isothermal and non-isothermal operating conditions are compared.In the reduction step,MoO2:CH4=2 and 1020 K<Tred<1600 K are found to be most favorable for syngas selectivity and methane conversion.Compared to the STC cycle without CH4,the introduction of methane yields a much higher hydrogen production,especially at the lower temperature range and atmospheric pressure.In the oxidation step,a moderately excessive water is beneficial for energy conversion whether in isothermal or non-isothermal operations,especially at H2O:Mo=4.In the whole STC cycle,the maximum non-isothermal and isothermal efficiency can reach 0.417 and 0.391 respectively.In addition,the predicted efficiency of the second cycle is also as high as 0.454 at Tred=1200 K and Toxi=400 K,indicating that MoO2 could be a new and potential candidate for obtaining solar fuel by methane reduction. 展开更多
关键词 MoO2/Mo based on SOLAR THERMOCHEMICAL cycle methanothermal REDUCTION isothermal and NON-ISOTHERMAL operation SYNGAS and hydrogen production thermodynamic analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部