In this paper, the conversion of CO2/CH4 by using pulse corona plasma was studied at atmospheric pressure and ambient temperature. The effects of ratio of CO2/CH4, pulse voltage and repeated frequency of plasma discha...In this paper, the conversion of CO2/CH4 by using pulse corona plasma was studied at atmospheric pressure and ambient temperature. The effects of ratio of CO2/CH4, pulse voltage and repeated frequency of plasma discharge were first studied in the system.展开更多
In this paper, methane coupling at ambient temperature, under atmospheric pressure and in the presence of hydrogen was firstly investigated by using pulse corona plasma and Pt/g-Al2O3 catalyst. Experimental results s...In this paper, methane coupling at ambient temperature, under atmospheric pressure and in the presence of hydrogen was firstly investigated by using pulse corona plasma and Pt/g-Al2O3 catalyst. Experimental results showed that Pt/g-Al2O3 catalyst has catalytic activity for methane coupling to C2H4. Over sixty percent of outcomes of C2 hydrocarbons were detected to be ethylene.展开更多
Proton-hole mixed conductor, SrCeo.95Yb0.05O3-α(SCYb), has the potential to be used as a membrane for dehydrogenation reactions such as methane coupling due to its high C2-selectivity and its simplicity for fabricati...Proton-hole mixed conductor, SrCeo.95Yb0.05O3-α(SCYb), has the potential to be used as a membrane for dehydrogenation reactions such as methane coupling due to its high C2-selectivity and its simplicity for fabricating reactor systems. In addition, the mixed conducting membrane in the hollow fibre geometry is capable of providing high surface area per unit volume. In this study, mechanism of methane coupling reaction on the SCYb membrane was proposed and the kinetic parameters were obtained by regression of experimental data. A mathematical model describing the methane coupling in the SCYb hollow fibre membrane reactor was also developed. With this mathematical model, various operating conditions such as the operation mode, operation pressure and feed concentrations affecting performance of the reactor were investigated. The simulation results show that the cocurrent flow in the reactor exhibits higher conversion of methane and higher yield of ethylene compared to the countercurrent flow. In order to achieve the highest C2 yield, especially of ethylene, pure methane should be used as feed and the operating pressure be 300 kPa. Air can be used as the source of oxygen for the reaction and its optimum feed velocity is twice of the methane feed velocity. The air pressure in the lumen side should be kept the same as or slightly lower than the pressure of shell side.展开更多
The effect of temperature and hydrogen addition on undesired carbonaceous deposit formation during methane coupling was studied in DBD-plasma catalytic-wall reactors with Pd/Al2 O3, using electrical power to drive the...The effect of temperature and hydrogen addition on undesired carbonaceous deposit formation during methane coupling was studied in DBD-plasma catalytic-wall reactors with Pd/Al2 O3, using electrical power to drive the reaction.Experiments with thin catalyst layers allowed comparison of the performance of empty reactors and catalytic wall reactors without significantly influencing the plasma properties.The product distribution varies strongly in the temperature window between 25 and 200℃Minimal formation of deposits is found at an optimal temperature around 75℃ in the catalytic-wall reactors.The selectivity to deposits was c.a.10% with only 9 mg of catalyst loading instead of 45% in the blank reactor,while decreasing methane conversion only mildly.Co-feeding H2 to an empty reactor causes a similar decrease in selectivity to deposits,but in this case methane conversion also decreased significantly.Suppression of deposits formation in the catalytic-wall reactor at 75℃ is due to catalytic hydrogenation of mainly acetylene to ethylene.In the empty reactor,H2 co-feed decreases conversion but does not change the product distribution.The catalytic-wall reactors can be regenerated with H2-plasma at room temperature,which produces more added-value hydrocarbons.展开更多
In this paper, hydrogen is first utilized in the study on methane coupling under nonequilibrium plasma. Results indicate that the addition of hydrogen is beneficial. to the methane coupling so as to increase the conv...In this paper, hydrogen is first utilized in the study on methane coupling under nonequilibrium plasma. Results indicate that the addition of hydrogen is beneficial. to the methane coupling so as to increase the conversion rate of methane and the yield of C2 hydrocarbon with a gradual increase in the addition of hydrogen in a certain range of proportionality. This conclusion explores a new route of hydrogenated methane coupling.展开更多
Oxidative coupling of methane (OCM) is one of the most promising approaches to produce ethylene and ethane (C_(2)-hydrocarbons) in the post-oil era.The MnO_(x)-Na_(2)WO_(4)/SiO_(2) system shows promising OCM performan...Oxidative coupling of methane (OCM) is one of the most promising approaches to produce ethylene and ethane (C_(2)-hydrocarbons) in the post-oil era.The MnO_(x)-Na_(2)WO_(4)/SiO_(2) system shows promising OCM performance,which can be further enhanced by cofed steam.However,the positive effect of steam on C_(2)-hydrocarbons selectivity practically disappears above 800℃.In the present study,we demonstrate that the use of SiC as a support for MnO_(x)-Na_(2)WO_(4) is beneficial for achieving high selectivity up to 850℃.Our sophisticated kinetic tests using feeds without and with steam revealed that the steam-mediated improvement in selectivity to C_(2)-hydrocarbons is due to the inhibition of the direct CH_(4) oxidation to carbon oxides because of the different enhancing effects of steam on the rates of CH_(4) conversion to C_(2)H_(6) and CO/CO_(2).Other descriptors of the selectivity improvement are MnO_(x) dispersion and the catalyst specific surface area.The knowledge gained herein may be useful for optimizing OCM performance through catalyst design and reactor operation.展开更多
The electrochemical oxidative coupling of methane(EOCM),integrated with CO_(2)electrolysis enabled by high-temperature electrolysis technology,represents a promising pathway for methane utilization and carbon neutrali...The electrochemical oxidative coupling of methane(EOCM),integrated with CO_(2)electrolysis enabled by high-temperature electrolysis technology,represents a promising pathway for methane utilization and carbon neutrality.However,progress in methane activation remains hindered by low C2 product selectivity and limited reaction activity,primarily due to the lack of efficient and stable catalysts and rational design strategies.A critical focus of current research is the development of catalysts capable of stabilizing reactive oxygen species to facilitate C-H bond activation and subsequent C-C bond formation.Herein,an easily fabricated composite electrode consisting of perovskite La_(0.6)Sr_(0.4)MnO_(3-δ) and Ce-Mn-W materials with(Ce_(0.90)Gd_(0.10))O_(1.95) as the support was developed,demonstrating efficient activate methane activation.Combined theoretical and experimental investigations reveal that the designed composite electrode stabilizes active oxygen species during the oxygen evolution reaction(OER)while exhibiting superior methane adsorption capability.This design,leveraging oxygen species engineering and interfacial synergy,significantly enhances electrochemical methane coupling efficiency,establishing a strategic framework for advancing high-performance catalyst development.展开更多
Oxidative coupling of methane(OCM)is a catalytic partial oxidation process that directly converts methane into C_(2) products.For this high temperature reaction,understanding the radical behavior through experimental ...Oxidative coupling of methane(OCM)is a catalytic partial oxidation process that directly converts methane into C_(2) products.For this high temperature reaction,understanding the radical behavior through experimental investigation is important in correlating the catalytic activity and the products.In this work,a spatial resolution online mass spectrometry(MS)system was developed and applied to a Mn-Na_(2)WO_(4)/SiO_(2) catalyzed OCM system.In addition to the residue gas analysis,the system obtained the distribution information of the reactants and products in the reactor.At various setting temperatures,all species online MS signals were collected at different positions,mapping the reaction activity covering parameters including temperature,time and space.The distribution behavior of the catalytic activity,selectivity,and apparent activation energy were kinetically analyzed.Selectivity and additional carbon balance analysis strongly supported the radical coupling model of OCM and indicated that after the catalytic bed layer,there is a significant length in the reactor(>2 mm)filled with radicals.Based on the result,a designed new method by tuning the temperature field in the reactor was found effectively to improve the catalytic activity,especially the C_(2) yield from 702 to 773℃.展开更多
Modification and performance of Li induced silica phase transition of (Mn+W)/SiO2 catalyst, under reaction conditions of oxidative coupling of methane (OCM), have been investigated employing textural characteriza...Modification and performance of Li induced silica phase transition of (Mn+W)/SiO2 catalyst, under reaction conditions of oxidative coupling of methane (OCM), have been investigated employing textural characterizations and redox studies. Stability and precrystalline form of fresh Li induced silica phase transition catalyst depend on the Li loading. A catalyst, with high lithium loading, destabilizes on OCM stream. This destabilization is not due to Li evaporation at OCM reaction conditions, α-cristobalite is proposed to be an intermediate in the crystallization of amorphous silica into quartz in the Li-induced silica phase transition process. However, the type of crystalline structure was found to be unimportant with regard to the formation of a selective catalyst. Metal-metal interactions of Li-Mn, Li-W and Mn-W, which are affected during silica phase crystallization, are found to be critical parameters of the trimetallic catalyst and were studied by TPR. Role of lithium in Li doped (Mn+W)/SiO2 catalyst is described as a moderator of the Mn-W interaction by involving W in silica phase transition. These interactions help in the improvement of transition metal redox properties, especially that of Mn, in favor of OCM selectivity.展开更多
The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separat...The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separate energy equations for the gas and solid phases coupled with an experimental kinetic model. A lumped kinetic model containing four main species CH4, O2, COx (CO2, CO), and C2 (C2H4 and C2H6) was used with a plug flow reactor model as well. The results from the model agreed with the experimental data. The model was used to analyze the influence of temperature and feed gas composition on the conversion and selectivity of the reactor performance. The analytical results indicate that the conversion decreases, whereas, C2 selectivity increases by increasing gas hourly space velocity (GHSV) and the methane conversion also decreases by increasing the methane to oxygen ratio.展开更多
Oxidative coupling of methane is a direct way to obtain C2 hydrocarbon, and Mn-Na-W/SiO2 catalyst is the most promising among all the catalysts. The 2%Mn/5%Na2WO4/SiO2 catalyst was prepared by the incipient wetness im...Oxidative coupling of methane is a direct way to obtain C2 hydrocarbon, and Mn-Na-W/SiO2 catalyst is the most promising among all the catalysts. The 2%Mn/5%Na2WO4/SiO2 catalyst was prepared by the incipient wetness impregnation method. A 7-step heterogeneous reaction model of the oxidative coupling of methane to C2 hydrocarbons was conducted by co-feeding methane and oxygen at a total pressure of 1 bar over the catalyst. The kinetic measurements were carried out in a micro-catalytic fixed bed reactor. The kinetic data were obtained at the appropriate range of reaction conditions (4 kPa〈Po2 〈20 kPa, 20 kPa〈PcH4〈80 kPa, 800 ℃〈T〈900℃). The proposed reaction kinetic scheme consists of three primary and four consecutive reaction steps. The conversions of hydrocarbons and carbon oxides were evaluated by applying Langmuir-Hinshelwood type rate equations. Power-law rate equation was applied only for the water-gas shift reaction. In addition, the effects of operating conditions on the reaction rate were studied. The proposed kinetic model can predict the conversion of methane and oxygen as well as the yield of C2 hydrocarbons and carbon oxides with an average accuracy of ± 15%.展开更多
A series of Na-W-Mn-Zr/SiO2 catalysts promoted by different contents of S or/and P were prepared and their catalytic performance for oxidative coupling of methane was investigated to clarify the effect of S and P on t...A series of Na-W-Mn-Zr/SiO2 catalysts promoted by different contents of S or/and P were prepared and their catalytic performance for oxidative coupling of methane was investigated to clarify the effect of S and P on the Na-W-Mn-Zr/SiO2 catalyst. The catalysts were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). From the characterization results, it is found that the addition of S and P to the Na-W-Mn-ZffSiO2 catalyst helps the formation of active phases, such as α-cristobalite, Na2WO4, ZrO2, and Na2SO4. Moreover, the addition of S and P increases the concentration of surface-active oxygen species by improving the migration of active components from the bulk phase to the surface of the catalyst. According to the activity test, impressive methane conversion and C2 hydrocarbons yield were obtained at a low temperature of 1023 K over the six-component Na-W-Mn-Zr-S-P/SiO2 catalyst, which contained 2 wt% S and 0.4 wt% P simultaneously. The deactivation of Na-W-Mn-Zr-S-P/SiO2 was due to the loss of surface active components.展开更多
The effects of manganese oxide or ceria promoters on the performance of Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) are reported. The OCM reaction was performed in a continuous-flow microreactor at...The effects of manganese oxide or ceria promoters on the performance of Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) are reported. The OCM reaction was performed in a continuous-flow microreactor at 800℃, atmospheric pressure and under GHSV = 13200 ml·gCat^-1·h^-1.Catalysts were characterized by in situ conductivity measurement, FT-IR spectroscopy, XRD, SEM and temperature programmed reduction analysis. Manganese oxide promoted Na2WO4/SiO2 is considered as one of the active and selective catalysts for OCM reaction. Ceria with high oxygen storage capacity is selected as a proper oxygen activator, providing a higher concentration of the oxy-anion species which is suitable for OCM reaction and compared with manganese oxide. Electrical conductivity of the catalysts was measured in OCM reaction under oxidizing atmosphere, i.e. in the absence of methane. It was found that the trimetallic catalysts, i.e. the catalysts having sodium, tungsten and Mn or Ce species, exhibited similar crystalline structures and morphologies, which lead to suitable bulk properties for the formation of an active and selective catalyst. However, tungsten had significant effect on the texture and redox properties of the catalysts. It was also shown that the crystalline structure of the bimetallic (Na+Mn or Ce)/SiO2 samples was quite different. This reveals that the metal oxides have significant effect on the extent of crystallization, taking place in the course of interaction of sodium with silica support. Similar conductivities and catalytic performances of (Na2WO4+Mn or Ce)/SiO2 catalysts propose that the ability of Na2WO4/SiO2 for utilizing oxy-anions formed in presence of different metal oxides is limited.展开更多
Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidat...Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.展开更多
The study of scale up for the oxidative coupling of methane (OCM) has been carried out in a 200 ml stainless steel fixed-bed reactor over a 5wt% Na2WO4-1.9wt% Mn/SiO2 (W-Mn/SiO2) catalyst. The effects of reaction ...The study of scale up for the oxidative coupling of methane (OCM) has been carried out in a 200 ml stainless steel fixed-bed reactor over a 5wt% Na2WO4-1.9wt% Mn/SiO2 (W-Mn/SiO2) catalyst. The effects of reaction conditions were investigated in detail. The results showed that, with increasing reaction temperature, the gas-phase reaction was enhanced and a significant amount of methane was converted into COx; with the CH4/O2 molar ratio of 5, the highest C2 (ethylene and ethane) yield of 25% was achieved; the presence of steam (as diluent) had a positive effect on the C2 selectivity and yield. Under lower methane gaseous hourly space velocity (GHSV), higher selectivity and yield of C2 were obtained as the result of the decrease of released heat energy. In 100 h reaction time, the C2 selectivity of 66%-61% and C2 yield of 24.2%-25.4% were achieved by a single pass without any significant loss in catalytic performance.展开更多
Reaction chemistry of the OCM reaction on W-Mn/SiO_2 catalyst has beenreviewed in this account. Initial activity and selectivity, stability in a long-term reaction,reaction at elevated pressures and a modelling test i...Reaction chemistry of the OCM reaction on W-Mn/SiO_2 catalyst has beenreviewed in this account. Initial activity and selectivity, stability in a long-term reaction,reaction at elevated pressures and a modelling test in a stainless-steel fluidized-bed reactor showthat W-Mn/SiO_2 has promising performance for the development of an OCM process that directlyproduces ethylene from natural gas. A study on surface catalytic reaction kinetics and used catalyststructure characterization revealed a possible reason why C_2 and CO_x selectivity changed duringthe long-term reaction. Further improvement of the catalyst composition and preparation methodshould be a future direction of study on OCM reaction over W-Mn/SiO_2 catalyst.展开更多
A series of Ce-promoted Mn-Na2WO4/SiO2 catalysts were prepared by incipient wetness impregnation method, and their catalytic performance for oxidative coupling of methane (OCM) was investigated at atmospheric pressu...A series of Ce-promoted Mn-Na2WO4/SiO2 catalysts were prepared by incipient wetness impregnation method, and their catalytic performance for oxidative coupling of methane (OCM) was investigated at atmospheric pressure in a micro-quartz-tube reactor. The catalysts were characterized by X-ray diffraction (XRD), temperature program reduction (TPR) and BET surface area. Ce promoter increased surface area and Na2WO4 species dispersion, which enriched the amount of the surface species. In addition, Ce promoter increased the Na/W species reduction, but the reduction peak shifted to higher temperature. Stability test of 5wt%Ce catalyst indicated suitable performance and stability. The selectivity and yield of C^2+ hydrocarbons after 50 h operation reached 65.5% and 19.6%, respectively, at 840 ℃ over 5wt%Ce-2wt%Mn5wt%Na2WO4/SiO2 catalyst.展开更多
Selective coupling of methyl radicals to produce C_(2) species(C2H4 and C2H6)is a key challenge for oxidative coupling of methane(OCM).In traditional OCM reaction systems,homogeneous transformation of methyl radicals ...Selective coupling of methyl radicals to produce C_(2) species(C2H4 and C2H6)is a key challenge for oxidative coupling of methane(OCM).In traditional OCM reaction systems,homogeneous transformation of methyl radicals in O_(2)‐containing gases are uncontrollable,resulting in limited C_(2) selectivity and yield.Herein,we demonstrate that methyl radicals generated by La_(2)O_(3)at low reaction temperature can selectively couple on the surface of 5 wt%Na2WO4/SiO_(2).The controllable surface coupling against overoxidation barely changes the activity of La_(2)O_(3)but boosts the C_(2)selectivity by three times and achieves a C_(2)yield as high as 10.9%at bed temperature of only 570℃.Structure‐property studies suggest that Na_(2)WO_(4) nanoclusters are the active sites for methyl radical coupling.The strong CH_(3)·affinity of these sites can even endow some methane combustion catalysts with OCM activity.The findings of the surface coupling of methyl radicals open a new direction to develop OCM catalyst.The bifunctional OCM catalyst system,which composes of a methane activation center and a CH_(3)·coupling center,may deliver promising OCM performance at reaction temperatures below the ignition temperature of C2H6 and C2H4(~600℃)and is therefore more controllable,safer,and certainly more attractive as an actual process.展开更多
The reaction kinetics of oxidative coupling of methane catalyzed by perovskite was studied in a fixed bed flow reactor.At atmospheric pressure,the reactions were carried out at 725,750 and 775℃,inlet methane to oxyge...The reaction kinetics of oxidative coupling of methane catalyzed by perovskite was studied in a fixed bed flow reactor.At atmospheric pressure,the reactions were carried out at 725,750 and 775℃,inlet methane to oxygen ratios of 2 to 4.5 and gas hourly space velocity (GHSV) of 100 min^-1.Correlation of the kinetic data has been performed with the proposed mechanisms.The selected equations have been regressed with experimental data accompanied by genetic algorithm (GA) in order to obtain optimized parameters.After investigation the Langmuir-Hinshelwood mechanism was selected as the best mechanism,and Arrhenius and adsorption parameters of this model were obtained by linear regression.In this research the Marquardt algorithm was also used and its results were compared with those of genetic algorithm.It should be noted that the Marquardt algorithm is sensitive to the selection of initial values and there is possibility to trap in a local minimum.展开更多
Lanthanum-based oxides are promising candidates for low-temperature oxidative coupling of methane(OCM).To further lower the OCM reaction temperature,the Ce doped flower-like La_(2)O_(2)CO_(3)microsphere catalysts were...Lanthanum-based oxides are promising candidates for low-temperature oxidative coupling of methane(OCM).To further lower the OCM reaction temperature,the Ce doped flower-like La_(2)O_(2)CO_(3)microsphere catalysts were synthesized,achieving a significantly low reaction temperature (375℃) while maintaining high C_(2) hydrocarbon selectivity (43.0%).Doping Ce into the lattice of La_(2)O_(2)CO_(3)created more surface oxygen vacancies and bulk lattice defects,which was in favor of the transformation and migration of oxygen species at 350–400℃.The designed H_(2) temperature-programmed reduction (H_(2)-TPR) experiments provided strong evidence that the low reaction temperature of La_(x)Ce_(1-x)O_(1.5+δ)can be attributed to the transformation and migration of oxygen species,which dynamically generated surface oxygen vacancies for continuous oxygen activation to selectively convert methane.Moreover,designed temperatureprogrammed surface reaction (TPSR) clarified that two kinds of surface oxygen species in La_(x)Ce_(1-x)O_(1.5+δ)catalysts were concerned with catalytic performance,that is,the surface chemisorbed oxygen species for the activation of CH_(2)and the formation of CH_(2)·intermediates,surface La-Ce-O lattice oxygen species that caused the excessive oxidation of CH_(2)·intermediates.Finally,the factors affecting the transformation and migration of oxygen species were explored.展开更多
文摘In this paper, the conversion of CO2/CH4 by using pulse corona plasma was studied at atmospheric pressure and ambient temperature. The effects of ratio of CO2/CH4, pulse voltage and repeated frequency of plasma discharge were first studied in the system.
文摘In this paper, methane coupling at ambient temperature, under atmospheric pressure and in the presence of hydrogen was firstly investigated by using pulse corona plasma and Pt/g-Al2O3 catalyst. Experimental results showed that Pt/g-Al2O3 catalyst has catalytic activity for methane coupling to C2H4. Over sixty percent of outcomes of C2 hydrocarbons were detected to be ethylene.
基金Supported by the National Natural Science Foundation of China(No.20076025).
文摘Proton-hole mixed conductor, SrCeo.95Yb0.05O3-α(SCYb), has the potential to be used as a membrane for dehydrogenation reactions such as methane coupling due to its high C2-selectivity and its simplicity for fabricating reactor systems. In addition, the mixed conducting membrane in the hollow fibre geometry is capable of providing high surface area per unit volume. In this study, mechanism of methane coupling reaction on the SCYb membrane was proposed and the kinetic parameters were obtained by regression of experimental data. A mathematical model describing the methane coupling in the SCYb hollow fibre membrane reactor was also developed. With this mathematical model, various operating conditions such as the operation mode, operation pressure and feed concentrations affecting performance of the reactor were investigated. The simulation results show that the cocurrent flow in the reactor exhibits higher conversion of methane and higher yield of ethylene compared to the countercurrent flow. In order to achieve the highest C2 yield, especially of ethylene, pure methane should be used as feed and the operating pressure be 300 kPa. Air can be used as the source of oxygen for the reaction and its optimum feed velocity is twice of the methane feed velocity. The air pressure in the lumen side should be kept the same as or slightly lower than the pressure of shell side.
基金supported by the Innovation Fund for Chemistry of NWO,grant number 731.014.303by SASOL。
文摘The effect of temperature and hydrogen addition on undesired carbonaceous deposit formation during methane coupling was studied in DBD-plasma catalytic-wall reactors with Pd/Al2 O3, using electrical power to drive the reaction.Experiments with thin catalyst layers allowed comparison of the performance of empty reactors and catalytic wall reactors without significantly influencing the plasma properties.The product distribution varies strongly in the temperature window between 25 and 200℃Minimal formation of deposits is found at an optimal temperature around 75℃ in the catalytic-wall reactors.The selectivity to deposits was c.a.10% with only 9 mg of catalyst loading instead of 45% in the blank reactor,while decreasing methane conversion only mildly.Co-feeding H2 to an empty reactor causes a similar decrease in selectivity to deposits,but in this case methane conversion also decreased significantly.Suppression of deposits formation in the catalytic-wall reactor at 75℃ is due to catalytic hydrogenation of mainly acetylene to ethylene.In the empty reactor,H2 co-feed decreases conversion but does not change the product distribution.The catalytic-wall reactors can be regenerated with H2-plasma at room temperature,which produces more added-value hydrocarbons.
文摘In this paper, hydrogen is first utilized in the study on methane coupling under nonequilibrium plasma. Results indicate that the addition of hydrogen is beneficial. to the methane coupling so as to increase the conversion rate of methane and the yield of C2 hydrocarbon with a gradual increase in the addition of hydrogen in a certain range of proportionality. This conclusion explores a new route of hydrogenated methane coupling.
基金supported by the National Key Research and Development Program (Nos.2020YFA0210903)the National Natural Science Foundation of China (Grant Nos.22225807,21961132026,22021004)DFG within joint Sino-German project (KO 2261/11-1)。
文摘Oxidative coupling of methane (OCM) is one of the most promising approaches to produce ethylene and ethane (C_(2)-hydrocarbons) in the post-oil era.The MnO_(x)-Na_(2)WO_(4)/SiO_(2) system shows promising OCM performance,which can be further enhanced by cofed steam.However,the positive effect of steam on C_(2)-hydrocarbons selectivity practically disappears above 800℃.In the present study,we demonstrate that the use of SiC as a support for MnO_(x)-Na_(2)WO_(4) is beneficial for achieving high selectivity up to 850℃.Our sophisticated kinetic tests using feeds without and with steam revealed that the steam-mediated improvement in selectivity to C_(2)-hydrocarbons is due to the inhibition of the direct CH_(4) oxidation to carbon oxides because of the different enhancing effects of steam on the rates of CH_(4) conversion to C_(2)H_(6) and CO/CO_(2).Other descriptors of the selectivity improvement are MnO_(x) dispersion and the catalyst specific surface area.The knowledge gained herein may be useful for optimizing OCM performance through catalyst design and reactor operation.
基金supported by the SINOPEC funding,China(Grant Nos.223239 and 223315)and the Nuclear Energy Development Project,China(Grant No.HNKF202307(60)).
文摘The electrochemical oxidative coupling of methane(EOCM),integrated with CO_(2)electrolysis enabled by high-temperature electrolysis technology,represents a promising pathway for methane utilization and carbon neutrality.However,progress in methane activation remains hindered by low C2 product selectivity and limited reaction activity,primarily due to the lack of efficient and stable catalysts and rational design strategies.A critical focus of current research is the development of catalysts capable of stabilizing reactive oxygen species to facilitate C-H bond activation and subsequent C-C bond formation.Herein,an easily fabricated composite electrode consisting of perovskite La_(0.6)Sr_(0.4)MnO_(3-δ) and Ce-Mn-W materials with(Ce_(0.90)Gd_(0.10))O_(1.95) as the support was developed,demonstrating efficient activate methane activation.Combined theoretical and experimental investigations reveal that the designed composite electrode stabilizes active oxygen species during the oxygen evolution reaction(OER)while exhibiting superior methane adsorption capability.This design,leveraging oxygen species engineering and interfacial synergy,significantly enhances electrochemical methane coupling efficiency,establishing a strategic framework for advancing high-performance catalyst development.
文摘Oxidative coupling of methane(OCM)is a catalytic partial oxidation process that directly converts methane into C_(2) products.For this high temperature reaction,understanding the radical behavior through experimental investigation is important in correlating the catalytic activity and the products.In this work,a spatial resolution online mass spectrometry(MS)system was developed and applied to a Mn-Na_(2)WO_(4)/SiO_(2) catalyzed OCM system.In addition to the residue gas analysis,the system obtained the distribution information of the reactants and products in the reactor.At various setting temperatures,all species online MS signals were collected at different positions,mapping the reaction activity covering parameters including temperature,time and space.The distribution behavior of the catalytic activity,selectivity,and apparent activation energy were kinetically analyzed.Selectivity and additional carbon balance analysis strongly supported the radical coupling model of OCM and indicated that after the catalytic bed layer,there is a significant length in the reactor(>2 mm)filled with radicals.Based on the result,a designed new method by tuning the temperature field in the reactor was found effectively to improve the catalytic activity,especially the C_(2) yield from 702 to 773℃.
文摘Modification and performance of Li induced silica phase transition of (Mn+W)/SiO2 catalyst, under reaction conditions of oxidative coupling of methane (OCM), have been investigated employing textural characterizations and redox studies. Stability and precrystalline form of fresh Li induced silica phase transition catalyst depend on the Li loading. A catalyst, with high lithium loading, destabilizes on OCM stream. This destabilization is not due to Li evaporation at OCM reaction conditions, α-cristobalite is proposed to be an intermediate in the crystallization of amorphous silica into quartz in the Li-induced silica phase transition process. However, the type of crystalline structure was found to be unimportant with regard to the formation of a selective catalyst. Metal-metal interactions of Li-Mn, Li-W and Mn-W, which are affected during silica phase crystallization, are found to be critical parameters of the trimetallic catalyst and were studied by TPR. Role of lithium in Li doped (Mn+W)/SiO2 catalyst is described as a moderator of the Mn-W interaction by involving W in silica phase transition. These interactions help in the improvement of transition metal redox properties, especially that of Mn, in favor of OCM selectivity.
文摘The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separate energy equations for the gas and solid phases coupled with an experimental kinetic model. A lumped kinetic model containing four main species CH4, O2, COx (CO2, CO), and C2 (C2H4 and C2H6) was used with a plug flow reactor model as well. The results from the model agreed with the experimental data. The model was used to analyze the influence of temperature and feed gas composition on the conversion and selectivity of the reactor performance. The analytical results indicate that the conversion decreases, whereas, C2 selectivity increases by increasing gas hourly space velocity (GHSV) and the methane conversion also decreases by increasing the methane to oxygen ratio.
基金This work was financially supported by the Research Department of Iran University of Science and Technology
文摘Oxidative coupling of methane is a direct way to obtain C2 hydrocarbon, and Mn-Na-W/SiO2 catalyst is the most promising among all the catalysts. The 2%Mn/5%Na2WO4/SiO2 catalyst was prepared by the incipient wetness impregnation method. A 7-step heterogeneous reaction model of the oxidative coupling of methane to C2 hydrocarbons was conducted by co-feeding methane and oxygen at a total pressure of 1 bar over the catalyst. The kinetic measurements were carried out in a micro-catalytic fixed bed reactor. The kinetic data were obtained at the appropriate range of reaction conditions (4 kPa〈Po2 〈20 kPa, 20 kPa〈PcH4〈80 kPa, 800 ℃〈T〈900℃). The proposed reaction kinetic scheme consists of three primary and four consecutive reaction steps. The conversions of hydrocarbons and carbon oxides were evaluated by applying Langmuir-Hinshelwood type rate equations. Power-law rate equation was applied only for the water-gas shift reaction. In addition, the effects of operating conditions on the reaction rate were studied. The proposed kinetic model can predict the conversion of methane and oxygen as well as the yield of C2 hydrocarbons and carbon oxides with an average accuracy of ± 15%.
基金supported by the National Natural Science Foundation of China (20676116)
文摘A series of Na-W-Mn-Zr/SiO2 catalysts promoted by different contents of S or/and P were prepared and their catalytic performance for oxidative coupling of methane was investigated to clarify the effect of S and P on the Na-W-Mn-Zr/SiO2 catalyst. The catalysts were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). From the characterization results, it is found that the addition of S and P to the Na-W-Mn-ZffSiO2 catalyst helps the formation of active phases, such as α-cristobalite, Na2WO4, ZrO2, and Na2SO4. Moreover, the addition of S and P increases the concentration of surface-active oxygen species by improving the migration of active components from the bulk phase to the surface of the catalyst. According to the activity test, impressive methane conversion and C2 hydrocarbons yield were obtained at a low temperature of 1023 K over the six-component Na-W-Mn-Zr-S-P/SiO2 catalyst, which contained 2 wt% S and 0.4 wt% P simultaneously. The deactivation of Na-W-Mn-Zr-S-P/SiO2 was due to the loss of surface active components.
文摘The effects of manganese oxide or ceria promoters on the performance of Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) are reported. The OCM reaction was performed in a continuous-flow microreactor at 800℃, atmospheric pressure and under GHSV = 13200 ml·gCat^-1·h^-1.Catalysts were characterized by in situ conductivity measurement, FT-IR spectroscopy, XRD, SEM and temperature programmed reduction analysis. Manganese oxide promoted Na2WO4/SiO2 is considered as one of the active and selective catalysts for OCM reaction. Ceria with high oxygen storage capacity is selected as a proper oxygen activator, providing a higher concentration of the oxy-anion species which is suitable for OCM reaction and compared with manganese oxide. Electrical conductivity of the catalysts was measured in OCM reaction under oxidizing atmosphere, i.e. in the absence of methane. It was found that the trimetallic catalysts, i.e. the catalysts having sodium, tungsten and Mn or Ce species, exhibited similar crystalline structures and morphologies, which lead to suitable bulk properties for the formation of an active and selective catalyst. However, tungsten had significant effect on the texture and redox properties of the catalysts. It was also shown that the crystalline structure of the bimetallic (Na+Mn or Ce)/SiO2 samples was quite different. This reveals that the metal oxides have significant effect on the extent of crystallization, taking place in the course of interaction of sodium with silica support. Similar conductivities and catalytic performances of (Na2WO4+Mn or Ce)/SiO2 catalysts propose that the ability of Na2WO4/SiO2 for utilizing oxy-anions formed in presence of different metal oxides is limited.
文摘Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.
文摘The study of scale up for the oxidative coupling of methane (OCM) has been carried out in a 200 ml stainless steel fixed-bed reactor over a 5wt% Na2WO4-1.9wt% Mn/SiO2 (W-Mn/SiO2) catalyst. The effects of reaction conditions were investigated in detail. The results showed that, with increasing reaction temperature, the gas-phase reaction was enhanced and a significant amount of methane was converted into COx; with the CH4/O2 molar ratio of 5, the highest C2 (ethylene and ethane) yield of 25% was achieved; the presence of steam (as diluent) had a positive effect on the C2 selectivity and yield. Under lower methane gaseous hourly space velocity (GHSV), higher selectivity and yield of C2 were obtained as the result of the decrease of released heat energy. In 100 h reaction time, the C2 selectivity of 66%-61% and C2 yield of 24.2%-25.4% were achieved by a single pass without any significant loss in catalytic performance.
文摘Reaction chemistry of the OCM reaction on W-Mn/SiO_2 catalyst has beenreviewed in this account. Initial activity and selectivity, stability in a long-term reaction,reaction at elevated pressures and a modelling test in a stainless-steel fluidized-bed reactor showthat W-Mn/SiO_2 has promising performance for the development of an OCM process that directlyproduces ethylene from natural gas. A study on surface catalytic reaction kinetics and used catalyststructure characterization revealed a possible reason why C_2 and CO_x selectivity changed duringthe long-term reaction. Further improvement of the catalyst composition and preparation methodshould be a future direction of study on OCM reaction over W-Mn/SiO_2 catalyst.
文摘A series of Ce-promoted Mn-Na2WO4/SiO2 catalysts were prepared by incipient wetness impregnation method, and their catalytic performance for oxidative coupling of methane (OCM) was investigated at atmospheric pressure in a micro-quartz-tube reactor. The catalysts were characterized by X-ray diffraction (XRD), temperature program reduction (TPR) and BET surface area. Ce promoter increased surface area and Na2WO4 species dispersion, which enriched the amount of the surface species. In addition, Ce promoter increased the Na/W species reduction, but the reduction peak shifted to higher temperature. Stability test of 5wt%Ce catalyst indicated suitable performance and stability. The selectivity and yield of C^2+ hydrocarbons after 50 h operation reached 65.5% and 19.6%, respectively, at 840 ℃ over 5wt%Ce-2wt%Mn5wt%Na2WO4/SiO2 catalyst.
文摘Selective coupling of methyl radicals to produce C_(2) species(C2H4 and C2H6)is a key challenge for oxidative coupling of methane(OCM).In traditional OCM reaction systems,homogeneous transformation of methyl radicals in O_(2)‐containing gases are uncontrollable,resulting in limited C_(2) selectivity and yield.Herein,we demonstrate that methyl radicals generated by La_(2)O_(3)at low reaction temperature can selectively couple on the surface of 5 wt%Na2WO4/SiO_(2).The controllable surface coupling against overoxidation barely changes the activity of La_(2)O_(3)but boosts the C_(2)selectivity by three times and achieves a C_(2)yield as high as 10.9%at bed temperature of only 570℃.Structure‐property studies suggest that Na_(2)WO_(4) nanoclusters are the active sites for methyl radical coupling.The strong CH_(3)·affinity of these sites can even endow some methane combustion catalysts with OCM activity.The findings of the surface coupling of methyl radicals open a new direction to develop OCM catalyst.The bifunctional OCM catalyst system,which composes of a methane activation center and a CH_(3)·coupling center,may deliver promising OCM performance at reaction temperatures below the ignition temperature of C2H6 and C2H4(~600℃)and is therefore more controllable,safer,and certainly more attractive as an actual process.
基金supported by the Iran Polymer and Petrochemical Institute (IPPI)
文摘The reaction kinetics of oxidative coupling of methane catalyzed by perovskite was studied in a fixed bed flow reactor.At atmospheric pressure,the reactions were carried out at 725,750 and 775℃,inlet methane to oxygen ratios of 2 to 4.5 and gas hourly space velocity (GHSV) of 100 min^-1.Correlation of the kinetic data has been performed with the proposed mechanisms.The selected equations have been regressed with experimental data accompanied by genetic algorithm (GA) in order to obtain optimized parameters.After investigation the Langmuir-Hinshelwood mechanism was selected as the best mechanism,and Arrhenius and adsorption parameters of this model were obtained by linear regression.In this research the Marquardt algorithm was also used and its results were compared with those of genetic algorithm.It should be noted that the Marquardt algorithm is sensitive to the selection of initial values and there is possibility to trap in a local minimum.
基金the Shanxi Science and Technology Department bidding project(No.20191101012)the autonomous research project of SKLCC(No.2020BWZ003)for providing financial support。
文摘Lanthanum-based oxides are promising candidates for low-temperature oxidative coupling of methane(OCM).To further lower the OCM reaction temperature,the Ce doped flower-like La_(2)O_(2)CO_(3)microsphere catalysts were synthesized,achieving a significantly low reaction temperature (375℃) while maintaining high C_(2) hydrocarbon selectivity (43.0%).Doping Ce into the lattice of La_(2)O_(2)CO_(3)created more surface oxygen vacancies and bulk lattice defects,which was in favor of the transformation and migration of oxygen species at 350–400℃.The designed H_(2) temperature-programmed reduction (H_(2)-TPR) experiments provided strong evidence that the low reaction temperature of La_(x)Ce_(1-x)O_(1.5+δ)can be attributed to the transformation and migration of oxygen species,which dynamically generated surface oxygen vacancies for continuous oxygen activation to selectively convert methane.Moreover,designed temperatureprogrammed surface reaction (TPSR) clarified that two kinds of surface oxygen species in La_(x)Ce_(1-x)O_(1.5+δ)catalysts were concerned with catalytic performance,that is,the surface chemisorbed oxygen species for the activation of CH_(2)and the formation of CH_(2)·intermediates,surface La-Ce-O lattice oxygen species that caused the excessive oxidation of CH_(2)·intermediates.Finally,the factors affecting the transformation and migration of oxygen species were explored.