期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Room-Temperature Ferromagnetism via Superexchange in Semiconductor(Cr_(4/6),Mo_(2/6))_(3)Te_(6)
1
作者 Jia-Wen Li Gang Su Bo Gu 《Chinese Physics Letters》 2025年第9期146-162,共17页
Realizing ferromagnetic semiconductors with high Curie temperature TC is still a challenge in spintronics.Recent experiments have reported two-dimensional(2D)room temperature ferromagnetic metals,such as monolayer Cr_... Realizing ferromagnetic semiconductors with high Curie temperature TC is still a challenge in spintronics.Recent experiments have reported two-dimensional(2D)room temperature ferromagnetic metals,such as monolayer Cr_(3)Te_(6).In this paper,through density functional theory(DFT)calculations,we propose a method to obtain 2D high TC ferromagnetic semiconductors through element replacement in these ferromagnetic metals.We predict that monolayer(Cr_(4/6),Mo_(2/6))_(3)Te_(6),created via element replacement in monolayer Cr_(3)Te_(6),is a room-temperature ferromagnetic semiconductor exhibiting a band gap of 0.34 eV and a TC of 384 K.Our analysis reveals that the metal-to-semiconductor transition stems from the synergistic interplay of Mo-induced lattice distortion,which resolves band overlap,and the electronic contributions of Mo dopants,which further drive the formation of a distinct band gap.The origin of the high TC is traced to strong superexchange coupling between magnetic ions,analyzed via the superexchange model with DFT and Wannier function calculations.Considering the fast developments in fabrication and manipulation of 2D materials,our theoretical results propose an approach to explore high-temperature ferromagnetic semiconductors derived from experimentally obtained 2D high-temperature ferromagnetic metals through element replacement. 展开更多
关键词 ferromagnetic semiconductors ferromagnetic metalswe MONOLAYER density functional theory dft calculationswe room temperature ferromagnetism element replacement ferromagnetic metalssuch SEMICONDUCTOR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部