As service conditions become more challenging and production complexity increases,there is an increasing demand for enhanced comprehensive performance of ceramic/metal heterostructures.At present,brazing technique has...As service conditions become more challenging and production complexity increases,there is an increasing demand for enhanced comprehensive performance of ceramic/metal heterostructures.At present,brazing technique has been widely utilized for ceramic-metal heterogeneous joints.However,the residual stress relief in these welding joints is complicated and necessary.Because metals and ceramics have different properties,especially their coefficients of thermal expansion.Welding joints exhibit large residual stresses during the cooling process.The relatively high residual stresses may significantly degrade the joint properties.For this issue,four alleviation routes were reviewed:optimization of process parameters,setting an intermediate layer,surface structure modulation and particle-reinforced composite solder.The states and distribution patterns of residual stress in ceramic-metal brazed joints were summarized,and the generation and detection of residual stress were introduced.Eventually,upcoming prospects and challenges of residual stress research on ceramic/metal heterostructures were pointed out.展开更多
By using newly developed CuNi5~25Ti16~28 B rapldly solidifled brazing filler the joining of Si3 N4/1.25Cr-0.5Mo steel has been carried out with interlayer method. If employing the interlayer structure of steel (0.2 mm...By using newly developed CuNi5~25Ti16~28 B rapldly solidifled brazing filler the joining of Si3 N4/1.25Cr-0.5Mo steel has been carried out with interlayer method. If employing the interlayer structure of steel (0.2 mm)/W (2.0 mm)/Ni(0.2 mm), the joint strength can be increased greatly compared with employing that of Ni/W/Ni, and the three point bend strength of the Joint shows the value of 261 MPa. The metallurgical behaviour at the interface between Si3N4 and the interlayer has been studied. It is found that Fe participated in the interfacial reactions between Si3N4 and the brazing filler at the Si3N4/steel (0.2 mm) interface and the compound Fe5Si3 was produced. However, since the reactions of Fe with the active Ti are weaker than those of Ni with Ti, the normal inter facial reactions were still assured at the interface of Si3N4/steel (0.2 mm) instead of Si3N4/Ni (0.2 mm), resulting in the improvement of the joint strength. The mechanism of the formation of Fe5Si3 is also discussed. Finally, some ideas to further ameliorate and simplify the interlayer structure are put forward.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
Solid-state Na metal batteries(SSNBs),known for the low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interf...Solid-state Na metal batteries(SSNBs),known for the low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of sodium-potassium(NaK)alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the physical contact of the electrode-electrolyte interface.Additionally,the filling of SiO_(2) nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 hrs.The full cell coupled with Na_(3)V_(2)(PO_(4))_(2) cathodes had an initial discharge capacity of 106.8 mAh·g^(-1) with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1) even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode.展开更多
Nowadays,high-stable and ultrasensitive heavy metal detection is of utmost importance in water quality monitoring.Nanoparticle-enhanced laser-induced breakdown spectroscopy(NELIBS)shows high potential in hazardous met...Nowadays,high-stable and ultrasensitive heavy metal detection is of utmost importance in water quality monitoring.Nanoparticle-enhanced laser-induced breakdown spectroscopy(NELIBS)shows high potential in hazardous metal detection,however,encounters unstable and weak signals due to nonuniform distribution of analytes.Herein,we developed an interface self-assembly(ISA)method to create a uniformly distributed gold nanolayer at a liquid-liquid interface for positive heavy metal ions capture and NELIBS analysis.The electrostatically selfassembled Au nanoparticles(NPs)-analytes membrane was prepared at the oil-water interface by injecting ethanol into the mixture of cyclohexane and Au NPs-analytes water solution.Then,the interface self-assembled Au NPs-analytes membrane was transformed onto a laser-processed superhydrophilic Si slide for detection.Three heavy metals(cadmium(Cd),barium(Ba),and chromium(Cr))were analyzed to evaluate the stability and sensitivity of the ISA method for NELIBS.The results(Cd:RSD=3.6%,LoD=0.654 mg/L;Ba:RSD=3.4%,LoD=0.236 mg/L;Cr:RSD=7.7%,LoD=1.367 mg/L)demonstrated signal enhancement and high-stable and ultrasensitive detection.The actual sample detection(Cd:RE=7.71%,Ba:RE=6.78%)illustrated great reliability.The ISA method,creating a uniform distribution of NP-analytes at the interface,has promising prospects in NELIBS.展开更多
Replica scaled impact experiments with unconfined ceramic targets have shown that the transition velocity,i.e.,the impact velocity at which interface defeat ceases and ceramic penetration occurs,decreased as the lengt...Replica scaled impact experiments with unconfined ceramic targets have shown that the transition velocity,i.e.,the impact velocity at which interface defeat ceases and ceramic penetration occurs,decreased as the length scale increased.A possible explanation of how this scale effect is related to the formation of a cone crack in the ceramic has been presented by the authors in an earlier paper.Here,the influence of confinement and prestress on cone cracking and transition velocity is investigated.The hypothesis is that prestress will suppress the formation and growth of the cone crack by lowering the driving stress.A set of impact experiments has been performed in which the transition velocity for four different levels of prestress has been determined.The transition velocities as a function of the level of confining prestress is compared to an analytical model for the influence of prestress on the formation and extension of the cone crack in the ceramic material.Both experiments and model indicate that prestress has a strong influence on the transition from interface defeat to penetration,although the model underestimates the influence of prestress.展开更多
Although the existence of glass–glass interfaces(GGIs)enables improved ductility of metallic nanoglasses(NGs),the excess free volumes at GGIs would cause the NGs to have a much-reduced mechanical strength.Herein,entr...Although the existence of glass–glass interfaces(GGIs)enables improved ductility of metallic nanoglasses(NGs),the excess free volumes at GGIs would cause the NGs to have a much-reduced mechanical strength.Herein,entropy-stabilized GGIs have been in-vestigated in Co–Fe–Ni–Zn–P NGs,which have a large entropy of mixing(1.32R,where R is the gas constant)and could be in a new glass phase,different from that of glassy grain interiors.Through quantitatively determining the activation energy of glass transition sep-arately for the GGIs and glassy grain interiors,the excess free volumes at GGIs are found to be reduced in comparison with those in the glassy grain interiors.The thermodynamically stable GGIs could be associated with increasing entropy of mixing in the GGI regions,which stabilizes the atomic structures of GGIs and enhances the glass forming ability of Co–Fe–Ni–Zn–P NGs.The influences of entropy-stabilized GGIs on the mechanical properties of Co–Fe–Ni–Zn–P NGs are further investigated by nanoindentation and creep tests under tensile deformation,demonstrating that there are notable enhancements in the ductility and mechanical strength for Co–Fe–Ni–Zn–P NGs.This work contributes to an in-depth understanding on the GGI phase in NGs and offers an alternative method for strengthening NGs through GGI engineering.展开更多
In order to maximize the advantages of high energy density in Li metal batteries,it is necessary to match cathode materials with high specific capacities.Ni-rich layered oxides have been shown to reversibly embed more...In order to maximize the advantages of high energy density in Li metal batteries,it is necessary to match cathode materials with high specific capacities.Ni-rich layered oxides have been shown to reversibly embed more Li+during charge and discharge processes due to the increased Ni content in their crystal structure,thereby providing higher energy density.However,a significant challenge associated with Ni-rich layered oxide cathodes is the crossover effect,which arises from the dissolution of Ni^(2+)from the cathode,leading to a rapid decline in battery capacity.Through the delocalization-induced effect of solvent molecules,Ni^(2+)is transformed into a fluorinated transition metal inorganic phase layer,thereby forming a corrosion-resistant Li metal interface.This prevents solvent molecules from being reduced and degraded by Li metal anode.The surface of the Li metal anode exhibits a smooth and flat deposition morphology after long-term cycling.Furthermore,the introduction of Ni^(2+)can enhance the concentration gradient of transition metal ions near the cathode,thereby suppressing the dissolution process of transition metal ions.Even the NCM955 cathode with a mass load of 22 mg cm^(−2)also has great capacity retention after cycling.The Ni^(2+)induced by high electronegative functional groups of solvent under the electron delocalization effect,preventing the Ni ions dissolution of cathode and constructing a corrosion-resistant Li metal interface layer.This work provides new insights into suppressing crossover effects in Li metal batteries with high nickel cathodes.展开更多
High-energy-density lithium metal batteries hold great promise for advancing low-altitude economic development.However,the practical application of ultrathin lithium anodes remains challenging due to significant inter...High-energy-density lithium metal batteries hold great promise for advancing low-altitude economic development.However,the practical application of ultrathin lithium anodes remains challenging due to significant interfacial side reactions,dendrite formation,and substantial volume fluctuations.In this study,lithium metal electrodes were fabricated using a spin-coating process,enabling an in situ reaction between lithium and phenyl disulfide(PDS).The resulting robust organic sulfurization interface,composed of lithium thiophenoxide,facilitates rapid lithium-ion transport and effectively suppresses dendrite formation.Symmetric cells with a 50μm Li@PDS anode exhibited an impressive lifespan exceeding3000 h at 1 mA cm^(-2)and 1 mAh cm^(-2).The Li@PDS anode demonstrated excellent structural stability in a practical LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)lILi@PDS pouch cell,maintaining 94.8%of its initial capacity(1.45 Ah)over 260 cycles at a 0.4C rate and 87.30%of its initial capacity(1.1 Ah)over 360 cycles at a 2C rate(1C=200 mA g^(-1)).This work provides a promising pathway for developing durable lithium metal anodes suitable for scalable practical applications.展开更多
The influence of active elements C and Hf on the interface reactions and wettability between a Ni3Albased superalloy and the ceramic mould material was studied by using a sessile drop experiment, The microstructure of...The influence of active elements C and Hf on the interface reactions and wettability between a Ni3Albased superalloy and the ceramic mould material was studied by using a sessile drop experiment, The microstructure of the alloy interface was investigated by scanning electron microscopy analysis and the phase identification was performed by X-ray diffraction analysis, The results show that interface reactions occur as C and Hf contents reach a critical value, The critical values for C and Hf to cause interface reactions are 0,12 wt% and 1,17 wt%, respectively, The reaction products contain HfO2 and 9Al2OH,Cr2O3, Adsorptions of Hf and interface reactions improve the wettability obviously,展开更多
The interface defeat phenomenon always occurs when a long-rod projectile impacting on the ceramic target with certain velocity,i.e.,the projectile is forced to flow radially on the surface of ceramic plates for a peri...The interface defeat phenomenon always occurs when a long-rod projectile impacting on the ceramic target with certain velocity,i.e.,the projectile is forced to flow radially on the surface of ceramic plates for a period of time without significant penetration.Interface defeat has a direct effect upon the ballistic performance of the armor piercing projectile,which is studied numerically and theoretically at present.Firstly,by modeling the projectiles and ceramic targets with the SPH(Smoothed Particle Hydrodynamics)particles and Lagrange finite elements,the systematic numerical simulations on interface defeat are performed with the commercial finite element program AUTODYN.Three different responses,i.e.,complete interface defeat,dwell and direct penetration,are reproduced in different types of ceramic targets(bare,buffered,radially confined and oblique).Furthermore,by adopting the validated numerical algorithms,constitutive models and the corresponding material parameters,the influences of projectile(material,diameter,nose shape),constitutive models of ceramic(JH-1 and JH-2 models),buffer and cover plate(thickness,constraints,material),as well as the prestress acted on the target(radial and hydrostatic) on the interface defeat(transition velocity and dwell time) are syste matically investigated.Finally,based on the energy conservation approach and taking the strain rate effect of ceramic material into account,a modified model for predicting the upper limit of transition velocity is proposed and validated.The present work and derived conclusions can provide helpful reference for the design and optimization of both the long-rod projectile and ceramic armor.展开更多
Ultrasonic-assisted brazing of SiC ceramics was performed by filling with an Al-12Si alloy at a low tem- perature of 620 ℃ in air. The interracial characteristics and formation mechanism were investigated. The joint ...Ultrasonic-assisted brazing of SiC ceramics was performed by filling with an Al-12Si alloy at a low tem- perature of 620 ℃ in air. The interracial characteristics and formation mechanism were investigated. The joint shear strength reached 84-94 MPa using the ultrasonic time of 2-16 s. The fracture morphology showed that the fracture path initiated and propagated in the joint alloy. The thin film of amorphous SiO2 that formed on the SiC surface was non-uniformly decomposed and diffused into the liquid Al-12Si alloy under the cavitation erosion effect of ultrasound. Abnormal isolated blocks of A12SiO5 compounds formed at the interface between Al-12Si and a thicker SiO2 layer formed during the thermal oxidation treatment of the SiC ceramic. The SiO2 layer on the SiC ceramic did not hinder or impair the wetting and bonding process, and a stronger bond could form between Al-12Si and SiO2 or SiC in ultrasonic- assisted brazing.展开更多
Significantly enhanced varistor properties via tailoring interface states were obtained in Ca_(1-2x/3)Y_(x)Cu_(3)Ti_(4)O_(12)-SrCu_(3)Ti_(4)O_(12) composite ceramics.The breakdown field was improved to 35.8 kV cm^(-1)...Significantly enhanced varistor properties via tailoring interface states were obtained in Ca_(1-2x/3)Y_(x)Cu_(3)Ti_(4)O_(12)-SrCu_(3)Ti_(4)O_(12) composite ceramics.The breakdown field was improved to 35.8 kV cm^(-1) and the nonlinear coefficient in 0.1-1 mA cm^(-2) was enhanced to 14.6 for Ca_(0.67)Y_(0.5)Cu_(3)Ti_(4)O_(12)-SrCu_(3)Ti_(4)O_(12).Noticeably,the withstand voltage of single grain boundary reached up to 24 V while the reported ones were constant to about 3 V.Greatly improved properties were attributed to the formation of superior grain boundary rather than the reduced grain size.Surprisingly,with distinct discrepancy of nonlinear performance in the composites,the resistance and activation energy of grain boundary exhibited little differences.Based on the double Schottky barrier at grain boundary and the field-assisted thermal emission model,it was found that the excellent electrical nonlinearity arose from the formation of deeper and broader interface states at grain boundary.In this case,interface states were not easily entirely filled and the barrier could maintain its height under applied voltage.This work provides a novel routine for enhancing the varistor properties of CaCu_(3)Ti_(4)O_(12) based ceramics by manipulating interface states at grain boundary.展开更多
Electrical transport properties of the interface between a Nd_(0.7)Sr_(0.3)MnO_(3) ceramic and a Ag electrode are investigated using the ac impedance over a wide temperature and frequency ranges.The ac impedance measu...Electrical transport properties of the interface between a Nd_(0.7)Sr_(0.3)MnO_(3) ceramic and a Ag electrode are investigated using the ac impedance over a wide temperature and frequency ranges.The ac impedance measurements give the compressed semicircle arcs at different temperatures,which are used for the analysis of different contributions to electrical transport based on an electrical equivalent circuit.A significant interface-dependent electroresistance effect of 530% is clearly developed around the metal-insulator transition temperature 130K,which is confirmed as the interface-layer dependent Curie temperature by the plot of interfacial conductance with frequency at different temperatures.展开更多
PbO-ZnO-Na20 ceramic coating was fabricated on the AZ91D Mg-alloy substrate surface by using of evaporated pattern casting (EPC) process. The ceramic coating was characterized through scanning electron microscopy (...PbO-ZnO-Na20 ceramic coating was fabricated on the AZ91D Mg-alloy substrate surface by using of evaporated pattern casting (EPC) process. The ceramic coating was characterized through scanning electron microscopy (SEM) observation, energy dispersive X-ray spectrometer (EDS) and so on. The research was emphasized on the formation process of ceramic coating and the interface bonding conditions between ceramic coating and the substrate. Results show that the glass powder (PbO-ZnO-NazO) melts when contacts with the high temperature liquid metal, and solidifies on the surface of the substrate with the decrease of temperature. Therefore, the ceramic coating was successfully prepared with the formation of the bonding interface with the substrate, Beside the influence of coating layer thickness, the vacuum level was also investigated. Further analysis indicates that oxide inclusions and decomposition products of foam pattern had a significant effect on the bonding interface: To obtain a good bonding interface between the ceramic coating and the substrate, the metal liquid oxidation and inclusions must be decreased and the decomposition products of foam pattern should be exhausted from the EPC coating completely.展开更多
An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evan...An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evans shear-lag model was adopted to analyse the micro-stress field of the damaged composites.The critical matrix strain energy criterion,which presupposes the existence of an ultimate or critical matrix strain energy with matrix,was obtained to simulate the matrix multicracking evolution of CMCs.With the increase of the applied stress,the matrix multicracking and fiber/matrix interface debonding occurred to dissipate the additional energy entered into the composites.The fiber/matrix interface debonded length under matrix multicracking evolution was obtained by treating the interface debonding as a particular crack propagation problem.The conditions for no-debonding and debonding during the evolution of matrix multicracking were discussed in terms of two interfacial properties,i.e.,the interface shear stress and interface debonded toughness.When the fiber/matrix interface was bonded,the matrix multicracking evolution was much more intense compared with the interface debonding;when the fiber/matrix interface was debonded,the matrix crack density increased with the increasing of interface shear stress and interface debonded energy.The theoretical results were compared with experimental data of unidirectional SiC/CAS(calcium alumina silicate),SiC/CAS-Ⅱand SiC/borosilicate composites.展开更多
An important step for achieving the knowledge-based design freedom on nano-and interfacial materials is attained by elucidating the related surface and interface thermodynamics from the first principles so as to allow...An important step for achieving the knowledge-based design freedom on nano-and interfacial materials is attained by elucidating the related surface and interface thermodynamics from the first principles so as to allow engineering the microstructures for desired properties through smartly designing fabrication processing parameters.This is demonstrated for SnO2 nano-particle surfaces and also a technologically important Ag-SnO2 interface fabricated by in-situ internal oxidation.Based on defect thermodynamics,we first modeled and calculated the equilibrium surface and interface structures,and as well corresponding properties,as a function of the ambient temperature and oxygen partial pressure.A series of first principles energetics calculations were then performed to construct the equilibrium surface and interface phase diagrams,to describe the environment dependence of the microstructures and properties of the surfaces and interfaces during fabrication and service conditions.The use and potential application of these phase diagrams as a process design tool were suggested and discussed.展开更多
The research and development of joining methods of ceramics to metals, especially brazing, diffusion bonding and partial transition liquid phase bonding, were introduced. Some opinions were put forward. For new compos...The research and development of joining methods of ceramics to metals, especially brazing, diffusion bonding and partial transition liquid phase bonding, were introduced. Some opinions were put forward. For new composites emerging, it is necessary to develop new joining methods, particularly in the field of high temperature technique for joining ceramics to superalloys.展开更多
Three kinds of Mo-Ni-Si metallized coatings with various chemical compositions were deposited on SiC ceramic substrates by vacuum fusion sintering process, and the phase compositions of the coatings and their interfac...Three kinds of Mo-Ni-Si metallized coatings with various chemical compositions were deposited on SiC ceramic substrates by vacuum fusion sintering process, and the phase compositions of the coatings and their interface microstructures were analyzed. The wetting and spreading properties of molten Ag on the coated SiC ceramic substrates were investigated by the sessile drop technique, and the interfacial behavior of the Ag/coated SiC systems was analyzed. The results show that the coatings are mainly composed of Mo5Si3, MoSi2, Ni2Si, NiSi2 and MoNiSi. The tetragonal MoSi2 grains on the coating surface disappear gradually with the concentration of Mo increasing from 20 at% to 40 at%. The final contact angles of Ag/coated SiC systems at 1000 ℃ for holding 30 min are 45°, 79° and 85° for the coating compositions of Mo20-Ni32-Si48, Mo30-Ni28-Si42 and Mo40-Ni24-Si36, respectively. This result could be closely related to the interactions between the Ag drop and the microstructures of the three Mo-Ni-Si coatings. No obvious reaction layers are found at all the coating/substrate interfaces before and after the wetting tests.展开更多
The ZrO2 ceranfic was successfully jointed to stainless steel by vacuum brazing with active filler metal. The AgCuTi active filler metal was used and the joining was performed at a temperature of 850 ℃ for 10 rain. T...The ZrO2 ceranfic was successfully jointed to stainless steel by vacuum brazing with active filler metal. The AgCuTi active filler metal was used and the joining was performed at a temperature of 850 ℃ for 10 rain. The microstructures of the joints were characterized by metallographic microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Metallographic microscopy analysis shows that the morphology of the cross section was a sandwich structure and the TiO is observed in the surface of ZrO2/ stainless steel. The diffusion and enrichment of the elements are the key roles in the brazing of ZrO2 ceramic and stainless steel. The formation of TiCu compounds inhibited the further diffusion of titanium into stainless steel or the ZrO2 ceramic to form TiO compound. In the experimental conditions, the average tensile strength is 80MPa for the joint of ZrO2 ceramic / AgCuTi/ stainless steel systems. A complete joint is formed between the ZrO2 ceramic and stainless steel with the leakage rate at the degree of 10 ^-12 Pa · m^3/s.展开更多
基金National Program of Foreign Experts of China(G2023026003L)National Natural Science Foundation of China(52475347)+4 种基金Postdoctoral Fund(2023M740475)International Science and Technology Cooperation Project of Henan Province(242102521057)Frontier Exploration Projects of Longmen Laboratory(LMQYTSKT016)Central Plains Science and Technology Innovation Leading TalentsProvincial Science and Technology R&D Program Joint Fund Projects(235200810030)。
文摘As service conditions become more challenging and production complexity increases,there is an increasing demand for enhanced comprehensive performance of ceramic/metal heterostructures.At present,brazing technique has been widely utilized for ceramic-metal heterogeneous joints.However,the residual stress relief in these welding joints is complicated and necessary.Because metals and ceramics have different properties,especially their coefficients of thermal expansion.Welding joints exhibit large residual stresses during the cooling process.The relatively high residual stresses may significantly degrade the joint properties.For this issue,four alleviation routes were reviewed:optimization of process parameters,setting an intermediate layer,surface structure modulation and particle-reinforced composite solder.The states and distribution patterns of residual stress in ceramic-metal brazed joints were summarized,and the generation and detection of residual stress were introduced.Eventually,upcoming prospects and challenges of residual stress research on ceramic/metal heterostructures were pointed out.
文摘By using newly developed CuNi5~25Ti16~28 B rapldly solidifled brazing filler the joining of Si3 N4/1.25Cr-0.5Mo steel has been carried out with interlayer method. If employing the interlayer structure of steel (0.2 mm)/W (2.0 mm)/Ni(0.2 mm), the joint strength can be increased greatly compared with employing that of Ni/W/Ni, and the three point bend strength of the Joint shows the value of 261 MPa. The metallurgical behaviour at the interface between Si3N4 and the interlayer has been studied. It is found that Fe participated in the interfacial reactions between Si3N4 and the brazing filler at the Si3N4/steel (0.2 mm) interface and the compound Fe5Si3 was produced. However, since the reactions of Fe with the active Ti are weaker than those of Ni with Ti, the normal inter facial reactions were still assured at the interface of Si3N4/steel (0.2 mm) instead of Si3N4/Ni (0.2 mm), resulting in the improvement of the joint strength. The mechanism of the formation of Fe5Si3 is also discussed. Finally, some ideas to further ameliorate and simplify the interlayer structure are put forward.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金National Natural Science Foundation of China (52073253)。
文摘Solid-state Na metal batteries(SSNBs),known for the low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of sodium-potassium(NaK)alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the physical contact of the electrode-electrolyte interface.Additionally,the filling of SiO_(2) nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 hrs.The full cell coupled with Na_(3)V_(2)(PO_(4))_(2) cathodes had an initial discharge capacity of 106.8 mAh·g^(-1) with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1) even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode.
基金supported by the National Natural Science Foundation of China(No.62075069 and 52303092)the Water Conservancy Technology project of Hunan Province,China(XSKJ2021000-32)+1 种基金the City University of Hong Kong(#7005507)the Open Project of Yunnan Precious Metals Laboratory Co.,Ltd(grant number YPML-2023050278).
文摘Nowadays,high-stable and ultrasensitive heavy metal detection is of utmost importance in water quality monitoring.Nanoparticle-enhanced laser-induced breakdown spectroscopy(NELIBS)shows high potential in hazardous metal detection,however,encounters unstable and weak signals due to nonuniform distribution of analytes.Herein,we developed an interface self-assembly(ISA)method to create a uniformly distributed gold nanolayer at a liquid-liquid interface for positive heavy metal ions capture and NELIBS analysis.The electrostatically selfassembled Au nanoparticles(NPs)-analytes membrane was prepared at the oil-water interface by injecting ethanol into the mixture of cyclohexane and Au NPs-analytes water solution.Then,the interface self-assembled Au NPs-analytes membrane was transformed onto a laser-processed superhydrophilic Si slide for detection.Three heavy metals(cadmium(Cd),barium(Ba),and chromium(Cr))were analyzed to evaluate the stability and sensitivity of the ISA method for NELIBS.The results(Cd:RSD=3.6%,LoD=0.654 mg/L;Ba:RSD=3.4%,LoD=0.236 mg/L;Cr:RSD=7.7%,LoD=1.367 mg/L)demonstrated signal enhancement and high-stable and ultrasensitive detection.The actual sample detection(Cd:RE=7.71%,Ba:RE=6.78%)illustrated great reliability.The ISA method,creating a uniform distribution of NP-analytes at the interface,has promising prospects in NELIBS.
基金funded by the Swedish Armed Forces and by the Army Research Laboratory through US Naval Regional Contracting Centre,Contract No.W911NF0810271
文摘Replica scaled impact experiments with unconfined ceramic targets have shown that the transition velocity,i.e.,the impact velocity at which interface defeat ceases and ceramic penetration occurs,decreased as the length scale increased.A possible explanation of how this scale effect is related to the formation of a cone crack in the ceramic has been presented by the authors in an earlier paper.Here,the influence of confinement and prestress on cone cracking and transition velocity is investigated.The hypothesis is that prestress will suppress the formation and growth of the cone crack by lowering the driving stress.A set of impact experiments has been performed in which the transition velocity for four different levels of prestress has been determined.The transition velocities as a function of the level of confining prestress is compared to an analytical model for the influence of prestress on the formation and extension of the cone crack in the ceramic material.Both experiments and model indicate that prestress has a strong influence on the transition from interface defeat to penetration,although the model underestimates the influence of prestress.
基金This work has been endorsed by the Chengdu Guangming Paite Precious Metal Co.,Ltd.,the CDGM Glass Co.,Ltd.,China,and the Research Grants Council of Hong Kong Special Administrative Region,China(No.15233823).
文摘Although the existence of glass–glass interfaces(GGIs)enables improved ductility of metallic nanoglasses(NGs),the excess free volumes at GGIs would cause the NGs to have a much-reduced mechanical strength.Herein,entropy-stabilized GGIs have been in-vestigated in Co–Fe–Ni–Zn–P NGs,which have a large entropy of mixing(1.32R,where R is the gas constant)and could be in a new glass phase,different from that of glassy grain interiors.Through quantitatively determining the activation energy of glass transition sep-arately for the GGIs and glassy grain interiors,the excess free volumes at GGIs are found to be reduced in comparison with those in the glassy grain interiors.The thermodynamically stable GGIs could be associated with increasing entropy of mixing in the GGI regions,which stabilizes the atomic structures of GGIs and enhances the glass forming ability of Co–Fe–Ni–Zn–P NGs.The influences of entropy-stabilized GGIs on the mechanical properties of Co–Fe–Ni–Zn–P NGs are further investigated by nanoindentation and creep tests under tensile deformation,demonstrating that there are notable enhancements in the ductility and mechanical strength for Co–Fe–Ni–Zn–P NGs.This work contributes to an in-depth understanding on the GGI phase in NGs and offers an alternative method for strengthening NGs through GGI engineering.
基金the support from Yunnan Fundamental Research Projects(202301BE070001-029,202401CF070129,202501CF070181)National Natural Science Foundation of China(22209012,22479067)Kunming University of Science and Technology Analysis and Testing Fund Support Project(2023T20220172)。
文摘In order to maximize the advantages of high energy density in Li metal batteries,it is necessary to match cathode materials with high specific capacities.Ni-rich layered oxides have been shown to reversibly embed more Li+during charge and discharge processes due to the increased Ni content in their crystal structure,thereby providing higher energy density.However,a significant challenge associated with Ni-rich layered oxide cathodes is the crossover effect,which arises from the dissolution of Ni^(2+)from the cathode,leading to a rapid decline in battery capacity.Through the delocalization-induced effect of solvent molecules,Ni^(2+)is transformed into a fluorinated transition metal inorganic phase layer,thereby forming a corrosion-resistant Li metal interface.This prevents solvent molecules from being reduced and degraded by Li metal anode.The surface of the Li metal anode exhibits a smooth and flat deposition morphology after long-term cycling.Furthermore,the introduction of Ni^(2+)can enhance the concentration gradient of transition metal ions near the cathode,thereby suppressing the dissolution process of transition metal ions.Even the NCM955 cathode with a mass load of 22 mg cm^(−2)also has great capacity retention after cycling.The Ni^(2+)induced by high electronegative functional groups of solvent under the electron delocalization effect,preventing the Ni ions dissolution of cathode and constructing a corrosion-resistant Li metal interface layer.This work provides new insights into suppressing crossover effects in Li metal batteries with high nickel cathodes.
基金financially supported by the National Natural Science Foundation of China (No.52471166)the Central South University Graduate-Student Autonomous Exploration Innovative Programme (No.2024ZZTS0373)
文摘High-energy-density lithium metal batteries hold great promise for advancing low-altitude economic development.However,the practical application of ultrathin lithium anodes remains challenging due to significant interfacial side reactions,dendrite formation,and substantial volume fluctuations.In this study,lithium metal electrodes were fabricated using a spin-coating process,enabling an in situ reaction between lithium and phenyl disulfide(PDS).The resulting robust organic sulfurization interface,composed of lithium thiophenoxide,facilitates rapid lithium-ion transport and effectively suppresses dendrite formation.Symmetric cells with a 50μm Li@PDS anode exhibited an impressive lifespan exceeding3000 h at 1 mA cm^(-2)and 1 mAh cm^(-2).The Li@PDS anode demonstrated excellent structural stability in a practical LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)lILi@PDS pouch cell,maintaining 94.8%of its initial capacity(1.45 Ah)over 260 cycles at a 0.4C rate and 87.30%of its initial capacity(1.1 Ah)over 360 cycles at a 2C rate(1C=200 mA g^(-1)).This work provides a promising pathway for developing durable lithium metal anodes suitable for scalable practical applications.
基金financial support from the National Natural Science Foundation of China (Grant Nos. U1037601 and 51271186)
文摘The influence of active elements C and Hf on the interface reactions and wettability between a Ni3Albased superalloy and the ceramic mould material was studied by using a sessile drop experiment, The microstructure of the alloy interface was investigated by scanning electron microscopy analysis and the phase identification was performed by X-ray diffraction analysis, The results show that interface reactions occur as C and Hf contents reach a critical value, The critical values for C and Hf to cause interface reactions are 0,12 wt% and 1,17 wt%, respectively, The reaction products contain HfO2 and 9Al2OH,Cr2O3, Adsorptions of Hf and interface reactions improve the wettability obviously,
基金supported by the National Natural Science Foundation of China(51878507)。
文摘The interface defeat phenomenon always occurs when a long-rod projectile impacting on the ceramic target with certain velocity,i.e.,the projectile is forced to flow radially on the surface of ceramic plates for a period of time without significant penetration.Interface defeat has a direct effect upon the ballistic performance of the armor piercing projectile,which is studied numerically and theoretically at present.Firstly,by modeling the projectiles and ceramic targets with the SPH(Smoothed Particle Hydrodynamics)particles and Lagrange finite elements,the systematic numerical simulations on interface defeat are performed with the commercial finite element program AUTODYN.Three different responses,i.e.,complete interface defeat,dwell and direct penetration,are reproduced in different types of ceramic targets(bare,buffered,radially confined and oblique).Furthermore,by adopting the validated numerical algorithms,constitutive models and the corresponding material parameters,the influences of projectile(material,diameter,nose shape),constitutive models of ceramic(JH-1 and JH-2 models),buffer and cover plate(thickness,constraints,material),as well as the prestress acted on the target(radial and hydrostatic) on the interface defeat(transition velocity and dwell time) are syste matically investigated.Finally,based on the energy conservation approach and taking the strain rate effect of ceramic material into account,a modified model for predicting the upper limit of transition velocity is proposed and validated.The present work and derived conclusions can provide helpful reference for the design and optimization of both the long-rod projectile and ceramic armor.
基金the financial support for this project from the China Postdoctoral Science Foundation (No.2015M570093)the National Natural Science Foundation of China (Nos. 51435004 and 51075104)the State Key Lab of Advanced Welding and Joining Harbin Institute of Technology (No. AWJ-M14-05)
文摘Ultrasonic-assisted brazing of SiC ceramics was performed by filling with an Al-12Si alloy at a low tem- perature of 620 ℃ in air. The interracial characteristics and formation mechanism were investigated. The joint shear strength reached 84-94 MPa using the ultrasonic time of 2-16 s. The fracture morphology showed that the fracture path initiated and propagated in the joint alloy. The thin film of amorphous SiO2 that formed on the SiC surface was non-uniformly decomposed and diffused into the liquid Al-12Si alloy under the cavitation erosion effect of ultrasound. Abnormal isolated blocks of A12SiO5 compounds formed at the interface between Al-12Si and a thicker SiO2 layer formed during the thermal oxidation treatment of the SiC ceramic. The SiO2 layer on the SiC ceramic did not hinder or impair the wetting and bonding process, and a stronger bond could form between Al-12Si and SiO2 or SiC in ultrasonic- assisted brazing.
基金financially supported by the National Natural Science Foundation of China(No.51937008)the Science and Technology Project of State Grid Corporation of China(SGCC)(No.5216A01600W3)。
文摘Significantly enhanced varistor properties via tailoring interface states were obtained in Ca_(1-2x/3)Y_(x)Cu_(3)Ti_(4)O_(12)-SrCu_(3)Ti_(4)O_(12) composite ceramics.The breakdown field was improved to 35.8 kV cm^(-1) and the nonlinear coefficient in 0.1-1 mA cm^(-2) was enhanced to 14.6 for Ca_(0.67)Y_(0.5)Cu_(3)Ti_(4)O_(12)-SrCu_(3)Ti_(4)O_(12).Noticeably,the withstand voltage of single grain boundary reached up to 24 V while the reported ones were constant to about 3 V.Greatly improved properties were attributed to the formation of superior grain boundary rather than the reduced grain size.Surprisingly,with distinct discrepancy of nonlinear performance in the composites,the resistance and activation energy of grain boundary exhibited little differences.Based on the double Schottky barrier at grain boundary and the field-assisted thermal emission model,it was found that the excellent electrical nonlinearity arose from the formation of deeper and broader interface states at grain boundary.In this case,interface states were not easily entirely filled and the barrier could maintain its height under applied voltage.This work provides a novel routine for enhancing the varistor properties of CaCu_(3)Ti_(4)O_(12) based ceramics by manipulating interface states at grain boundary.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10774040,11174073 and 10911120055/A0402the Program for New Century Excellent Talents in University under Grant No NCET-08-0674the Joint Chinese-Russian Project under Grant No 08-02-92205。
文摘Electrical transport properties of the interface between a Nd_(0.7)Sr_(0.3)MnO_(3) ceramic and a Ag electrode are investigated using the ac impedance over a wide temperature and frequency ranges.The ac impedance measurements give the compressed semicircle arcs at different temperatures,which are used for the analysis of different contributions to electrical transport based on an electrical equivalent circuit.A significant interface-dependent electroresistance effect of 530% is clearly developed around the metal-insulator transition temperature 130K,which is confirmed as the interface-layer dependent Curie temperature by the plot of interfacial conductance with frequency at different temperatures.
基金supported by the National Natural Science Foundation of China (Grant No.50775085)
文摘PbO-ZnO-Na20 ceramic coating was fabricated on the AZ91D Mg-alloy substrate surface by using of evaporated pattern casting (EPC) process. The ceramic coating was characterized through scanning electron microscopy (SEM) observation, energy dispersive X-ray spectrometer (EDS) and so on. The research was emphasized on the formation process of ceramic coating and the interface bonding conditions between ceramic coating and the substrate. Results show that the glass powder (PbO-ZnO-NazO) melts when contacts with the high temperature liquid metal, and solidifies on the surface of the substrate with the decrease of temperature. Therefore, the ceramic coating was successfully prepared with the formation of the bonding interface with the substrate, Beside the influence of coating layer thickness, the vacuum level was also investigated. Further analysis indicates that oxide inclusions and decomposition products of foam pattern had a significant effect on the bonding interface: To obtain a good bonding interface between the ceramic coating and the substrate, the metal liquid oxidation and inclusions must be decreased and the decomposition products of foam pattern should be exhausted from the EPC coating completely.
基金Supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20140813)Postdoctoral Science Foundation of China(Grant No.2012M511274)Introduction of Talents Scientific Research Foundation of Nanjing University of Aeronautics and Astronautics(Grant No.56YAH12034)
文摘An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evans shear-lag model was adopted to analyse the micro-stress field of the damaged composites.The critical matrix strain energy criterion,which presupposes the existence of an ultimate or critical matrix strain energy with matrix,was obtained to simulate the matrix multicracking evolution of CMCs.With the increase of the applied stress,the matrix multicracking and fiber/matrix interface debonding occurred to dissipate the additional energy entered into the composites.The fiber/matrix interface debonded length under matrix multicracking evolution was obtained by treating the interface debonding as a particular crack propagation problem.The conditions for no-debonding and debonding during the evolution of matrix multicracking were discussed in terms of two interfacial properties,i.e.,the interface shear stress and interface debonded toughness.When the fiber/matrix interface was bonded,the matrix multicracking evolution was much more intense compared with the interface debonding;when the fiber/matrix interface was debonded,the matrix crack density increased with the increasing of interface shear stress and interface debonded energy.The theoretical results were compared with experimental data of unidirectional SiC/CAS(calcium alumina silicate),SiC/CAS-Ⅱand SiC/borosilicate composites.
基金Project(51171211) supported by the National Natural Science Foundation of ChinaProject(NCET-10-0837) supported by the Chinese Ministry of Education's Supportive Program for New Century Excellent Talents in UniversitiesProject(2006BAE03B03) supported by the Chinese National Science and Technology Supportive Program
文摘An important step for achieving the knowledge-based design freedom on nano-and interfacial materials is attained by elucidating the related surface and interface thermodynamics from the first principles so as to allow engineering the microstructures for desired properties through smartly designing fabrication processing parameters.This is demonstrated for SnO2 nano-particle surfaces and also a technologically important Ag-SnO2 interface fabricated by in-situ internal oxidation.Based on defect thermodynamics,we first modeled and calculated the equilibrium surface and interface structures,and as well corresponding properties,as a function of the ambient temperature and oxygen partial pressure.A series of first principles energetics calculations were then performed to construct the equilibrium surface and interface phase diagrams,to describe the environment dependence of the microstructures and properties of the surfaces and interfaces during fabrication and service conditions.The use and potential application of these phase diagrams as a process design tool were suggested and discussed.
文摘The research and development of joining methods of ceramics to metals, especially brazing, diffusion bonding and partial transition liquid phase bonding, were introduced. Some opinions were put forward. For new composites emerging, it is necessary to develop new joining methods, particularly in the field of high temperature technique for joining ceramics to superalloys.
基金National Natural Science Foundation of China (51572112, 511172177) the Natural Science Foundation of Jiangsu Province (BK20151340)+2 种基金 theSix Talent Peaks Project of Jiangsu Province (2014-XL-002) the Post Doctorial Science Foundation of China (2014M551512) the Innovation/EntrepreneurshipProgram of Jiangsu Province ([2013]477, [2015]26)
文摘Three kinds of Mo-Ni-Si metallized coatings with various chemical compositions were deposited on SiC ceramic substrates by vacuum fusion sintering process, and the phase compositions of the coatings and their interface microstructures were analyzed. The wetting and spreading properties of molten Ag on the coated SiC ceramic substrates were investigated by the sessile drop technique, and the interfacial behavior of the Ag/coated SiC systems was analyzed. The results show that the coatings are mainly composed of Mo5Si3, MoSi2, Ni2Si, NiSi2 and MoNiSi. The tetragonal MoSi2 grains on the coating surface disappear gradually with the concentration of Mo increasing from 20 at% to 40 at%. The final contact angles of Ag/coated SiC systems at 1000 ℃ for holding 30 min are 45°, 79° and 85° for the coating compositions of Mo20-Ni32-Si48, Mo30-Ni28-Si42 and Mo40-Ni24-Si36, respectively. This result could be closely related to the interactions between the Ag drop and the microstructures of the three Mo-Ni-Si coatings. No obvious reaction layers are found at all the coating/substrate interfaces before and after the wetting tests.
基金supported by the National Key R&D Program of China(Grant No.2017YFB0305700)
文摘The ZrO2 ceranfic was successfully jointed to stainless steel by vacuum brazing with active filler metal. The AgCuTi active filler metal was used and the joining was performed at a temperature of 850 ℃ for 10 rain. The microstructures of the joints were characterized by metallographic microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Metallographic microscopy analysis shows that the morphology of the cross section was a sandwich structure and the TiO is observed in the surface of ZrO2/ stainless steel. The diffusion and enrichment of the elements are the key roles in the brazing of ZrO2 ceramic and stainless steel. The formation of TiCu compounds inhibited the further diffusion of titanium into stainless steel or the ZrO2 ceramic to form TiO compound. In the experimental conditions, the average tensile strength is 80MPa for the joint of ZrO2 ceramic / AgCuTi/ stainless steel systems. A complete joint is formed between the ZrO2 ceramic and stainless steel with the leakage rate at the degree of 10 ^-12 Pa · m^3/s.