期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
High-silica faujasite zeolite-tailored metal encapsulation for the low-temperature production of pentanoic biofuels
1
作者 Wenhao Cui Yuanshuai Liu +11 位作者 Pengfei Guo Zhijie Wu Liqun Kang Huawei Geng Shengqi Chu Linying Wang Dong Fan Zhenghao Jia Haifeng Qi Wenhao Luo Peng Tian Zhongmin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期552-560,I0012,共10页
Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulatio... Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulation of metal nanoclusters into a high-silica zeolite Y in particular with good structural integrity still remains a significant challenge.Herein,we have constructed Ru nanoclusters(~1 nm)encapsulated inside a high-silica zeolite Y(SY)with a SiO_(2)/Al_(2)O_(3) ratio(SAR)of 10 via a cooperative strategy for direct zeolite synthesis and a consecutive impregnation for metal encapsulation.Compared with the benchmark Ru/H-USY and other analogues,the as-prepared Ru/H-SY markedly boosts the yields of pentanoic biofuels and stability in the direct hydrodeoxygenation of biomass-derived levulinate even at a mild temperature of 180℃,which are attributed to the notable stabilization of transition states by the enhanced acid accessibility and properly sized constraints of zeolite cavities owing to the good structural integrity. 展开更多
关键词 High-silica zeolite Y metal encapsulation Bifunctional catalysis HYDRODEOXYGENATION Biofuels
在线阅读 下载PDF
Finned Zn-MFI zeolite encapsulated noble metal nanoparticle catalysts for the oxidative dehydrogenation of propane with carbon dioxide 被引量:1
2
作者 En-Hui Yuan Yiming Niu +7 位作者 Xing Huang Meng Li Jun Bao Yong-Hong Song Bingsen Zhang Zhao-Tie Liu Marc-Georg Willinger Zhong-Wen Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期479-491,I0011,共14页
Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existin... Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix. 展开更多
关键词 Oxidative dehydrogenation PROPANE Carbon dioxide Finned Zn-MFI zeolite Encapsulated noble metal nanoparticles
在线阅读 下载PDF
Confined metal-acid units for boosting benzene hydroalkylation via efficient activation of key intermediate
3
作者 Jianpeng Li Kaihang Sun +8 位作者 Jinyu Huang Yongheng Jia Shufang Zhao Young Dok Kim Li Han Baojun Li Jie Feng Zhongyi Liu Zhikun Peng 《Nano Research》 2025年第2期193-205,共13页
Precisely tuning.the micro-nanoscale characteristics and synergistic effect of metal-acid sites to regulate the distribution of hydroconversion products are significant but challenging.The protonated carbocation inter... Precisely tuning.the micro-nanoscale characteristics and synergistic effect of metal-acid sites to regulate the distribution of hydroconversion products are significant but challenging.The protonated carbocation intermediates triggered by tandem reaction on metal-acid region hinder target product formation due to their high reactivity and instability.Supported M/Zeolite hydroconversion catalysts,which often excel in simple synthesis,ease of separation and recyclability.However,they usually consist of sterically unconstrained metal centers which are isolated from acid sites,only providing limited coupling-selectivity to target product.Herein,metal nanoparticles enveloped in acidic zeolite frameworks were developed and used for investigating the process of hydroalkylation of benzene to cyclohexylbenzene.We show that appropriate metal encapsulation comprising adequate efficient metal-acid units successfully avoids the more thermodynamically favorable hydrogenation of cyclohexene to cyclohexane,but steers to alkylation of cyclohexene with benzene to cyclohexylbenzene.This resulted in the highest cyclohexylbenzene yield of 47.7%among the reported work,and surpassed the performance of all supported M/Zeolite catalysts.Experimental and theoretical results supported that the abundant bifunctional metal-acid units enhance the activation frequency and probability of intermediate cyclohexene.This work might provide insights for the integration strategy of dual active site and guidance for the construction of efficient"metal-acid balance"in tandem reactions. 展开更多
关键词 tandem reaction benzene hydroalkylation metal-acid balance metal encapsulation intermediate transformation
原文传递
Synthesis and properties of ionic conduction polymer for anodic bonding 被引量:9
4
作者 Xu Yin Cui-Rong Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第3期289-292,共4页
In this study,powders of polyethylene oxide(PEO) and lithium perchlorate(Li Cl O4) were used as the raw materials for producing the ionic conduction polymer PEO–Li Cl O4 with different complex-ratios and used for... In this study,powders of polyethylene oxide(PEO) and lithium perchlorate(Li Cl O4) were used as the raw materials for producing the ionic conduction polymer PEO–Li Cl O4 with different complex-ratios and used for anodic bonding through high energy ball milling method,and meanwhile,X-ray diffraction,differential scanning calorimetry(DSC),ultraviolet absorption spectrum test analysis,and other relevant methods were adopted to research the complexation mechanism of PEO and Li Cl O4 and the impact of the ionic conduction polymer with different complex-ratios on the anodic bonding process under the action of the strong static electric field.The research results showed that the crystallization of PEO could be effectively obstructed with increased addition of Li Cl O4,thus increasing the content of PEO–Li Cl O4 in amorphous area and continuously improving the complexation degree and the room-temperature conductivity thereof,and that the higher room-temperature conductivity enabled PEO–Li Cl O4 to better bond with metallic aluminum and have better bonding quality.As the new encapsulating material,such research results will promote the application of new polymer functional materials in micro-electromechanical system(MEMS) components. 展开更多
关键词 anodic conduction bonding ionic ultraviolet metallic amorphous calorimetry milling encapsulation
原文传递
Anti-carbon deposition performance of twinned HZSM-5 encapsulated Ru in the toluene alkylation with methanol
5
作者 Guixian Li Tao Tian +4 位作者 Hanxu Li Jinlian Li Tingna Shao Qi Zhang Peng Dong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期1-8,共8页
Toluene methylation with methanol to produce para-xylene has been extensively and intensively studied.However,the methanol-to-hydrocarbons(MTH)side reaction in this reaction is difficult to be inhibited,which will cau... Toluene methylation with methanol to produce para-xylene has been extensively and intensively studied.However,the methanol-to-hydrocarbons(MTH)side reaction in this reaction is difficult to be inhibited,which will cause a mass of carbon deposition and cover the catalyst surface,resulting in catalyst deactivation.Here,a dual-functional Ru@HZSM-5 catalyst with high para-selectivity and low carbon deposition was prepared by encapsulating Ru metal with HZSM-5.According to catalytic performance studies,the Ru@HZSM-5 catalyst produced xylene selectivity of 98%and para-xylene selectivity of 96%.Meanwhile,we find that carbon precursors(e.g.ethylene)were very little when Ru catalyst was used,but the results of HZSM-5 catalyst were completely opposite.Ru@HZSM-5 catalyst achieves a lower carbon deposition rate of only 6%of HZSM-5.The main possible reason for this is that the initial C-C bond between methanol and the olefin is difficult to form. 展开更多
关键词 Twinned HZSM-5 Encapsulated metal Shape-selective catalysis Anti-carbon deposition
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部