Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulatio...Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulation of metal nanoclusters into a high-silica zeolite Y in particular with good structural integrity still remains a significant challenge.Herein,we have constructed Ru nanoclusters(~1 nm)encapsulated inside a high-silica zeolite Y(SY)with a SiO_(2)/Al_(2)O_(3) ratio(SAR)of 10 via a cooperative strategy for direct zeolite synthesis and a consecutive impregnation for metal encapsulation.Compared with the benchmark Ru/H-USY and other analogues,the as-prepared Ru/H-SY markedly boosts the yields of pentanoic biofuels and stability in the direct hydrodeoxygenation of biomass-derived levulinate even at a mild temperature of 180℃,which are attributed to the notable stabilization of transition states by the enhanced acid accessibility and properly sized constraints of zeolite cavities owing to the good structural integrity.展开更多
Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existin...Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix.展开更多
Precisely tuning.the micro-nanoscale characteristics and synergistic effect of metal-acid sites to regulate the distribution of hydroconversion products are significant but challenging.The protonated carbocation inter...Precisely tuning.the micro-nanoscale characteristics and synergistic effect of metal-acid sites to regulate the distribution of hydroconversion products are significant but challenging.The protonated carbocation intermediates triggered by tandem reaction on metal-acid region hinder target product formation due to their high reactivity and instability.Supported M/Zeolite hydroconversion catalysts,which often excel in simple synthesis,ease of separation and recyclability.However,they usually consist of sterically unconstrained metal centers which are isolated from acid sites,only providing limited coupling-selectivity to target product.Herein,metal nanoparticles enveloped in acidic zeolite frameworks were developed and used for investigating the process of hydroalkylation of benzene to cyclohexylbenzene.We show that appropriate metal encapsulation comprising adequate efficient metal-acid units successfully avoids the more thermodynamically favorable hydrogenation of cyclohexene to cyclohexane,but steers to alkylation of cyclohexene with benzene to cyclohexylbenzene.This resulted in the highest cyclohexylbenzene yield of 47.7%among the reported work,and surpassed the performance of all supported M/Zeolite catalysts.Experimental and theoretical results supported that the abundant bifunctional metal-acid units enhance the activation frequency and probability of intermediate cyclohexene.This work might provide insights for the integration strategy of dual active site and guidance for the construction of efficient"metal-acid balance"in tandem reactions.展开更多
In this study,powders of polyethylene oxide(PEO) and lithium perchlorate(Li Cl O4) were used as the raw materials for producing the ionic conduction polymer PEO–Li Cl O4 with different complex-ratios and used for...In this study,powders of polyethylene oxide(PEO) and lithium perchlorate(Li Cl O4) were used as the raw materials for producing the ionic conduction polymer PEO–Li Cl O4 with different complex-ratios and used for anodic bonding through high energy ball milling method,and meanwhile,X-ray diffraction,differential scanning calorimetry(DSC),ultraviolet absorption spectrum test analysis,and other relevant methods were adopted to research the complexation mechanism of PEO and Li Cl O4 and the impact of the ionic conduction polymer with different complex-ratios on the anodic bonding process under the action of the strong static electric field.The research results showed that the crystallization of PEO could be effectively obstructed with increased addition of Li Cl O4,thus increasing the content of PEO–Li Cl O4 in amorphous area and continuously improving the complexation degree and the room-temperature conductivity thereof,and that the higher room-temperature conductivity enabled PEO–Li Cl O4 to better bond with metallic aluminum and have better bonding quality.As the new encapsulating material,such research results will promote the application of new polymer functional materials in micro-electromechanical system(MEMS) components.展开更多
Toluene methylation with methanol to produce para-xylene has been extensively and intensively studied.However,the methanol-to-hydrocarbons(MTH)side reaction in this reaction is difficult to be inhibited,which will cau...Toluene methylation with methanol to produce para-xylene has been extensively and intensively studied.However,the methanol-to-hydrocarbons(MTH)side reaction in this reaction is difficult to be inhibited,which will cause a mass of carbon deposition and cover the catalyst surface,resulting in catalyst deactivation.Here,a dual-functional Ru@HZSM-5 catalyst with high para-selectivity and low carbon deposition was prepared by encapsulating Ru metal with HZSM-5.According to catalytic performance studies,the Ru@HZSM-5 catalyst produced xylene selectivity of 98%and para-xylene selectivity of 96%.Meanwhile,we find that carbon precursors(e.g.ethylene)were very little when Ru catalyst was used,but the results of HZSM-5 catalyst were completely opposite.Ru@HZSM-5 catalyst achieves a lower carbon deposition rate of only 6%of HZSM-5.The main possible reason for this is that the initial C-C bond between methanol and the olefin is difficult to form.展开更多
基金supported by the National Natural Science Foundation of China (22288101,21991090,21991091,22078316,22272171 and 22109167)the Sino-French International Research Network (Zeolites)+2 种基金the BL01B1 beamline of SPring-8 and the 1W1B station of Beijing Synchrotron Radiation Facility (BSRF)for the support of XAS measurementsthe Division of Energy Research Resources of Dalian Institute of Chemical Physics for the support of iDPC-STEM measurementsthe support of the Alexander von Humboldt Foundation (CHN 1220532 HFST-P)。
文摘Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulation of metal nanoclusters into a high-silica zeolite Y in particular with good structural integrity still remains a significant challenge.Herein,we have constructed Ru nanoclusters(~1 nm)encapsulated inside a high-silica zeolite Y(SY)with a SiO_(2)/Al_(2)O_(3) ratio(SAR)of 10 via a cooperative strategy for direct zeolite synthesis and a consecutive impregnation for metal encapsulation.Compared with the benchmark Ru/H-USY and other analogues,the as-prepared Ru/H-SY markedly boosts the yields of pentanoic biofuels and stability in the direct hydrodeoxygenation of biomass-derived levulinate even at a mild temperature of 180℃,which are attributed to the notable stabilization of transition states by the enhanced acid accessibility and properly sized constraints of zeolite cavities owing to the good structural integrity.
基金supported by the National Natural Science Foundation of China(21902097,21636006 and 21761132025)the China Postdoctoral Science Foundation(2019M653861XB)+1 种基金the Natural Science Foundation of Shaanxi Province(2020JQ-409)the Fundamental Research Funds for the Central Universities(GK201901001 and GK202003035)。
文摘Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix.
基金This work was financially supported by the National Natural Science Foundation of China(No.22278380)China Postdoctoral Science Foundation(Nos.2021M692911,2022T150589,2023TQ0319,and 2023M743174)+1 种基金Excellent Youth of Henan Province(No.242300421122)Zhongyuan postdoctoral innovative talent support program(No.ZYYCYU202012174).
文摘Precisely tuning.the micro-nanoscale characteristics and synergistic effect of metal-acid sites to regulate the distribution of hydroconversion products are significant but challenging.The protonated carbocation intermediates triggered by tandem reaction on metal-acid region hinder target product formation due to their high reactivity and instability.Supported M/Zeolite hydroconversion catalysts,which often excel in simple synthesis,ease of separation and recyclability.However,they usually consist of sterically unconstrained metal centers which are isolated from acid sites,only providing limited coupling-selectivity to target product.Herein,metal nanoparticles enveloped in acidic zeolite frameworks were developed and used for investigating the process of hydroalkylation of benzene to cyclohexylbenzene.We show that appropriate metal encapsulation comprising adequate efficient metal-acid units successfully avoids the more thermodynamically favorable hydrogenation of cyclohexene to cyclohexane,but steers to alkylation of cyclohexene with benzene to cyclohexylbenzene.This resulted in the highest cyclohexylbenzene yield of 47.7%among the reported work,and surpassed the performance of all supported M/Zeolite catalysts.Experimental and theoretical results supported that the abundant bifunctional metal-acid units enhance the activation frequency and probability of intermediate cyclohexene.This work might provide insights for the integration strategy of dual active site and guidance for the construction of efficient"metal-acid balance"in tandem reactions.
基金supported by the National Natural Science Foundation of China (No.51275332)the Natural Science Foundation for Young Scientists of Shanxi Province,China (No.2014021025-2)
文摘In this study,powders of polyethylene oxide(PEO) and lithium perchlorate(Li Cl O4) were used as the raw materials for producing the ionic conduction polymer PEO–Li Cl O4 with different complex-ratios and used for anodic bonding through high energy ball milling method,and meanwhile,X-ray diffraction,differential scanning calorimetry(DSC),ultraviolet absorption spectrum test analysis,and other relevant methods were adopted to research the complexation mechanism of PEO and Li Cl O4 and the impact of the ionic conduction polymer with different complex-ratios on the anodic bonding process under the action of the strong static electric field.The research results showed that the crystallization of PEO could be effectively obstructed with increased addition of Li Cl O4,thus increasing the content of PEO–Li Cl O4 in amorphous area and continuously improving the complexation degree and the room-temperature conductivity thereof,and that the higher room-temperature conductivity enabled PEO–Li Cl O4 to better bond with metallic aluminum and have better bonding quality.As the new encapsulating material,such research results will promote the application of new polymer functional materials in micro-electromechanical system(MEMS) components.
基金financial support from the Hongliu Outstanding Young Talents Funding Program of Lanzhou University of Technology(02/062214)。
文摘Toluene methylation with methanol to produce para-xylene has been extensively and intensively studied.However,the methanol-to-hydrocarbons(MTH)side reaction in this reaction is difficult to be inhibited,which will cause a mass of carbon deposition and cover the catalyst surface,resulting in catalyst deactivation.Here,a dual-functional Ru@HZSM-5 catalyst with high para-selectivity and low carbon deposition was prepared by encapsulating Ru metal with HZSM-5.According to catalytic performance studies,the Ru@HZSM-5 catalyst produced xylene selectivity of 98%and para-xylene selectivity of 96%.Meanwhile,we find that carbon precursors(e.g.ethylene)were very little when Ru catalyst was used,but the results of HZSM-5 catalyst were completely opposite.Ru@HZSM-5 catalyst achieves a lower carbon deposition rate of only 6%of HZSM-5.The main possible reason for this is that the initial C-C bond between methanol and the olefin is difficult to form.