期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Meta-projective Modules, Tensor Products and Limits 被引量:2
1
作者 冯良贵 《Chinese Quarterly Journal of Mathematics》 CSCD 1997年第1期61-64, ,共4页
In this paper twe prove that the inverse limit of metra-projective modules (meta-injective modules resp. ) is also meta-projective (meta-injective resp. ). Let K be a field f R1, R2 be K-algebras, we also obtain a suf... In this paper twe prove that the inverse limit of metra-projective modules (meta-injective modules resp. ) is also meta-projective (meta-injective resp. ). Let K be a field f R1, R2 be K-algebras, we also obtain a sufficient condition for lgldim (R1 R2,)≥lgldim R1+lgldimR2, and wgldim (R1 R2) ≥wgldimR1 +wgldimR2 展开更多
关键词 inverse limit tensor product meta-projective modules meta-injective modules
在线阅读 下载PDF
The Category of Finitely Generated Meta-ProjectiveLeft R-Modules
2
作者 冯良贵 郝志峰 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2002年第2期215-218,共4页
In this paper, it is shown that for a QF ring R, the category of projectiveleft R-modules is a category with factorization if and only if gl.dim R ≤1, moreover, ifP(RR) = P(RR) = O,then the meta-Grothendieck groups o... In this paper, it is shown that for a QF ring R, the category of projectiveleft R-modules is a category with factorization if and only if gl.dim R ≤1, moreover, ifP(RR) = P(RR) = O,then the meta-Grothendieck groups obtained by left modules orby right modules are the same, up to isomorphism. It is also shown that the category of f.g. meta-pojective left R-modules is not only a category with factorization but also acategory with product such that it has a small skeletal subcategory. 展开更多
关键词 meta-projective module meta-Grothendieck group category with factor-ization.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部