期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
MetaPINNs:Predicting soliton and rogue wave of nonlinear PDEs via the improved physics-informed neural networks based on meta-learned optimization
1
作者 郭亚楠 曹小群 +1 位作者 宋君强 冷洪泽 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期96-107,共12页
Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep lea... Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep learning-based methods to the forefront of research on numerical methods for partial differential equations.Among them,physics-informed neural networks(PINNs)are a new class of deep learning methods that show great potential in solving PDEs and predicting complex physical phenomena.In the field of nonlinear science,solitary waves and rogue waves have been important research topics.In this paper,we propose an improved PINN that enhances the physical constraints of the neural network model by adding gradient information constraints.In addition,we employ meta-learning optimization to speed up the training process.We apply the improved PINNs to the numerical simulation and prediction of solitary and rogue waves.We evaluate the accuracy of the prediction results by error analysis.The experimental results show that the improved PINNs can make more accurate predictions in less time than that of the original PINNs. 展开更多
关键词 physics-informed neural networks gradient-enhanced loss function meta-learned optimization nonlinear science
原文传递
Dual-Task Contrastive Meta-Learning for Few-Shot Cross-Domain Emotion Recognition
2
作者 Yujiao Tang Yadong Wu +2 位作者 Yuanmei He Jilin Liu Weihan Zhang 《Computers, Materials & Continua》 2025年第2期2331-2352,共22页
Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion... Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion recognition approaches often struggle in few-shot cross-domain scenarios due to their limited capacity to generalize semantic features across different domains. Additionally, these methods face challenges in accurately capturing complex emotional states, particularly those that are subtle or implicit. To overcome these limitations, we introduce a novel approach called Dual-Task Contrastive Meta-Learning (DTCML). This method combines meta-learning and contrastive learning to improve emotion recognition. Meta-learning enhances the model’s ability to generalize to new emotional tasks, while instance contrastive learning further refines the model by distinguishing unique features within each category, enabling it to better differentiate complex emotional expressions. Prototype contrastive learning, in turn, helps the model address the semantic complexity of emotions across different domains, enabling the model to learn fine-grained emotions expression. By leveraging dual tasks, DTCML learns from two domains simultaneously, the model is encouraged to learn more diverse and generalizable emotions features, thereby improving its cross-domain adaptability and robustness, and enhancing its generalization ability. We evaluated the performance of DTCML across four cross-domain settings, and the results show that our method outperforms the best baseline by 5.88%, 12.04%, 8.49%, and 8.40% in terms of accuracy. 展开更多
关键词 Contrastive learning emotion recognition cross-domain learning DUAL-TASK meta-learnING
在线阅读 下载PDF
Enhancing Classification Algorithm Recommendation in Automated Machine Learning: A Meta-Learning Approach Using Multivariate Sparse Group Lasso
3
作者 Irfan Khan Xianchao Zhang +2 位作者 Ramesh Kumar Ayyasamy Saadat M.Alhashmi Azizur Rahim 《Computer Modeling in Engineering & Sciences》 2025年第2期1611-1636,共26页
The rapid growth of machine learning(ML)across fields has intensified the challenge of selecting the right algorithm for specific tasks,known as the Algorithm Selection Problem(ASP).Traditional trial-and-error methods... The rapid growth of machine learning(ML)across fields has intensified the challenge of selecting the right algorithm for specific tasks,known as the Algorithm Selection Problem(ASP).Traditional trial-and-error methods have become impractical due to their resource demands.Automated Machine Learning(AutoML)systems automate this process,but often neglect the group structures and sparsity in meta-features,leading to inefficiencies in algorithm recommendations for classification tasks.This paper proposes a meta-learning approach using Multivariate Sparse Group Lasso(MSGL)to address these limitations.Our method models both within-group and across-group sparsity among meta-features to manage high-dimensional data and reduce multicollinearity across eight meta-feature groups.The Fast Iterative Shrinkage-Thresholding Algorithm(FISTA)with adaptive restart efficiently solves the non-smooth optimization problem.Empirical validation on 145 classification datasets with 17 classification algorithms shows that our meta-learning method outperforms four state-of-the-art approaches,achieving 77.18%classification accuracy,86.07%recommendation accuracy and 88.83%normalized discounted cumulative gain. 展开更多
关键词 meta-learnING machine learning automated machine learning classification meta-features
在线阅读 下载PDF
A Causal-Transformer Based Meta-Learning Method for Few-Shot Fault Diagnosis in CNC Machine Tool Bearings
4
作者 Youlong Lyu Ying Chu +2 位作者 Qingpeng Qiu Jie Zhang Jutao Guo 《Computers, Materials & Continua》 2025年第11期3393-3418,共26页
In intelligentmanufacturing processes such as aerospace production,computer numerical control(CNC)machine tools require real-time optimization of process parameters to meet precision machining demands.These dynamic op... In intelligentmanufacturing processes such as aerospace production,computer numerical control(CNC)machine tools require real-time optimization of process parameters to meet precision machining demands.These dynamic operating conditions increase the risk of fatigue damage in CNC machine tool bearings,highlighting the urgent demand for rapid and accurate fault diagnosis methods that can maintain production efficiency and extend equipment uptime.However,varying conditions induce feature distribution shifts,and scarce fault samples limitmodel generalization.Therefore,this paper proposes a causal-Transformer-based meta-learning(CTML)method for bearing fault diagnosis in CNC machine tools,comprising three core modules:(1)the original bearing signal is transformed into a multi-scale time-frequency feature space using continuous wavelet transform;(2)a causal-Transformer architecture is designed to achieve feature extraction and fault classification based on the physical causal law of fault propagation;(3)the above mechanisms are integrated into a model-agnostic meta-learning(MAML)framework to achieve rapid cross-condition adaptation through an adaptive gradient pruning strategy.Experimental results using the multiple bearing dataset show that under few-shot cross-condition scenarios(3-way 1-shot and 3-way 5-shot),the proposed CTML outperforms benchmark models(e.g.,Transformer,domain adversarial neural networks(DANN),and MAML)in terms of classification accuracy and sensitivity to operating conditions,while maintaining a moderate level of model complexity. 展开更多
关键词 Fault diagnosis meta-learnING CNC machine tools AEROSPACE
在线阅读 下载PDF
Meta-Auto-Decoder:a Meta-Learning-Based Reduced Order Model for Solving Parametric Partial Differential Equations
5
作者 Zhanhong Ye Xiang Huang +1 位作者 Hongsheng Liu Bin Dong 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1096-1130,共35页
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational... Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods. 展开更多
关键词 Parametric partial differential equations(PDEs) meta-learnING Reduced order modeling Neural networks(NNs) Auto-decoder
在线阅读 下载PDF
Classification and detection of dental images using meta-learning
6
作者 Pradeep Kumar Yadalam Raghavendra Vamsi Anegundi +1 位作者 Mario Alberto Alarcón-Sánchez Artak Heboyan 《World Journal of Clinical Cases》 SCIE 2024年第32期6559-6562,共4页
Meta-learning of dental X-rays is a machine learning technique that can be used to train models to perform new tasks quickly and with minimal input.Instead of just memorizing a task,this is accomplished through teachi... Meta-learning of dental X-rays is a machine learning technique that can be used to train models to perform new tasks quickly and with minimal input.Instead of just memorizing a task,this is accomplished through teaching a model how to learn.Algorithms for meta-learning are typically trained on a collection of training problems,each of which has a limited number of labelled instances.Multiple Xray classification tasks,including the detection of pneumonia,coronavirus disease 2019,and other disorders,have demonstrated the effectiveness of meta-learning.Meta-learning has the benefit of allowing models to be trained on dental X-ray datasets that are too few for more conventional machine learning methods.Due to the high cost and lengthy collection process associated with dental imaging datasets,this is significant for dental X-ray classification jobs.The ability to train models that are more resistant to fresh input is another benefit of meta-learning. 展开更多
关键词 Artificial intelligence meta-learnING Dental diagnosis Image segmentation Medical image interpretation Dental radiography
暂未订购
利用T5和MAML的多语种英语翻译质量改进研究
7
作者 梅玲 孙红萍 《鄂州大学学报》 2025年第2期98-102,105,共6页
为改善翻译效果与质量,结合T5 (Text-To-Text Transfer Transformer)和MAML (Model-Agnostic Meta-Learning),对其在多语种英语翻译中的质量可持续改进与应用进行了研究。采用自回归学习方法,对T5模型预训练参数进行微调,构建一个生成... 为改善翻译效果与质量,结合T5 (Text-To-Text Transfer Transformer)和MAML (Model-Agnostic Meta-Learning),对其在多语种英语翻译中的质量可持续改进与应用进行了研究。采用自回归学习方法,对T5模型预训练参数进行微调,构建一个生成式的多语种英语翻译模型,结合MAML框架,在多个任务上进行训练,使模型在少量的新任务数据上实现快速自适应,利用网络爬虫,构建多语种平行语料库,并以BLEU(Bilingual Evaluation Understudy)及TER(Translation Error Rate)为指标,对基于T5和MAML的翻译模型进行了质量评估。实验结果显示,相较于OpenNMT (Open Neural Machine Translation)、Transformer以及Opus-MT(Open Parallel Corpus-Machine Translation)基线模型,该文模型BLEU Score均值分别高出6.05%、2.59%以及2.05%。结论表明,T5-MAML模型能够有效改进多语种英语翻译质量,实现更自然流畅的翻译输出。 展开更多
关键词 多语言英语翻译 Text-To-Text Transfer Transformer Model-Agnostic meta-learning 英语翻译模型
在线阅读 下载PDF
Unsupervised vehicle re-identification via meta-type generalization
8
作者 HUANG Chengti ZHANG Xiaoxiang +1 位作者 ZHAO Qianqian ZHU Jianqing 《High Technology Letters》 2025年第1期32-40,共9页
Unsupervised vehicle re-identification(Re-ID)methods have garnered widespread attention due to their potential in real-world traffic monitoring.However,existing unsupervised domain adaptation techniques often rely on ... Unsupervised vehicle re-identification(Re-ID)methods have garnered widespread attention due to their potential in real-world traffic monitoring.However,existing unsupervised domain adaptation techniques often rely on pseudo-labels generated from the source domain,which struggle to effectively address the diversity and dynamic nature of real-world scenarios.Given the limited variety of common vehicle types,enhancing the model’s generalization capability across these types is crucial.To this end,an innovative approach called meta-type generalization(MTG)is proposed.By dividing the training data into meta-train and meta-test sets based on vehicle type information,a novel gradient interaction computation strategy is designed to enhance the model’s ability to learn typeinvariant features.Integrated into the ResNet50 backbone,the MTG model achieves improvements of 4.50%and 12.04%on the Veri-776 and VRAI datasets,respectively,compared with traditional unsupervised algorithms,and surpasses current state-of-the-art methods.This achievement holds promise for application in intelligent traffic systems,enabling more efficient urban traffic solutions. 展开更多
关键词 deep learning unsupervised vehicle re-identification(Re-ID) meta-learnING
在线阅读 下载PDF
Few-shot working condition recognition of a sucker-rod pumping system based on a 4-dimensional time-frequency signature and meta-learning convolutional shrinkage neural network 被引量:2
9
作者 Yun-Peng He Chuan-Zhi Zang +4 位作者 Peng Zeng Ming-Xin Wang Qing-Wei Dong Guang-Xi Wan Xiao-Ting Dong 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1142-1154,共13页
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le... The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions. 展开更多
关键词 Few-shot learning Indicator diagram meta-learnING Soft thresholding Sucker-rod pumping system Time–frequency signature Working condition recognition
原文传递
Crop Disease Recognition Based on Improved Model-Agnostic Meta-Learning 被引量:2
10
作者 Xiuli Si Biao Hong +1 位作者 Yuanhui Hu Lidong Chu 《Computers, Materials & Continua》 SCIE EI 2023年第6期6101-6118,共18页
Currently,one of the most severe problems in the agricultural industry is the effect of diseases and pests on global crop production and economic development.Therefore,further research in the field of crop disease and... Currently,one of the most severe problems in the agricultural industry is the effect of diseases and pests on global crop production and economic development.Therefore,further research in the field of crop disease and pest detection is necessary to address the mentioned problem.Aiming to identify the diseased crops and insect pests timely and accurately and perform appropriate prevention measures to reduce the associated losses,this article proposes a Model-Agnostic Meta-Learning(MAML)attention model based on the meta-learning paradigm.The proposed model combines meta-learning with basic learning and adopts an Efficient Channel Attention(ECA)mod-ule.The module follows the local cross-channel interactive strategy of non-dimensional reduction to strengthen the weight parameters corresponding to certain disease characteristics.The proposed meta-learning-based algorithm has the advantage of strong generalization capability and,by integrating the ECA module in the original model,can achieve more efficient detection in new tasks.The proposed model is verified by experiments,and the experimental results show that compared with the original MAML model,the proposed improved MAML-Attention model has a better performance by 1.8–9.31 percentage points in different classification tasks;the maximum accuracy is increased by 1.15–8.2 percentage points.The experimental results verify the strong generalization ability and good robustness of the proposed MAML-Attention model.Compared to the other few-shot methods,the proposed MAML-Attention performs better. 展开更多
关键词 meta-learnING disease image recognition deep learning attention mechanism
在线阅读 下载PDF
Application of meta-learning in cyberspace security:a survey 被引量:1
11
作者 Aimin Yang Chaomeng Lu +4 位作者 Jie Li Xiangdong Huang Tianhao Ji Xichang Li Yichao Sheng 《Digital Communications and Networks》 SCIE CSCD 2023年第1期67-78,共12页
In recent years,machine learning has made great progress in intrusion detection,network protection,anomaly detection,and other issues in cyberspace.However,these traditional machine learning algorithms usually require... In recent years,machine learning has made great progress in intrusion detection,network protection,anomaly detection,and other issues in cyberspace.However,these traditional machine learning algorithms usually require a lot of data to learn and have a low recognition rate for unknown attacks.Among them,“one-shot learning”,“few-shot learning”,and“zero-shot learning”are challenges that cannot be ignored for traditional machine learning.The more intractable problem in cyberspace security is the changeable attack mode.When a new attack mode appears,there are few or even zero samples that can be learned.Meta-learning comes from imitating human problem-solving methods as humans can quickly learn unknown things based on their existing knowledge when learning.Its purpose is to quickly obtain a model with high accuracy and strong generalization through less data training.This article first divides the meta-learning model into five research directions based on different principles of use.They are model-based,metric-based,optimization-based,online-learning-based,or stacked ensemble-based.Then,the current problems in the field of cyberspace security are categorized into three branches:cyber security,information security,and artificial intelligence security according to different perspectives.Then,the application research results of various meta-learning models on these three branches are reviewed.At the same time,based on the characteristics of strong generalization,evolution,and scalability of meta-learning,we contrast and summarize its advantages in solving problems.Finally,the prospect of future deep application of meta-learning in the field of cyberspace security is summarized. 展开更多
关键词 meta-learnING Cyberspace security Machine learning Few-shot learning
在线阅读 下载PDF
Relationships among achievement motivation,meta-learning capacity and creativity tendencies among Chinese baccalaureate nursing students 被引量:1
12
作者 Zi-Meng Li Jia Liu +2 位作者 Yue Cheng Yi-Wei Luo Yan-Hui Liu 《TMR Integrative Nursing》 2020年第3期97-105,共9页
capacity and creativity tendencies among Chinese baccalaureate nursing students.Design:Cross-sectional study design.Methods:A convenient sample of 445 baccalaureate nursing students were surveyed in two universities i... capacity and creativity tendencies among Chinese baccalaureate nursing students.Design:Cross-sectional study design.Methods:A convenient sample of 445 baccalaureate nursing students were surveyed in two universities in Tianjin,China.Students completed a questionnaire that included their demographic information,Achievement Motivation Scale,Meta-Learning Capacity Questionnaire,and Creativity Tendencies Scale.Pearson correlation was performed to test the correlation among achievement motivation,meta-learning capacity and creativity tendencies.Hierarchical linear regression analyses were performed to explore the mediating role of meta-learning capacity.Results:The participants had moderate levels of achievement motivation(mean score 2.383±0.240)and meta-learning capacity(mean score 1.505±0.241)and a medium-high level of creativity tendency(mean score 1.841±0.288).Creativity tendencies was significantly associated with both achievement motivation and meta-learning capacity(both P<0.01).Furthermore,meta-learning capacity mediated the relationship between achievement motivation and high creativity tendencies.Conclusion:The study hypotheses were supported.Higher achievement motivation,and meta-learning capacity can increase creativity tendencies of baccalaureate nursing students,and meta-learning capacity was found to mediate the relationship between achievement motivation and creativity tendencies.Nursing educators should pay attention to the positive role of meta-learning capacity in nursing students’learning,and make them more confident when they finish their studies. 展开更多
关键词 Achievement motivation meta-learning capacity Creativity tendencies Nursing students Mediating effect
在线阅读 下载PDF
Smoother manifold for graph meta-learning
13
作者 ZHAO Wencang WANG Chunxin XU Changkai 《High Technology Letters》 EI CAS 2022年第1期48-55,共8页
Meta-learning provides a framework for the possibility of mimicking artificial intelligence.How-ever,data distribution of the training set fails to be consistent with the one of the testing set as the limited domain d... Meta-learning provides a framework for the possibility of mimicking artificial intelligence.How-ever,data distribution of the training set fails to be consistent with the one of the testing set as the limited domain differences among them.These factors often result in poor generalization in existing meta-learning models.In this work,a novel smoother manifold for graph meta-learning(SGML)is proposed,which derives the similarity parameters of node features from the relationship between nodes and edges in the graph structure,and then utilizes the similarity parameters to yield smoother manifold through embedded propagation module.Smoother manifold can naturally filter out noise from the most important components when generalizing the local mapping relationship to the global.Besides suiting for generalizing on unseen low data issues,the framework is capable to easily perform transductive inference.Experimental results on MiniImageNet and TieredImageNet consistently show that applying SGML to supervised and semi-supervised classification can improve the performance in reducing the noise of domain shift representation. 展开更多
关键词 meta-learnING smoother manifold similarity parameter graph structure
在线阅读 下载PDF
Meta-Learning of Evolutionary Strategy for Stock Trading
14
作者 Erik Sorensen Ryan Ozzello +3 位作者 Rachael Rogan Ethan Baker Nate Parks Wei Hu 《Journal of Data Analysis and Information Processing》 2020年第2期86-98,共13页
Meta-learning algorithms learn about the learning process itself so it can speed up subsequent similar learning tasks with fewer data and iterations. If achieved, these benefits expand the flexibility of traditional m... Meta-learning algorithms learn about the learning process itself so it can speed up subsequent similar learning tasks with fewer data and iterations. If achieved, these benefits expand the flexibility of traditional machine learning to areas where there are small windows of time or data available. One such area is stock trading, where the relevance of data decreases as time passes, requiring fast results on fewer data points to respond to fast-changing market trends. We, to the best of our knowledge, are the first to apply meta-learning algorithms to an evolutionary strategy for stock trading to decrease learning time by using fewer iterations and to achieve higher trading profits with fewer data points. We found that our meta-learning approach to stock trading earns profits similar to a purely evolutionary algorithm. However, it only requires 50 iterations during test, versus thousands that are typically required without meta-learning, or 50% of the training data during test. 展开更多
关键词 meta-learnING MAML REPTILE Machine Learning NATURAL EVOLUTIONARY Strategy STOCK TRADING
在线阅读 下载PDF
A Meta-Learning Approach for Aircraft Trajectory Prediction
15
作者 Syed Ibtehaj Raza Rizvi Jamal Habibi Markani René Jr. Landry 《Communications and Network》 2023年第2期43-64,共22页
The aviation industry has seen significant advancements in safety procedures over the past few decades, resulting in a steady decline in aviation deaths worldwide. However, the safety standards in General Aviation (GA... The aviation industry has seen significant advancements in safety procedures over the past few decades, resulting in a steady decline in aviation deaths worldwide. However, the safety standards in General Aviation (GA) are still lower compared to those in commercial aviation. With the anticipated growth in air travel, there is an imminent need to improve operational safety in GA. One way to improve aircraft and operational safety is through trajectory prediction. Trajectory prediction plays a key role in optimizing air traffic control and improving overall flight safety. This paper proposes a meta-learning approach to predict short- to mid-term trajectories of aircraft using historical real flight data collected from multiple GA aircraft. The proposed solution brings together multiple models to improve prediction accuracy. In this paper, we are combining two models, Random Forest Regression (RFR) and Long Short-term Memory (LSTM), using k-Nearest Neighbors (k-NN), to output the final prediction based on the combined output of the individual models. This approach gives our model an edge over single-model predictions. We present the results of our meta-learner and evaluate its performance against individual models using the Mean Absolute Error (MAE), Absolute Altitude Error (AAE), and Root Mean Squared Error (RMSE) evaluation metrics. The proposed methodology for aircraft trajectory forecasting is discussed in detail, accompanied by a literature review and an overview of the data preprocessing techniques used. The results demonstrate that the proposed meta-learner outperforms individual models in terms of accuracy, providing a more robust and proactive approach to improve operational safety in GA. 展开更多
关键词 Trajectory Prediction General Aviation Safety meta-learnING Random Forest Regression Long Short-Term Memory Short to Mid-Term Trajectory Prediction Operational Safety
在线阅读 下载PDF
Rough Set Assisted Meta-Learning Method to Select Learning Algorithms
16
作者 Lisa Fan Min-xiao Lei 《南昌工程学院学报》 CAS 2006年第2期83-87,91,共6页
In this paper,we propose a Rough Set assisted Meta-Learning method on how to select the most-suited machine-learning algorithms with minimal effort for a new given dataset. A k-Nearest Neighbor (k-NN) algorithm is use... In this paper,we propose a Rough Set assisted Meta-Learning method on how to select the most-suited machine-learning algorithms with minimal effort for a new given dataset. A k-Nearest Neighbor (k-NN) algorithm is used to recognize the most similar datasets that have been performed by all of the candidate algorithms.By matching the most similar datasets we found,the corresponding performance of the candidate algorithms is used to generate recommendation to the user.The performance derives from a multi-criteria evaluation measure-ARR,which contains both accuracy and time.Furthermore,after applying Rough Set theory,we can find the redundant properties of the dataset.Thus,we can speed up the ranking process and increase the accuracy by using the reduct of the meta attributes. 展开更多
关键词 meta-learnING algorithm recommendation Rough sets
在线阅读 下载PDF
A Novel Deep Model with Meta-Learning for Rolling Bearing Few-Shot Fault Diagnosis
17
作者 Xiaoxia Liang Ming Zhang +3 位作者 Guojin Feng Yuchun Xu Dong Zhen Fengshou Gu 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第2期102-114,共13页
Machine learning,especially deep learning,has been highly successful in data-intensive applications;however,the performance of these models will drop significantly when the amount of the training data amount does not ... Machine learning,especially deep learning,has been highly successful in data-intensive applications;however,the performance of these models will drop significantly when the amount of the training data amount does not meet the requirement.This leads to the so-called few-shot learning(FSL)problem,which requires the model rapidly generalize to new tasks that containing only a few labeled samples.In this paper,we proposed a new deep model,called deep convolutional meta-learning networks,to address the low performance of generalization under limited data for bearing fault diagnosis.The essential of our approach is to learn a base model from the multiple learning tasks using a support dataset and finetune the learnt parameters using few-shot tasks before it can adapt to the new learning task based on limited training data.The proposed method was compared to several FSL methods,including methods with and without pre-training the embedding mapping,and methods with finetuning the classifier or the whole model by utilizing the few-shot data from the target domain.The comparisons are carried out on 1-shot and 10-shot tasks using the Case Western Reserve University bearing dataset and a cylindrical roller bearing dataset.The experimental result illustrates that our method has good performance on the bearing fault diagnosis across various few-shot conditions.In addition,we found that the pretraining process does not always improve the prediction accuracy. 展开更多
关键词 BEARING deep model fault diagnosis few-shot learning meta-learnING
在线阅读 下载PDF
MSO-DETR: Metric space optimization for few-shot object detection 被引量:1
18
作者 Haifeng Sima Manyang Wang +2 位作者 Lanlan Liu Yudong Zhang Junding Sun 《CAAI Transactions on Intelligence Technology》 2024年第6期1515-1533,共19页
In the metric-based meta-learning detection model,the distribution of training samples in the metric space has great influence on the detection performance,and this influence is usually ignored by traditional meta-det... In the metric-based meta-learning detection model,the distribution of training samples in the metric space has great influence on the detection performance,and this influence is usually ignored by traditional meta-detectors.In addition,the design of metric space might be interfered with by the background noise of training samples.To tackle these issues,we propose a metric space optimisation method based on hyperbolic geometry attention and class-agnostic activation maps.First,the geometric properties of hyperbolic spaces to establish a structured metric space are used.A variety of feature samples of different classes are embedded into the hyperbolic space with extremely low distortion.This metric space is more suitable for representing tree-like structures between categories for image scene analysis.Meanwhile,a novel similarity measure function based on Poincarédistance is proposed to evaluate the distance of various types of objects in the feature space.In addition,the class-agnostic activation maps(CCAMs)are employed to re-calibrate the weight of foreground feature information and suppress background information.Finally,the decoder processes the high-level feature information as the decoding of the query object and detects objects by predicting their locations and corresponding task encodings.Experimental evaluation is conducted on Pascal VOC and MS COCO datasets.The experiment results show that the effectiveness of the authors’method surpasses the performance baseline of the excellent few-shot detection models. 展开更多
关键词 few-shot object detection hyperbolic space meta-learnING metric space
在线阅读 下载PDF
Assessor Feedback Mechanism for Machine Learning Model
19
作者 Musulmon Lolaev Anand Paul Jeonghong Kim 《Computers, Materials & Continua》 SCIE EI 2024年第12期4707-4726,共20页
Evaluating artificial intelligence(AI)systems is crucial for their successful deployment and safe operation in real-world applications.The assessor meta-learning model has been recently introduced to assess AI system ... Evaluating artificial intelligence(AI)systems is crucial for their successful deployment and safe operation in real-world applications.The assessor meta-learning model has been recently introduced to assess AI system behaviors developed from emergent characteristics of AI systems and their responses on a test set.The original approach lacks covering continuous ranges,for example,regression problems,and it produces only the probability of success.In this work,to address existing limitations and enhance practical applicability,we propose an assessor feedback mechanism designed to identify and learn from AI system errors,enabling the system to perform the target task more effectively while concurrently correcting its mistakes.Our empirical analysis demonstrates the efficacy of this approach.Specifically,we introduce a transition methodology that converts prediction errors into relative success,which is particularly beneficial for regression tasks.We then apply this framework to both neural network and support vector machine models across regression and classification tasks,thoroughly testing its performance on a comprehensive suite of 30 diverse datasets.Our findings highlight the robustness and adaptability of the assessor feedback mechanism,showcasing its potential to improve model accuracy and reliability across varied data contexts. 展开更多
关键词 Artificial Intelligence assessor model EVALUATION meta-learnING TRUSTWORTHY explainable AI
在线阅读 下载PDF
NFHP-RN:AMethod of Few-Shot Network Attack Detection Based on the Network Flow Holographic Picture-ResNet
20
作者 Tao Yi Xingshu Chen +2 位作者 Mingdong Yang Qindong Li Yi Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期929-955,共27页
Due to the rapid evolution of Advanced Persistent Threats(APTs)attacks,the emergence of new and rare attack samples,and even those never seen before,make it challenging for traditional rule-based detection methods to ... Due to the rapid evolution of Advanced Persistent Threats(APTs)attacks,the emergence of new and rare attack samples,and even those never seen before,make it challenging for traditional rule-based detection methods to extract universal rules for effective detection.With the progress in techniques such as transfer learning and meta-learning,few-shot network attack detection has progressed.However,challenges in few-shot network attack detection arise from the inability of time sequence flow features to adapt to the fixed length input requirement of deep learning,difficulties in capturing rich information from original flow in the case of insufficient samples,and the challenge of high-level abstract representation.To address these challenges,a few-shot network attack detection based on NFHP(Network Flow Holographic Picture)-RN(ResNet)is proposed.Specifically,leveraging inherent properties of images such as translation invariance,rotation invariance,scale invariance,and illumination invariance,network attack traffic features and contextual relationships are intuitively represented in NFHP.In addition,an improved RN network model is employed for high-level abstract feature extraction,ensuring that the extracted high-level abstract features maintain the detailed characteristics of the original traffic behavior,regardless of changes in background traffic.Finally,a meta-learning model based on the self-attention mechanism is constructed,achieving the detection of novel APT few-shot network attacks through the empirical generalization of high-level abstract feature representations of known-class network attack behaviors.Experimental results demonstrate that the proposed method can learn high-level abstract features of network attacks across different traffic detail granularities.Comparedwith state-of-the-artmethods,it achieves favorable accuracy,precision,recall,and F1 scores for the identification of unknown-class network attacks through cross-validation onmultiple datasets. 展开更多
关键词 APT attacks spatial pyramid pooling NFHP(network flow holo-graphic picture) ResNet self-attention mechanism meta-learnING
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部