Mesoscale eddies play a central role in the poleward oceanic heat flux in the Southern Ocean.Previous studies have documented changes in the location of temperature fronts in the Southern Ocean,but little attention ha...Mesoscale eddies play a central role in the poleward oceanic heat flux in the Southern Ocean.Previous studies have documented changes in the location of temperature fronts in the Southern Ocean,but little attention has been paid to changes in the genesis locations of mesoscale eddies.Here,we provide evidence from three decades of satellite altimetry observations for the heterogeneity of the poleward shift of mesoscale activities,with the largest trend of~0.23°±0.05°(10 yr)^(-1) over the Atlantic sector and a moderate trend of~0.1°±0.03°(10 yr)^(-1) over the Indian sector,but no significant trend in the Pacific sector.The poleward shift of mesoscale eddies is associated with a southward shift of the local westerly winds while being constrained by the major topographies.As the poleward shift of westerly winds is projected to persist,the poleward oceanic heat flux from mesoscale eddies may influence future ice melt.展开更多
Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,c...Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,capturing extreme storm cases over complex terrain remains challenging.This study utilizes the Global–Regional Integrated Forecast System(GRIST)with variable resolution to simulate an eastward-propagating MCS event.The impact of three microphysics schemes,including two single-moment schemes(WSM6,Lin)and one double-moment scheme(Morrison),on the model sensitivity of MCS precipitation simulations is investigated.The results demonstrate that while all the schemes capture the spatial distribution and temporal variation of MCS precipitation,the Morrison scheme alleviates overestimated precipitation compared to the Lin and WSM6 schemes.The ascending motion gradually becomes weaker in the Morrison scheme during the MCS movement process.Compared to the runs with convection parameterization,the explicit-convection setup at 3.5-km resolution reduces disparities in atmospheric dynamics due to microphysics sensitivity in terms of vertical motions and horizontal kinetic energy at the high-wavenumber regimes.The explicit-convection setup more accurately captures the propagation of both main and secondary precipitation centers during the MCS development,diminishing the differences in both precipitation intensity and propagation features between the Morrison and two single-moment schemes.These findings underscore the importance of microphysics schemes for global nonhydrostatic modeling at the kilometer scale.The role of explicit convection for reducing model uncertainty is also outlined.展开更多
In this work,a morphology transition mode is revealed in ultra-high molecular weight polyethylene(UHMWPE)when stretching at 120℃:moving from the slightly deformed region to the necked region,the morphology transfers ...In this work,a morphology transition mode is revealed in ultra-high molecular weight polyethylene(UHMWPE)when stretching at 120℃:moving from the slightly deformed region to the necked region,the morphology transfers from small spherulites to a mixture of transcrystalline and enlarged spherulites,and finally to pure transcrystalline;meanwhile,the lamellae making up the transcrystalline or spherulite were fragmented into smaller ones;spatial scan by wide-angle X-ray scattering(WAXS)and small angle X-ray scattering(SAXS)revealed that the crystallinity is increased from 25.3%to 30.1%and the crystal orientation was enhanced greatly,but the lamellae orientation was quite weak.The rise of enlarged spherulites or a mixture of transcrystalline and spherulites can also be found in UHMWPE stretched at 140 and 148℃,whereas absent in UHMWPE stretched at 30℃.In situ WAXS/SAXS measurements suggest that during stretching at 30℃,the crystallinity is reduced drastically,and a few voids are formed as the size increases from 50 nm to 210 nm;during stretching at 120℃,the crystallinity is reduced only slightly,and the kinking of lamellae occurs at large Hencky strain;during stretching at 140 and 148℃,an increase in crystallinity with stretching strain can be found,and the lamellae are also kinked.Taking the microstructure and morphology transition into consideration,a mesoscale morphology transition mode is proposed,in the stretching-induced crystallization the fragmented lamellae can be rearranged into new supra-structures such as spherulite or transcrystalline during hot stretching.展开更多
Mesoscale eddies play a pivotal role in deciphering the intricacies of ocean dynamics and the transport of heat,salt,and nutrients.Accurate representation of these eddies in ocean models is essential for improving mod...Mesoscale eddies play a pivotal role in deciphering the intricacies of ocean dynamics and the transport of heat,salt,and nutrients.Accurate representation of these eddies in ocean models is essential for improving model predictions.In this study,we propose a convolutional neural network(CNN)that combines data-driven techniques with physical principles to develop a robust and interpretable parameterization scheme for mesoscale eddies in ocean modeling.We use a highresolution reanalysis dataset to extract subgrid eddy momentum and then applying machine learning algorithms to identify patterns and correlations.To ensure physical consistency,we have introduced conservation of momentum constraints in our CNN parameterization scheme through soft and hard constraints.The interpretability analysis illustrate that the pre-trained CNN parameterization shows promising results in accurately solving the resolved mean velocity and effectively capturing the representation of unresolved subgrid turbulence processes.Furthermore,to validate the CNN parameterization scheme offline,we conduct simulations using the Massachusetts Institute of Technology general circulation model(MITgcm)ocean model.A series of experiments is conducted to compare the performance of the model with the CNN parameterization scheme and high-resolution simulations.The offline validation demonstrates the effectiveness of the CNN parameterization scheme in improving the representation of mesoscale eddies in the MITgcm ocean model.Incorporating the CNN parameterization scheme leads to better agreement with high-resolution simulations and a more accurate representation of the kinetic energy spectra.展开更多
Mesoscale air-sea interactions play a critical role in damping eddy activities.However,how mesoscale heat flux influences the distribution of eddy kinetic energy(EKE)in the wavenumber space remains unclear.In this stu...Mesoscale air-sea interactions play a critical role in damping eddy activities.However,how mesoscale heat flux influences the distribution of eddy kinetic energy(EKE)in the wavenumber space remains unclear.In this study,we investigate the EKE and temperature variance(T_(var))budgets in the Kuroshio Extension(KE)region using wavenumber spectral analysis based on 1/10°coupled climate simulations.These simulations include a standard high-resolution simulation and a smoothed simulation that overlooks mesoscale heat flux.By comparing the differences between these models,we confirm that air-sea heat exchange significantly dissipates Tvar.Neglecting mesoscale heat flux results in a 60% underestimation of the Tvar damping rate,which in turn increases energy transfer to EKE through the vertical buoyancy flux by 22%.This enhanced vertical buoyancy flux leads to a 20% higher EKE level and larger energy budget terms,particularly in the diffusion term,which is closely related to wind power.Furthermore,underestimating air-sea heat exchange could lead to an overestimation of the inverse kinetic energy cascade,thereby distorting the overall energy budget in the KE region.展开更多
Mesoscale eddies are widespread in the global ocean,significantly influencing the physical,chemical,and biological structures of water column.Based on the CTD data and suspended particulate matter(SPM)data collected a...Mesoscale eddies are widespread in the global ocean,significantly influencing the physical,chemical,and biological structures of water column.Based on the CTD data and suspended particulate matter(SPM)data collected at 36 hydrographic stations during a field cruise in southern Mozambique Channel,combined with satellite altimeter observations,we identified a series of mesoscale eddies traversing the Mozambique Channel.Our hydrographic measurements,coupled with in situ chlorophyll fluorescence data,reveal that these eddies significantly influence thermohaline structure and chlorophyll distribution,which in turn affects primary productivity and SPM concentrations in the upper ocean.The cyclonic eddies facilitate the upwelling of cold subsurface water,leading to a shallowing of the pycnocline and the creation of a low-temperature anomaly with variable salinity anomalies at different depths.Conversely,anticyclonic eddies submerge warm surface water,deepening the pycnocline,and resulting in a high-temperature anomaly accompanied by distinct salinity patterns.Significantly,a coastal anticyclonic eddy was observed to intercept terrestrial material from the Delagoa Bight,redirecting it west of 36°E.This study presents unique and quasi-synchronous CTD datasets capturing mesoscale eddy impacts,and provided valuable insights into SPM variability within the often-neglected southern Mozambique Channel.展开更多
Dear Editor,The mammalian brain exhibits cross-scale complexity in neuronal morphology and connectivity,the study of which demands high-resolution morphological reconstruction of individual neurons across the entire b...Dear Editor,The mammalian brain exhibits cross-scale complexity in neuronal morphology and connectivity,the study of which demands high-resolution morphological reconstruction of individual neurons across the entire brain[1-4].Current commonly used approaches for such mesoscale brain mapping include two main types of three-dimensional fluorescence microscopy:the block-face methods,and the lightsheet-based methods[5,6].In general,the high imaging speed and light efficiency of light-sheet microscopy make it a suitable tool for high-throughput volumetric imaging,especially when combined with tissue-clearing techniques.However,large brain samples pose major challenges to this approach.展开更多
Aiming at the influence of ocean mesoscale eddy on underwater acoustic propagation, a theoretical computation model of ocean mesoscale eddy was established based on the in-situ hydrographic data in the sea area of oce...Aiming at the influence of ocean mesoscale eddy on underwater acoustic propagation, a theoretical computation model of ocean mesoscale eddy was established based on the in-situ hydrographic data in the sea area of ocean mesoscale eddy. An underwater acoustic modeI-MMPE was used to simulate the acoustic propagation under the influence of different types, different intensities and positions of eddies, and different frequencies and depths of sources. It is found that warm-core eddy can make the convergence zone "move back" and the width of it increases, while cold-core eddy can make the convergence zone "move forward" and the width of it decreases. The bigger the intensity of eddy, the more notable the "forward "or "back "effect. Sound source located depths and source frequencies can change the acoustic propagation characteristics in the eddy area.展开更多
The strong heavy rainfall on 3–5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the...The strong heavy rainfall on 3–5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the mei-yu season. Simulation results from the ARPS (Advanced Regional Prediction) data analysis system (ADAS) and WRF model were used to study the development of the mesoscale convective system (MCS) and mesoscale convective vortex (MCV). It is confirmed that the MCV formed during the development of a previous severe MCS. A closed vortex circulation can be found below 600 hPa with a vorticity maximum in the middle troposphere. The evolution process of the MCV can be divided into three stages: initiation, maturation, and dissipation. During the mature stage of the MCV, a downdraft occurred in the center of the MCV and new convection developed in southeast of the MCV. The convergence and the tilting in the lower troposphere convergence and vertical advection in the middle troposphere were the main vorticity sources in the MCV initiation stage. Finally, a conceptual model between the mei-yu front and the embedded MCS and MCV is proposed. The mei-yu front was the background condition for the development of the MCS and MCV. A low level jet (LLJ) transported moisture and the weak cold air invasion via a trough aloft in the middle troposphere and triggering the severe convection. Furthermore, the intensified jet was able to result in the initiation of new "secondary" areas of convection in the eastern part of the MCV.展开更多
A vorticity budget investigation is performed using the output data from a numerical simulation of a typical MCV (mesoscale convectively generated votex) case in South China. Results suggest that the divergence caus...A vorticity budget investigation is performed using the output data from a numerical simulation of a typical MCV (mesoscale convectively generated votex) case in South China. Results suggest that the divergence caused by convection in the low troposphere is the main producer of positive vorticity, while vertical vorticity transferred by the tilting term from the horizontal vorticity compensates the upward output of cyclonic vorticity. Scale analyses of the vorticity equation suggest that the advection of planetary vorticity can be neglected owing to the low latitude, which is di?erent from the larger scale systems in high latitude areas. In addition, the distribution of relative vorticity tendency on pressure level is not uniform. A vortex will move along the vector from the negative to the positive vorticity tendency region. The mechanism of the phenomenon—that nearly all of the convectively ascending region is located southward/southeastward of the vortex center—is also discussed. Convergence with regard to latent heat release would be in favor of the spin-up of meso-vortex, however, the horizontal vorticity caused by wind shear is tilted by vertical motion due to convection. Consequently, the negative and positive vorticity tendencies are located symmetrically about the convective center, which suggests that the vortex southward movement is dynamically driven by convection.展开更多
Mesoscale research conducted by Chinese meteorologists during the past four years is reviewed. Advances in theoretical studies include (a) mesoscale quasi-balanced and semi-balanced dynamics, derived through scale ana...Mesoscale research conducted by Chinese meteorologists during the past four years is reviewed. Advances in theoretical studies include (a) mesoscale quasi-balanced and semi-balanced dynamics, derived through scale analysis and the perturbation method which are suitable for describing mesoscale vortices; (b) subcritical instability and vortex-sheet instability; (c) frontal adjustment mechanism and the effect of topography on frontgenesis; and (d) slantwise vorticity development theories, the slantwise vortex equation, and moist potential vorticity (MPV) anomalies with precipitation-related heat and mass sinks and MPV impermeability theorem. Prom the MPV conservation viewpoint, the transformation mechanism between different scale weather systems is analyzed. Based on the data analysis, a new dew-point front near the periphery of the West Pacific subtropical high is identified. In the light of MPV theory and Q-vector theory, some events associated with torrential rain systems and severe storms are analyzed and diagnosed. Progress in mesoscale numerical simulation has been made in the development of meso-α, meso-β vortices, meso-γ-scale downbursts and precipitation produced by deep convective systems with MM5 and other mesoscale models.展开更多
Mesoscale eddies have been suggested to have an impact on biological carbon fixation in the South China Sea (SCS). However, their overall contribution to primary production during the spring inter-monsoon pe riod is...Mesoscale eddies have been suggested to have an impact on biological carbon fixation in the South China Sea (SCS). However, their overall contribution to primary production during the spring inter-monsoon pe riod is still unknown. Based on large-scale biological and environmental in situ observations and synchro nous remote sensing data, the distribution patterns of phytoplankton biomass and the primary production, and the role of mesoscale eddies in regulating primary production in different eddy-controlled waters were investigated. The results suggested that the surface chlorophyll a concentrations and water column inte grated primary production (IPP) are significantly higher in cyclonic eddies and lower in the anticyclonic eddies as compared to that in non-eddy waters. Although eddies could affect various environmental factors, such as nutrients, temperature and light availability, nutrient supply is suggested to be the most important one through which mesoscale eddies regulated the distribution patterns of phytoplankton biomass and pri mary production. The estimated IPP in cyclonic and anticyclonic eddies are about 29.5% higher and 16.6% lower than the total average in the whole study area, respectively, indicating that the promotion effect of mesoscale cold eddies on the primary production was much stronger than the inhibition effect of the warm eddies per unit area. Overall, mesoscale eddies are crucial physical processes that affect the biological car bon fixation and the distribution pattern of primary production in the SCS open sea, especially during the spring inter-monsoon period.展开更多
Exploring the physical mechanisms of complex systems and making effective use of them are the keys to dealing with the complexity of the world.The emergence of big data and the enhancement of computing power,in conjun...Exploring the physical mechanisms of complex systems and making effective use of them are the keys to dealing with the complexity of the world.The emergence of big data and the enhancement of computing power,in conjunction with the improvement of optimization algorithms,are leading to the development of artificial intelligence(AI)driven by deep learning.However,deep learning fails to reveal the underlying logic and physical connotations of the problems being solved.Mesoscience provides a concept to understand the mechanism of the spatiotemporal multiscale structure of complex systems,and its capability for analyzing complex problems has been validated in different fields.This paper proposes a research paradigm for AI,which introduces the analytical principles of mesoscience into the design of deep learning models.This is done to address the fundamental problem of deep learning models detaching the physical prototype from the problem being solved;the purpose is to promote the sustainable development of AI.展开更多
Some life history statistics of the mesoscale eddies of the South China Sea (SCS) derived from altimetry data will be further discussed according their different formation periods. A total of three ATLAS (autonomous t...Some life history statistics of the mesoscale eddies of the South China Sea (SCS) derived from altimetry data will be further discussed according their different formation periods. A total of three ATLAS (autonomous temperature line acquisition system)mooring buoys data will be analyzed to discuss eddies' impact on temperature profiles.They identify that the intraseasonal variation of SCS thermocline is partly controlled by mesoscale eddies.展开更多
Recently reported results indicate that small amplitude and small scale initial errors grow rapidly and subsequently contaminate short-term deterministic mesoscale forecasts. This rapid error growth is dependent on no...Recently reported results indicate that small amplitude and small scale initial errors grow rapidly and subsequently contaminate short-term deterministic mesoscale forecasts. This rapid error growth is dependent on not only moist convection but also the flow regime. In this study, the mesoscale predictability and error growth of mei-yu heavy rainfall is investigated by simulating a particular precipitation event along the mei-yu front on 4- 6 July 2003 in eastern China. Due to the multi-scale character of the mei-yu front and scale interactions, the error growth of mei-yu heavy rainfall forecasts is markedly different from that in middle-latitude moist baroclinic systems. The optimal growth of the errors has a relatively wide spectrum, though it gradually migrates with time from small scale to mesoscale. During the whole period of this heavy rainfall event, the error growth has three different stages, which similar to the evolution of 6-hour accumulated precipitation. Multi-step error growth manifests as an increase of the amplitude of errors, the horizontal scale of the errors, or both. The vertical profile of forecast errors in the developing convective instability and the moist physics convective system indicates two peaks, which correspond with inside the mei-yu front, and related to moist The error growth for the mei-yu heavy rainfall is concentrated convective instability and scale interaction.展开更多
This paper presents the results of a diagnostic study of a typical case of very heavy rainfall during the South Asian summer monsoon when a mesoscale low in a desert climate merged with a diffused tropical depression....This paper presents the results of a diagnostic study of a typical case of very heavy rainfall during the South Asian summer monsoon when a mesoscale low in a desert climate merged with a diffused tropical depression. The former low was located over Pakistan's desert region and the latter depression originated over the Bay of Bengal. Surface and NCEP reanalysis data supported by satellite and radar images were incorporated in the diagnosis. The relationship between the heavy precipitation process and large-scale circulations such as monsoon trough, subtropical high, westerly jet, low level jet and water vapor transport were investigated to further understand the mechanism of this peculiar interaction. It was found that: (1) the mesoscale low developed as a result of cold air advection aloft from northern latitudes and strong convection over the region of humidity convergence on 24 July 2003 over the Indian Rajistan area. (2) On the same day, a low that formed over the Bay of Bengal was transformed into a monsoon depression and moved westward to the mesoscale low which existed over southwest India and the adjoining southeastern parts of Pakistan. (3) Initially, the mesoscale low received moisture supply from both the Bay of Bengal as well as the Arabian Sea, whereas the Bay of Bengal maintained the continuous supply of moisture to the monsoon depression. (4) After the depression crossed central India, the Bay's moisture supply was cut off and the Arabian Sea became the-only source of moisture to both the closely located systems. On 27 July, both of the systems merged together and the merger resulted in a heavy downpour in the Karachi metropolitan and in its surroundings. (5) With the intensification as well as the southeastward extension of the subtropical high and the shift of the monsoon trough axis from southwest-west to northeast-east, the monsoon depression moved southwestward. In this situation, there existed a very favourable condition for a merger of the two systems in the presence of cross-latitude influence. (6) A number of convective cloud clusters were developed and organized in the mesoscale low. Probably, interactions existed among the multi-scale systems.展开更多
Eddy properties in the Bay of Bengal are studied from 22 a archiving, validation and interpretation of satellite oceanographic(AVISO) data using a sea level anomaly(SLA)-based eddy identification. A geographical d...Eddy properties in the Bay of Bengal are studied from 22 a archiving, validation and interpretation of satellite oceanographic(AVISO) data using a sea level anomaly(SLA)-based eddy identification. A geographical distribution and an eddy polarity, an eddy lifetime and propagation distances, eddy origins and terminations,eddy propagation directions and trajectories, eddy kinetic properties, the evolution of eddy properties,seasonal and interannual variabilities of eddy activities are analyzed in this area. Eddies exist principally in the western Bay of Bengal and most of them propagate westward. The polarity distribution of eddies shows cyclones prefer to occur in the northwest and south of the Bay of Bengal, while anticyclones mainly occur in the east of the bay. Five hundred and sixty-five cyclones and 389 anticyclones with the lifetime that exceeds 30 d are detected during the 22 a period, and there is a preference for the cyclones for all lifetime and propagation distances. The kinetic properties of all observed eddies show the average amplitude of the cyclones is larger than that of the anticyclones, whereas that is opposite for average radius, and their average velocities are basically the same. Moreover, the evolution of eddies properties reveals that the eddies with a long lifetime that exceeds 90 d have a significant double-stage feature of the former 50 d growth period and the dying period after 50 d. For the seasonal variability of the eddies, the cyclones occur more often in spring while the anticyclones occur more often in summer. The analysis of long-lived eddy seasonal distributions shows that there is the obvious seasonal variation of the eddy activities in the Bay of Bengal. The interannual variability of an eddy number shows an obvious negative correlation with the EKE variation.展开更多
The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulate...The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales. Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.展开更多
Data from the Beijing SAFIR 3000 lightning detection system and Doppler radar provided some insights into the three-dimensional lightning structure and evolution of a leading-line and trailing-stratiform (LLTS) meso...Data from the Beijing SAFIR 3000 lightning detection system and Doppler radar provided some insights into the three-dimensional lightning structure and evolution of a leading-line and trailing-stratiform (LLTS) mesoscale convective system (MCS) over Beijing on 31 July 2007. Most of the lightning in the LLTS-MCS was intracloud (IC) lightning, while the mean ratio of positive cloud-to-ground (+CG) lightning to –CG lightning was 1:4, which was higher than the average value from previous studies. The majority of CG lightning occurred in the convective region of the radar echo, particularly at the leading edge of the front. Little IC lightning and little +CG lightning occurred in the stratiform region. The distribution of the CG lightning indicated that the storm had a tilted dipole structure given the wind shear or the tripole charge structure. During the storm’s development, most of the IC lightning occurred at an altitude of ~9.5 km; the lightning rate reached its maximum at 10.5 km, the altitude of IC lightning in the mature stage of the storm. When the thunderstorm began to dissipate, the altitude of the IC lightning decreased gradually. The spatial distribution of lightning was well correlated with the rainfall on the ground, although the peak value of rainfall appeared 75 min later than the peak lightning rate.展开更多
An observational analysis of satellite blackbody temperature (TBB) data and radar images suggests that the mesoscale vortex generation and merging process appeared to be essential for a tropical-depression-related h...An observational analysis of satellite blackbody temperature (TBB) data and radar images suggests that the mesoscale vortex generation and merging process appeared to be essential for a tropical-depression-related heavy rain event in Shanghai, China. A numerical simulation reproduced the observed mesoscale vortex generation and merging process and the corresponding rain pattern, and then the model outputs were used to study the related dynamics through diagnosing the potential vorticity (PV) equation. The tropical depression (TD) was found to weaken first at lower levels and then at upper levels due to negative horizontal PV advection and diabatic heating effects. The meso-vortices developed gradually, also from the lower to the upper levels, as a result of positive horizontal PV advection and diabatic heating effects in the downshear left quadrant of the TD. One of these newly-generated vortices, V1, replaced the TD ultimately, while the other two, V2 and V3, merged due to the horizontal PV advection process. Together with the redevelopment of V1, the merging of V2 and V3 triggered the very heavy rain in Shanghai.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42230405,42006029)Science and Technology Plan of Liaoning Province(2024JH2/102400061)+1 种基金Dalian Science and Technology Innovation Fund(2024JJ11PT007)Dalian Science and Technology Pro-gram for Innovation Talents of Dalian(2022RJ06).
文摘Mesoscale eddies play a central role in the poleward oceanic heat flux in the Southern Ocean.Previous studies have documented changes in the location of temperature fronts in the Southern Ocean,but little attention has been paid to changes in the genesis locations of mesoscale eddies.Here,we provide evidence from three decades of satellite altimetry observations for the heterogeneity of the poleward shift of mesoscale activities,with the largest trend of~0.23°±0.05°(10 yr)^(-1) over the Atlantic sector and a moderate trend of~0.1°±0.03°(10 yr)^(-1) over the Indian sector,but no significant trend in the Pacific sector.The poleward shift of mesoscale eddies is associated with a southward shift of the local westerly winds while being constrained by the major topographies.As the poleward shift of westerly winds is projected to persist,the poleward oceanic heat flux from mesoscale eddies may influence future ice melt.
基金supported by the National Natural Science Foundation of China(Grant No.42305169)the Basic Research Fund of CAMS(Grant No.2023Y001)the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(Earth Lab)。
文摘Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,capturing extreme storm cases over complex terrain remains challenging.This study utilizes the Global–Regional Integrated Forecast System(GRIST)with variable resolution to simulate an eastward-propagating MCS event.The impact of three microphysics schemes,including two single-moment schemes(WSM6,Lin)and one double-moment scheme(Morrison),on the model sensitivity of MCS precipitation simulations is investigated.The results demonstrate that while all the schemes capture the spatial distribution and temporal variation of MCS precipitation,the Morrison scheme alleviates overestimated precipitation compared to the Lin and WSM6 schemes.The ascending motion gradually becomes weaker in the Morrison scheme during the MCS movement process.Compared to the runs with convection parameterization,the explicit-convection setup at 3.5-km resolution reduces disparities in atmospheric dynamics due to microphysics sensitivity in terms of vertical motions and horizontal kinetic energy at the high-wavenumber regimes.The explicit-convection setup more accurately captures the propagation of both main and secondary precipitation centers during the MCS development,diminishing the differences in both precipitation intensity and propagation features between the Morrison and two single-moment schemes.These findings underscore the importance of microphysics schemes for global nonhydrostatic modeling at the kilometer scale.The role of explicit convection for reducing model uncertainty is also outlined.
基金supported by the National Natural Science Foundation of China(Nos.52003249,12072325 and 52273027)the Natural Science Foundation of Henan(No.242300421236).
文摘In this work,a morphology transition mode is revealed in ultra-high molecular weight polyethylene(UHMWPE)when stretching at 120℃:moving from the slightly deformed region to the necked region,the morphology transfers from small spherulites to a mixture of transcrystalline and enlarged spherulites,and finally to pure transcrystalline;meanwhile,the lamellae making up the transcrystalline or spherulite were fragmented into smaller ones;spatial scan by wide-angle X-ray scattering(WAXS)and small angle X-ray scattering(SAXS)revealed that the crystallinity is increased from 25.3%to 30.1%and the crystal orientation was enhanced greatly,but the lamellae orientation was quite weak.The rise of enlarged spherulites or a mixture of transcrystalline and spherulites can also be found in UHMWPE stretched at 140 and 148℃,whereas absent in UHMWPE stretched at 30℃.In situ WAXS/SAXS measurements suggest that during stretching at 30℃,the crystallinity is reduced drastically,and a few voids are formed as the size increases from 50 nm to 210 nm;during stretching at 120℃,the crystallinity is reduced only slightly,and the kinking of lamellae occurs at large Hencky strain;during stretching at 140 and 148℃,an increase in crystallinity with stretching strain can be found,and the lamellae are also kinked.Taking the microstructure and morphology transition into consideration,a mesoscale morphology transition mode is proposed,in the stretching-induced crystallization the fragmented lamellae can be rearranged into new supra-structures such as spherulite or transcrystalline during hot stretching.
基金The National Key Research and Development Program of China under contract No.2021YFC3101602the National Natural Science Foundation of China under contract Nos 42176017 and 41976019.
文摘Mesoscale eddies play a pivotal role in deciphering the intricacies of ocean dynamics and the transport of heat,salt,and nutrients.Accurate representation of these eddies in ocean models is essential for improving model predictions.In this study,we propose a convolutional neural network(CNN)that combines data-driven techniques with physical principles to develop a robust and interpretable parameterization scheme for mesoscale eddies in ocean modeling.We use a highresolution reanalysis dataset to extract subgrid eddy momentum and then applying machine learning algorithms to identify patterns and correlations.To ensure physical consistency,we have introduced conservation of momentum constraints in our CNN parameterization scheme through soft and hard constraints.The interpretability analysis illustrate that the pre-trained CNN parameterization shows promising results in accurately solving the resolved mean velocity and effectively capturing the representation of unresolved subgrid turbulence processes.Furthermore,to validate the CNN parameterization scheme offline,we conduct simulations using the Massachusetts Institute of Technology general circulation model(MITgcm)ocean model.A series of experiments is conducted to compare the performance of the model with the CNN parameterization scheme and high-resolution simulations.The offline validation demonstrates the effectiveness of the CNN parameterization scheme in improving the representation of mesoscale eddies in the MITgcm ocean model.Incorporating the CNN parameterization scheme leads to better agreement with high-resolution simulations and a more accurate representation of the kinetic energy spectra.
基金supported by the Natu-ral Science Foundation of China and Fundamental Research Funds for the Central Universities(Grant Nos.42176006,42422601,202241006 to H.Y.)the Natural Science Foundation of China(Grant No.42225601 to Z.C.).
文摘Mesoscale air-sea interactions play a critical role in damping eddy activities.However,how mesoscale heat flux influences the distribution of eddy kinetic energy(EKE)in the wavenumber space remains unclear.In this study,we investigate the EKE and temperature variance(T_(var))budgets in the Kuroshio Extension(KE)region using wavenumber spectral analysis based on 1/10°coupled climate simulations.These simulations include a standard high-resolution simulation and a smoothed simulation that overlooks mesoscale heat flux.By comparing the differences between these models,we confirm that air-sea heat exchange significantly dissipates Tvar.Neglecting mesoscale heat flux results in a 60% underestimation of the Tvar damping rate,which in turn increases energy transfer to EKE through the vertical buoyancy flux by 22%.This enhanced vertical buoyancy flux leads to a 20% higher EKE level and larger energy budget terms,particularly in the diffusion term,which is closely related to wind power.Furthermore,underestimating air-sea heat exchange could lead to an overestimation of the inverse kinetic energy cascade,thereby distorting the overall energy budget in the KE region.
基金Supported by the Taishan Scholar Project of Shandong Province (Nos.TS20190913,tsqn202211054)the Fundamental Research Funds for the Central Universities (No.202241007)the Youth Innovation Team Program in Colleges and Universities of Shandong Province (No.2022KJ045)
文摘Mesoscale eddies are widespread in the global ocean,significantly influencing the physical,chemical,and biological structures of water column.Based on the CTD data and suspended particulate matter(SPM)data collected at 36 hydrographic stations during a field cruise in southern Mozambique Channel,combined with satellite altimeter observations,we identified a series of mesoscale eddies traversing the Mozambique Channel.Our hydrographic measurements,coupled with in situ chlorophyll fluorescence data,reveal that these eddies significantly influence thermohaline structure and chlorophyll distribution,which in turn affects primary productivity and SPM concentrations in the upper ocean.The cyclonic eddies facilitate the upwelling of cold subsurface water,leading to a shallowing of the pycnocline and the creation of a low-temperature anomaly with variable salinity anomalies at different depths.Conversely,anticyclonic eddies submerge warm surface water,deepening the pycnocline,and resulting in a high-temperature anomaly accompanied by distinct salinity patterns.Significantly,a coastal anticyclonic eddy was observed to intercept terrestrial material from the Delagoa Bight,redirecting it west of 36°E.This study presents unique and quasi-synchronous CTD datasets capturing mesoscale eddy impacts,and provided valuable insights into SPM variability within the often-neglected southern Mozambique Channel.
基金supported by the STI 2030-Major Project(2021ZD0204400,2022ZD0205203,2021ZD0200104,2022ZD0211900)the Shenzhen Science and Technology Program(RCYX20210706092100003,RCBS20221008093311027)+3 种基金the Shenzhen Medical Research Funds(A2303005)the Youth Innovation Promotion Association CAS(2022367)the National Natural Science Foundation of China(32100896)NSFC-Guangdong Joint Fund(U20A6005).
文摘Dear Editor,The mammalian brain exhibits cross-scale complexity in neuronal morphology and connectivity,the study of which demands high-resolution morphological reconstruction of individual neurons across the entire brain[1-4].Current commonly used approaches for such mesoscale brain mapping include two main types of three-dimensional fluorescence microscopy:the block-face methods,and the lightsheet-based methods[5,6].In general,the high imaging speed and light efficiency of light-sheet microscopy make it a suitable tool for high-throughput volumetric imaging,especially when combined with tissue-clearing techniques.However,large brain samples pose major challenges to this approach.
基金the National Natural Science Foundation of China (Grants No. 41176085 and 41075045), for financially supporting this research
文摘Aiming at the influence of ocean mesoscale eddy on underwater acoustic propagation, a theoretical computation model of ocean mesoscale eddy was established based on the in-situ hydrographic data in the sea area of ocean mesoscale eddy. An underwater acoustic modeI-MMPE was used to simulate the acoustic propagation under the influence of different types, different intensities and positions of eddies, and different frequencies and depths of sources. It is found that warm-core eddy can make the convergence zone "move back" and the width of it increases, while cold-core eddy can make the convergence zone "move forward" and the width of it decreases. The bigger the intensity of eddy, the more notable the "forward "or "back "effect. Sound source located depths and source frequencies can change the acoustic propagation characteristics in the eddy area.
基金supported by the project of State Key Labo-ratory of Severe Weather, Chinese Academy of Meteoro-logical Sciences (No. 2009LASW-A03) the National Natural Science Foundation of China under Grants Nos.40875021 and 40930951
文摘The strong heavy rainfall on 3–5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the mei-yu season. Simulation results from the ARPS (Advanced Regional Prediction) data analysis system (ADAS) and WRF model were used to study the development of the mesoscale convective system (MCS) and mesoscale convective vortex (MCV). It is confirmed that the MCV formed during the development of a previous severe MCS. A closed vortex circulation can be found below 600 hPa with a vorticity maximum in the middle troposphere. The evolution process of the MCV can be divided into three stages: initiation, maturation, and dissipation. During the mature stage of the MCV, a downdraft occurred in the center of the MCV and new convection developed in southeast of the MCV. The convergence and the tilting in the lower troposphere convergence and vertical advection in the middle troposphere were the main vorticity sources in the MCV initiation stage. Finally, a conceptual model between the mei-yu front and the embedded MCS and MCV is proposed. The mei-yu front was the background condition for the development of the MCS and MCV. A low level jet (LLJ) transported moisture and the weak cold air invasion via a trough aloft in the middle troposphere and triggering the severe convection. Furthermore, the intensified jet was able to result in the initiation of new "secondary" areas of convection in the eastern part of the MCV.
文摘A vorticity budget investigation is performed using the output data from a numerical simulation of a typical MCV (mesoscale convectively generated votex) case in South China. Results suggest that the divergence caused by convection in the low troposphere is the main producer of positive vorticity, while vertical vorticity transferred by the tilting term from the horizontal vorticity compensates the upward output of cyclonic vorticity. Scale analyses of the vorticity equation suggest that the advection of planetary vorticity can be neglected owing to the low latitude, which is di?erent from the larger scale systems in high latitude areas. In addition, the distribution of relative vorticity tendency on pressure level is not uniform. A vortex will move along the vector from the negative to the positive vorticity tendency region. The mechanism of the phenomenon—that nearly all of the convectively ascending region is located southward/southeastward of the vortex center—is also discussed. Convergence with regard to latent heat release would be in favor of the spin-up of meso-vortex, however, the horizontal vorticity caused by wind shear is tilted by vertical motion due to convection. Consequently, the negative and positive vorticity tendencies are located symmetrically about the convective center, which suggests that the vortex southward movement is dynamically driven by convection.
文摘Mesoscale research conducted by Chinese meteorologists during the past four years is reviewed. Advances in theoretical studies include (a) mesoscale quasi-balanced and semi-balanced dynamics, derived through scale analysis and the perturbation method which are suitable for describing mesoscale vortices; (b) subcritical instability and vortex-sheet instability; (c) frontal adjustment mechanism and the effect of topography on frontgenesis; and (d) slantwise vorticity development theories, the slantwise vortex equation, and moist potential vorticity (MPV) anomalies with precipitation-related heat and mass sinks and MPV impermeability theorem. Prom the MPV conservation viewpoint, the transformation mechanism between different scale weather systems is analyzed. Based on the data analysis, a new dew-point front near the periphery of the West Pacific subtropical high is identified. In the light of MPV theory and Q-vector theory, some events associated with torrential rain systems and severe storms are analyzed and diagnosed. Progress in mesoscale numerical simulation has been made in the development of meso-α, meso-β vortices, meso-γ-scale downbursts and precipitation produced by deep convective systems with MM5 and other mesoscale models.
基金The CAS Strategic Pilot Science and Technology of China under contract Nos XDA11020205 and XDA05030403the National Project of Basic Sciences and Technology of China under contract Nos 2012FY112400 and 2013FY111200+1 种基金the National Natural Science Foundation of China under contract Nos 41276162,41130855,41276161 and 40906057the Natural Science Foundation of Guangdong Province of China under contract No.S2011040000151
文摘Mesoscale eddies have been suggested to have an impact on biological carbon fixation in the South China Sea (SCS). However, their overall contribution to primary production during the spring inter-monsoon pe riod is still unknown. Based on large-scale biological and environmental in situ observations and synchro nous remote sensing data, the distribution patterns of phytoplankton biomass and the primary production, and the role of mesoscale eddies in regulating primary production in different eddy-controlled waters were investigated. The results suggested that the surface chlorophyll a concentrations and water column inte grated primary production (IPP) are significantly higher in cyclonic eddies and lower in the anticyclonic eddies as compared to that in non-eddy waters. Although eddies could affect various environmental factors, such as nutrients, temperature and light availability, nutrient supply is suggested to be the most important one through which mesoscale eddies regulated the distribution patterns of phytoplankton biomass and pri mary production. The estimated IPP in cyclonic and anticyclonic eddies are about 29.5% higher and 16.6% lower than the total average in the whole study area, respectively, indicating that the promotion effect of mesoscale cold eddies on the primary production was much stronger than the inhibition effect of the warm eddies per unit area. Overall, mesoscale eddies are crucial physical processes that affect the biological car bon fixation and the distribution pattern of primary production in the SCS open sea, especially during the spring inter-monsoon period.
基金We would like to thank Dr.Wenlai Huang,Dr.Jianhua Chen,and Dr.Lin Zhang for the valuable discussionWe thank the editors and reviewers for their valuable comments about this articleWe gratefully acknowledge the support from the National Natural Science Foundation of China(91834303).
文摘Exploring the physical mechanisms of complex systems and making effective use of them are the keys to dealing with the complexity of the world.The emergence of big data and the enhancement of computing power,in conjunction with the improvement of optimization algorithms,are leading to the development of artificial intelligence(AI)driven by deep learning.However,deep learning fails to reveal the underlying logic and physical connotations of the problems being solved.Mesoscience provides a concept to understand the mechanism of the spatiotemporal multiscale structure of complex systems,and its capability for analyzing complex problems has been validated in different fields.This paper proposes a research paradigm for AI,which introduces the analytical principles of mesoscience into the design of deep learning models.This is done to address the fundamental problem of deep learning models detaching the physical prototype from the problem being solved;the purpose is to promote the sustainable development of AI.
基金the Ocean University of China,was supported by the Major State Basic Research Program of China under contract Nos G1999043805 ,1999043810.
文摘Some life history statistics of the mesoscale eddies of the South China Sea (SCS) derived from altimetry data will be further discussed according their different formation periods. A total of three ATLAS (autonomous temperature line acquisition system)mooring buoys data will be analyzed to discuss eddies' impact on temperature profiles.They identify that the intraseasonal variation of SCS thermocline is partly controlled by mesoscale eddies.
基金supported by the National Key Scientific and Technological Project 2006BAC02B03,2004CB418300under the FANEDD 200325+1 种基金The Specialized Research Fund for the Doctoral Program of Higher Education (20080284019)National Natural Science Foundation of China under Grant No.40325014
文摘Recently reported results indicate that small amplitude and small scale initial errors grow rapidly and subsequently contaminate short-term deterministic mesoscale forecasts. This rapid error growth is dependent on not only moist convection but also the flow regime. In this study, the mesoscale predictability and error growth of mei-yu heavy rainfall is investigated by simulating a particular precipitation event along the mei-yu front on 4- 6 July 2003 in eastern China. Due to the multi-scale character of the mei-yu front and scale interactions, the error growth of mei-yu heavy rainfall forecasts is markedly different from that in middle-latitude moist baroclinic systems. The optimal growth of the errors has a relatively wide spectrum, though it gradually migrates with time from small scale to mesoscale. During the whole period of this heavy rainfall event, the error growth has three different stages, which similar to the evolution of 6-hour accumulated precipitation. Multi-step error growth manifests as an increase of the amplitude of errors, the horizontal scale of the errors, or both. The vertical profile of forecast errors in the developing convective instability and the moist physics convective system indicates two peaks, which correspond with inside the mei-yu front, and related to moist The error growth for the mei-yu heavy rainfall is concentrated convective instability and scale interaction.
基金This research work was financially supported jointly by the Commission on Scienceand Technology for sustainable development in the South(COMSATS),the Third World Academy of Sciences and Technology for sustainable development in the South(COMSATS),The Third World Academy of Sciences(TWAS),the Chinese Academy of Scitences(CAS),the National Natural Foundation of China under Grant No.40233027.
文摘This paper presents the results of a diagnostic study of a typical case of very heavy rainfall during the South Asian summer monsoon when a mesoscale low in a desert climate merged with a diffused tropical depression. The former low was located over Pakistan's desert region and the latter depression originated over the Bay of Bengal. Surface and NCEP reanalysis data supported by satellite and radar images were incorporated in the diagnosis. The relationship between the heavy precipitation process and large-scale circulations such as monsoon trough, subtropical high, westerly jet, low level jet and water vapor transport were investigated to further understand the mechanism of this peculiar interaction. It was found that: (1) the mesoscale low developed as a result of cold air advection aloft from northern latitudes and strong convection over the region of humidity convergence on 24 July 2003 over the Indian Rajistan area. (2) On the same day, a low that formed over the Bay of Bengal was transformed into a monsoon depression and moved westward to the mesoscale low which existed over southwest India and the adjoining southeastern parts of Pakistan. (3) Initially, the mesoscale low received moisture supply from both the Bay of Bengal as well as the Arabian Sea, whereas the Bay of Bengal maintained the continuous supply of moisture to the monsoon depression. (4) After the depression crossed central India, the Bay's moisture supply was cut off and the Arabian Sea became the-only source of moisture to both the closely located systems. On 27 July, both of the systems merged together and the merger resulted in a heavy downpour in the Karachi metropolitan and in its surroundings. (5) With the intensification as well as the southeastward extension of the subtropical high and the shift of the monsoon trough axis from southwest-west to northeast-east, the monsoon depression moved southwestward. In this situation, there existed a very favourable condition for a merger of the two systems in the presence of cross-latitude influence. (6) A number of convective cloud clusters were developed and organized in the mesoscale low. Probably, interactions existed among the multi-scale systems.
基金The National Natural Science Foundation of China under contract No.41576176the National High Technology Research and Development Program(863 program)of China under contract No.2013AA122803the Project of ESA-MOST Dragon-3 Cooperation Programme
文摘Eddy properties in the Bay of Bengal are studied from 22 a archiving, validation and interpretation of satellite oceanographic(AVISO) data using a sea level anomaly(SLA)-based eddy identification. A geographical distribution and an eddy polarity, an eddy lifetime and propagation distances, eddy origins and terminations,eddy propagation directions and trajectories, eddy kinetic properties, the evolution of eddy properties,seasonal and interannual variabilities of eddy activities are analyzed in this area. Eddies exist principally in the western Bay of Bengal and most of them propagate westward. The polarity distribution of eddies shows cyclones prefer to occur in the northwest and south of the Bay of Bengal, while anticyclones mainly occur in the east of the bay. Five hundred and sixty-five cyclones and 389 anticyclones with the lifetime that exceeds 30 d are detected during the 22 a period, and there is a preference for the cyclones for all lifetime and propagation distances. The kinetic properties of all observed eddies show the average amplitude of the cyclones is larger than that of the anticyclones, whereas that is opposite for average radius, and their average velocities are basically the same. Moreover, the evolution of eddies properties reveals that the eddies with a long lifetime that exceeds 90 d have a significant double-stage feature of the former 50 d growth period and the dying period after 50 d. For the seasonal variability of the eddies, the cyclones occur more often in spring while the anticyclones occur more often in summer. The analysis of long-lived eddy seasonal distributions shows that there is the obvious seasonal variation of the eddy activities in the Bay of Bengal. The interannual variability of an eddy number shows an obvious negative correlation with the EKE variation.
基金This research was supported by the National Natural Science Foundation of China under Grant Nos. 40325014, 40333031SRFDP, TRAP0YT, FANEDD 11999, and under the support of The Key Scientific and Technological Project of the Ministry of Education The State Key Basic Research Program (Grant No. 2004CB18300).
文摘The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales. Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.
基金supported by the National Natural Science Foundation of China(Grant No. 40930949)Key Subject Project of Beijing Atmospheric Physics and Environment,the One Hundred Person Project of the Chinese Academy of Sciences
文摘Data from the Beijing SAFIR 3000 lightning detection system and Doppler radar provided some insights into the three-dimensional lightning structure and evolution of a leading-line and trailing-stratiform (LLTS) mesoscale convective system (MCS) over Beijing on 31 July 2007. Most of the lightning in the LLTS-MCS was intracloud (IC) lightning, while the mean ratio of positive cloud-to-ground (+CG) lightning to –CG lightning was 1:4, which was higher than the average value from previous studies. The majority of CG lightning occurred in the convective region of the radar echo, particularly at the leading edge of the front. Little IC lightning and little +CG lightning occurred in the stratiform region. The distribution of the CG lightning indicated that the storm had a tilted dipole structure given the wind shear or the tripole charge structure. During the storm’s development, most of the IC lightning occurred at an altitude of ~9.5 km; the lightning rate reached its maximum at 10.5 km, the altitude of IC lightning in the mature stage of the storm. When the thunderstorm began to dissipate, the altitude of the IC lightning decreased gradually. The spatial distribution of lightning was well correlated with the rainfall on the ground, although the peak value of rainfall appeared 75 min later than the peak lightning rate.
基金supported by the State 973 Program (2009CB421505)supported by the National Natural Science Foundation of China (Grant Nos. 40405012, 40830958 and 40705024)+1 种基金the Ministry of Science and Technology of China (Grant No. 2005DIB3J104)Shanghai Meteorological Bureau (Grant Nos. 2009ST11, MS200821)
文摘An observational analysis of satellite blackbody temperature (TBB) data and radar images suggests that the mesoscale vortex generation and merging process appeared to be essential for a tropical-depression-related heavy rain event in Shanghai, China. A numerical simulation reproduced the observed mesoscale vortex generation and merging process and the corresponding rain pattern, and then the model outputs were used to study the related dynamics through diagnosing the potential vorticity (PV) equation. The tropical depression (TD) was found to weaken first at lower levels and then at upper levels due to negative horizontal PV advection and diabatic heating effects. The meso-vortices developed gradually, also from the lower to the upper levels, as a result of positive horizontal PV advection and diabatic heating effects in the downshear left quadrant of the TD. One of these newly-generated vortices, V1, replaced the TD ultimately, while the other two, V2 and V3, merged due to the horizontal PV advection process. Together with the redevelopment of V1, the merging of V2 and V3 triggered the very heavy rain in Shanghai.