期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Defect-enhanced photocatalytic removal of dimethylarsinic acid over mixed-phase mesoporous TiO2
1
作者 Jingjing Dong Chengzhi Hu +3 位作者 Weixiao Qi Xiaoqiang An Huijuan Liu Jiuhui Qu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第5期35-42,共8页
Much attention has been paid to the pollutant dimethylarsenic acid(DMA),because of its high toxicity even at very low doses.Although TiO2 photocatalytic oxidation(PCO)is one of the few effective methods for treating D... Much attention has been paid to the pollutant dimethylarsenic acid(DMA),because of its high toxicity even at very low doses.Although TiO2 photocatalytic oxidation(PCO)is one of the few effective methods for treating DMA-containing water,the efficient decomposition of DMA and simultaneous removal of toxic arsenic species remains a significant but challenging task.Here,defective mesoporous TiO2 with mixed-phase structure was synthesized and used as both photocatalyst and adsorbent for DMA removal.Due to the reduced band-gap and enhanced separation of photogenerated charge carriers,the oxygen-deficient TiO2 nanostructures exhibited 4.2 times higher PCO efficiency than commercial TiO2(P25).More importantly,the high surface area of the mesoporous TiO2 provided sufficient active sites for in-situ adsorption and reaction,resulting in the efficient removal of as-formed As(V).Combining the experimental and characterization results,the different roles of reactive species during PCO reactions were clarified.In the presence of hole(h+)as the dominant oxidation species,DMA was demethylated and transformed into MMA.Thereafter,MMA was subsequently reduced to As(Ⅲ)by photo-generated electrons.Superoxide radicals(O2·-)played a significant role in oxidizing As(Ⅲ)into As(Ⅴ),which was finally adsorptively removed by the mesoporous TiO2. 展开更多
关键词 mesoporous tio2 Dimethylarsinic acid ADSORPTION PHOTOCATALYSIS Oxygen vacancy
原文传递
Effects of Metal Oxide Modifications on Photoelectrochemical Properties of Mesoporous TiO2 Nanoparticles Electrodes for Dye-Sensitized Solar Cells
2
作者 Tian-you Peng Ke Fan +2 位作者 De Zhao Li-juan Yu Ren-jie Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第5期609-616,I0004,共9页
Mesoporous TiO2 (m-TiO2) nanoparticles were used to prepare the porous film electrodes for dye-sensitized solar cells, and a second metal oxide (MgO, ZnO, A1203, or NiO) modifi- cation was carried out by dipping t... Mesoporous TiO2 (m-TiO2) nanoparticles were used to prepare the porous film electrodes for dye-sensitized solar cells, and a second metal oxide (MgO, ZnO, A1203, or NiO) modifi- cation was carried out by dipping the m-TiO2 electrode into their respective nitrate solution followed by annealing at 500 ℃. Experimental results indicated that the above second metal oxide modifications on m-TiO2 electrode are shown in all cases to act as barrier layer for the interracial charge transfer processes, but film electron transport and interfacial charge recombination characteristics under applied bias voltage were dependent significantly on the existing states and kinds of these second metal oxides. Those changes based on sec- ond metal oxide modifications showed good correlation with the current-voltage analyses of dye-sensitized solar cell, and all modifications were found to increase the open-circuit photo- voltage in various degrees, while the MgO, ZnO, and NiO modifications result in 23%, 13%, and 6% improvement in cell conversion efficiency, respectively. The above observations indi- cate that controlling the charge transport and recombination is very important to improve the photovoltaic performance of TiO2-based solar cell. 展开更多
关键词 Dye-sensitized solar cell Metal oxide modification Photoelectrochemical prop-erty mesoporous tio2 nanoparticle
在线阅读 下载PDF
Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries 被引量:1
3
作者 Liming Ling Ying Bai +4 位作者 Huali Wang Qiao Ni Jiatao Zhang Feng Wu Chuan Wu 《Nano Research》 SCIE EI CAS CSCD 2018年第3期1563-1574,共12页
Spindle-shaped anatase TiO2 secondary particles were successfully fabricated via the oriented attachment of primary nanocrystals. By adjusting the concentration of tetrabutyl titanate, the size of the TiO2 nanocrystal... Spindle-shaped anatase TiO2 secondary particles were successfully fabricated via the oriented attachment of primary nanocrystals. By adjusting the concentration of tetrabutyl titanate, the size of the TiO2 nanocrystals and particles could be controlled, resulting in pore evolution. Pores for the random aggregation of secondary particles gradually transformed to nanopores originating from the oriented attachment of the primary nanocrystals, resulting in an excellent micro/nanostructure that increased the performance of a sodium-ion battery. The mesoporous TiO2 microparticle anode, with its unique combination of nanocrystals and uniform nanopores, displays super durability (95 mAh/g after 11,000 cycles at I C), high initial efficiency (61.4%), and excellent rate performance (265 and 77 mAh/g at 0.1 and 20 C, respectively). In particular, at slow discharge (0.1 C) and fast charge (5, 50, and 100 C) rates, the anatase TiO2 shows remarkable initial charge capacities of 200, 119, and 56 mAh/g, corresponding to 172, 127, and 56 mAh/g, after 150 cycles, respectively, thus meeting the requirements for fast energy storage. This excellent performance can be attributed to the stability of the material and its high ionic conductivity, resulting from the stable architecture with a mesoporous microstructure and without the random aggregation of secondary particles. A fundamental understanding of the pore structure and controllable pore construction has been proven to be effective in increasing the rate capability and durability of nanostructured electrode materials. 展开更多
关键词 oriented attachment pore evolution mesoporous tio2 durabilit sodium ion batteries
原文传递
Synthesis of Mesoporous Anatase TiO2 Sphere with High Surface Area and Enhanced Photocatalytic Activity 被引量:3
4
作者 Tianliang Lu Youqiang Wang +3 位作者 Yingli Wang Lipeng Zhou Xiaomei Yang Yunlai Su 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第3期300-304,共5页
Mesoporous anatase TiO2 spheres with high surface area(119 m^2g^(-1)) were successfully synthesized via a facile and green template-free method. The prepared TiO2 was characterized by X-ray diffraction(XRD),N2 a... Mesoporous anatase TiO2 spheres with high surface area(119 m^2g^(-1)) were successfully synthesized via a facile and green template-free method. The prepared TiO2 was characterized by X-ray diffraction(XRD),N2 adsorption, scanning electron microscopy(SEM), transmission electron microscopy(TEM) and UV–vis absorbance spectra. It was found that the prepared TiO2 is characterized by pure anatase phase, which shows uniform spheres and has a typical mesostructure with a high specific surface area and a large pore volume. The effects of complexant(acetylacetone) amount, crystallization temperature and calcination temperature were also investigated. Based on the results, a sketch for the preparation of mesoporous TiO2 was proposed. First, complex formed between tetrabutyl titanate and acetylacetone in ethanol. After introduction of aqueous of ammonia sulfate and urea, hydrolysis of tetrabutyl titanate would occur slowly,and sol of TiO2 was formed. Then, crystallization proceeded under hydrothermal conditions. Calcination process favored the formation of bigger TiO2 crystal through combining of the small crystals in TiO2.This led to the formation of bigger mesopores between TiO2 crystals. Photocatalytic activity of the prepared TiO2 was evaluated by decomposition of methyl orange. 展开更多
关键词 tio2 mesoporous Template-free method Photocatalysis
原文传递
Ordered mesoporous Fe/TiO_2 with light enhanced photo-Fenton activity 被引量:9
5
作者 Zhenmin Xu Ru Zheng +2 位作者 Yao Chen Jian Zhu Zhenfeng Bian 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第5期631-637,共7页
Ordered mesoporous Fe/TiO2 was prepared by an evaporation-induced self-assembly method. The iron ions were in situ embedded in the pore wall of the TiO2 framework. The catalyst has excellent light-assisted Fenton cata... Ordered mesoporous Fe/TiO2 was prepared by an evaporation-induced self-assembly method. The iron ions were in situ embedded in the pore wall of the TiO2 framework. The catalyst has excellent light-assisted Fenton catalytic performance under UV and visible light irradiation. X-ray diffraction and transmission electron microscopy results showed that the TiO2 samples have an ordered two-dimensional hexagonal pore structure and an anatase phase structure with high crystallinity. The ordered pore structure of the TiO2 photocatalyst with a large specific surface area is beneficial to mass transfer and light harvesting. Furthermore, iron ions can be controlled by embedding them into the TiO2 framework to prevent iron ion loss and inactivation. After five cycles, the reaction rate of the ordered mesoporous Fe/TiO2 remained unchanged, indicating that the material has stable performance and broad application prospects for the purification of environmental pollutants. 展开更多
关键词 Ordered mesoporous tio2 Iron doping PHOTO-FENTON PHOTOCATALYSIS
在线阅读 下载PDF
Template-free synthesis of core-shell Fe_(3)O_(4)@MoS_(2)@mesoporous TiO_(2) magnetic photocatalyst for wastewater treatment 被引量:7
6
作者 Jingshu Yuan Yao Zhang +3 位作者 Xiaoyan Zhang Liang Zhao Hanlin Shen Shengen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期177-191,共15页
TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficult... TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficulties in recycling,have severely hindered its practical application.Herein,we synthesized magnetically separable Fe_(3)O_(4)@MoS_(2)@mesoporous TiO_(2)(FMmT)photocatalysts via a simple,green,and template-free solvothermal method combined with ultrasonic hydrolysis.It is found that FMmT possesses a high specific surface area(55.09 m2·g−1),enhanced visible-light responsiveness(~521 nm),and remarkable photogenerated charge separation efficiency.In addition,the photocatalytic degradation efficiencies of FMmT for methylene blue(MB),rhodamine B(RhB),and tetracycline(TC)are 99.4%,98.5%,and 89.3%within 300 min,respectively.The corresponding degradation rates are 4.5,4.3,and 3.1 times higher than those of pure TiO_(2)separately.Owing to the high saturation magnetization(43.1 A·m^(2)·kg^(−1)),FMmT can achieve effective recycling with an applied magnetic field.The improved photocatalytic activity is closely related to the effective transport of photogenerated electrons by the active interlayer MoS_(2) and the electron–hole separation caused by the MoS_(2)@TiO_(2)heterojunction.Meanwhile,the excellent light-harvesting ability and abundant reactive sites of the mesoporous TiO_(2)shell further boost the photocatalytic efficiency of FMmT.This work provides a new approach and some experimental basis for the design and performance improvement of magnetic photocatalysts by innovatively incorporating MoS2 as the active interlayer and integrating it with a mesoporous shell. 展开更多
关键词 CORE-SHELL MoS2 mesoporous tio2 photocatalytic degradation heterojunction magnetic recycling
在线阅读 下载PDF
Photocatalytic degradation of formaldehyde using mesoporous TiO_2 prepared by evaporation-induced self-assembly 被引量:5
7
作者 黎成勇 贾艳荣 +2 位作者 张向超 张世英 唐爱东 《Journal of Central South University》 SCIE EI CAS 2014年第11期4066-4070,共5页
The mesoporous Ti O2 has been synthesized by evaporation induced self assembly(EISA) method. The thermogravimetric/differential scanning calorimetric(TG/DSC), X-ray diffraction(XRD), high-resolution transmission elect... The mesoporous Ti O2 has been synthesized by evaporation induced self assembly(EISA) method. The thermogravimetric/differential scanning calorimetric(TG/DSC), X-ray diffraction(XRD), high-resolution transmission electron microscopy(HR-TEM) and N2 adsorption desorption and adsorption are used to study the effects of the synthesized process condition on the microstructure of the as-synthesized mesoporous Ti O2. The photocatalytic performances of as-synthesized samples are evaluated by the degradation of the formaldehyde under ultraviolet light irradiations. The results demonstrate that the as-synthesized mesoporous Ti O2 are anatase with the uniform size about 20-40 nm. The sample is prepared using cetyltrimethyl ammonium bromide(CTAB) as the template with average pore size distribution of 8.12 nm, specific surface area of 68.47 m2/g and pore volume of 0.213 m L/g. The samples show decomposition of formaldehyde 95.8% under ultraviolet light irradiations for 90 min. These results provide a basic experimental process for preparation mesoporous Ti O2, which will posses a broad prospect in terms of the applications in improving indoor air quality. 展开更多
关键词 mesoporous tio2 photocatalysis formaldehyde evaporation induced self assembly(EISA)
在线阅读 下载PDF
Stepwise construction of Pt decorated oxygen-deficient mesoporous titania microspheres with core-shell structure and magnetic separability for efficient visible-light photocatalysis 被引量:1
8
作者 Zhijian Li Yao Wang +5 位作者 Ahmed A.Elzatahry Xuanyu Yang Shouzhi Pu Wei Luo Xiaowei Cheng Yonghui Deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第6期1598-1602,共5页
Solid photocatalysts with high specific surface area,superior photoactivity and ease of recycling are highly desired in chemical process,water treatment and so on.In this study,a facile stepwise sol-gel coating approa... Solid photocatalysts with high specific surface area,superior photoactivity and ease of recycling are highly desired in chemical process,water treatment and so on.In this study,a facile stepwise sol-gel coating approach was utilized to synthesize Pt decorated oxygen-deficient mesoporous titania microspheres with core-shell structure and convenient magnetic separability(denoted as Fe3 O4@-SiO2@Pt/mTiO2-x).These photocatalysts consist of magnetic Fe3 O4 cores,nonporous insulating SiO2 middle layer and mesoporous anatase TiO2-x shell decorated by Pt nanoparticles(~3.5 nm)through wet impregnation and H2 reduction.As a result of high activity of oxygen-deficiency of black TiO2-x by H2 reduction and efficient inhibition of electron-hole recombination by Pt nanoparticles,the rationally designed core-shell Fe3 O4@SiO2@Pt/mTiO2-x photocatalysts exhibit superior photocatalytic performance in rhodamine B(RhB)degradation under visible light irradiation,with more than 98%of RhB degraded within 50 min.These core-shell structured photocatalysts show excellent recyclability under the assistance of magnetic separation with well-retained photocatalytic performance even after running five cycles.This stepwise synthesis method paves the way for the rational design of a high-efficiency recyclable heterogeneous catalyst,including photocatalysts,for various applications. 展开更多
关键词 CORE-SHELL mesoporous tio2 Photocatalytic activity Magnetic recovery Visible light
原文传递
Photocatalytic parameters and kinetic study for degradation of dichlorophenol-indophenol (DCPIP) dye using highly active mesoporous TiO_2 nanoparticles 被引量:3
9
作者 H.A.Hamad W.A.Sadik +2 位作者 M.M.Abd El-latif A.B.Kashyout M.Y.Feteha 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第5期26-39,共14页
Highly active mesoporous TiO_2 of about 6 nm crystal size and 280.7 m^2/g specific surface areas has been successfully synthesized via controlled hydrolysis of titanium butoxide at acidic medium. It was characterized ... Highly active mesoporous TiO_2 of about 6 nm crystal size and 280.7 m^2/g specific surface areas has been successfully synthesized via controlled hydrolysis of titanium butoxide at acidic medium. It was characterized by means of XRD(X-ray diffraction), SEM(scanning electron microscopy), TEM(transmission electron microscopy), FT-IR(Fourier transform infrared spectroscopy), TGA(thermogravimetric analysis), DSC(differential scanning calorimetry) and BET(Brunauer–Emmett–Teller) surface area. The degradation of dichlorophenol-indophenol(DCPIP) under ultraviolet(UV) light was studied to evaluate the photocatalytic activity of samples. The effects of different parameters and kinetics were investigated. Accordingly, a complete degradation of DCPIP dye was achieved by applying the optimal operational conditions of 1 g/L of catalyst, 10 mg/L of DCPIP, pH of 3 and the temperature at 25 ± 3°C after 3 min under UV irradiation. Meanwhile, the Langmuir–Hinshelwood kinetic model described the variations in pure photocatalytic branch in consistent with a first order power law model.The results proved that the prepared TiO_2 nanoparticle has a photocatalytic activity significantly better than Degussa P-25. 展开更多
关键词 Photocatalytic degradation mesoporous tio2 Kinetics Organic dye
原文传递
In-situ synthesized mesoporous TiO_2-B/anatase microparticles:Improved anodes for lithium ion batteries 被引量:2
10
作者 庄伟 吕玲红 +5 位作者 李伟 安蓉 冯新 邬新兵 朱育丹 陆小华 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第3期583-589,共7页
Mesoporous TiO_2-B/anatase microparticles have been in-situ synthesized from K_2Ti_2O_5 without template.The TiO_2-B phase around the particle surface accelerates the diffusion of charges through the interface,while t... Mesoporous TiO_2-B/anatase microparticles have been in-situ synthesized from K_2Ti_2O_5 without template.The TiO_2-B phase around the particle surface accelerates the diffusion of charges through the interface,while the anatase phase in the core maintains the capacity stability.The heterojunction interface between the main polymorph of anatase and the trace of TiO_2-B exhibits promising lithium ion battery performance.This trace of 5%(by mass) TiO_2-B determined by Raman spectra brings the first discharge capacity of this material to 247 mA · h ·g^(-1),giving 20%improvement compared to the anatase counterpart Stability testing at 1 C reveals that the capacity maintains at 171 mA·h·^(-1),which is better than 162 mA·h·g^(-1) for single phase anatase or 159 mA·h·g^(-1) for TiO_2-B.The mesoporous TiO_2-B/anatase rnicroparticles also show superior rate performance with 100 mA·h·g^(-1) at 40 C,increased by nearly 25%as compared to pure anatase.This opens a possibility of a general design route,which can be applied to other metal oxide electrode materials for rechargeable batteries and supercapacitors. 展开更多
关键词 Titania Lithium ion battery Microparticles mesoporous tio2-B
在线阅读 下载PDF
MESOPOROUS TIO_2 NANO-SPHERES: ELECTROSPRAY COMBINED SOL-GEL FABRICATION AND APPLICATION TO ORGANIC PHOSPHORUS DEGRADATION
11
作者 Dong Tian Tong Jianhua +3 位作者 Bian Chao Zhao Ling He Xiuli Xia Shanhong 《Journal of Electronics(China)》 2013年第3期313-317,共5页
In this work, electrospray technique combined sol-gel method was used to prepare porous TiO2 film. X-ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were ... In this work, electrospray technique combined sol-gel method was used to prepare porous TiO2 film. X-ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were conducted to examine the chemical composition, phase structure, and surface morphology of the sprayed TiO2 film. After calcined at 450℃ in air atmosphere for 2 h, mesoporous TiO2 nano-spheres clusters were formed on the surface of silicon wafer and the average size of nano-spheres was 250 nm. Ti presented as Ti 4+ oxidation state in TiO2 film, and the TiO2 film exhibited the anatase phase. The sprayed porous TiO2 films were employed as photocatalyst to degrade organic phosphorus in water samples. Compared with the TiO2 film prepared by Sol-Gel spin-coating method, the porous TiO2 film deposited by electrospray combined sol-gel method showed higher photocatalytic activity. 展开更多
关键词 SOL-GEL ELECTROSPRAY mesoporous tio2 nano-spheres Organic phosphorus degradation
在线阅读 下载PDF
Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance 被引量:17
12
作者 Wei Zhou Ting Li +8 位作者 Jianqiang Wang Yang Qu Kai Pan Ying Xie Guohui Tian Lei Wang Zhiyu Ren Baojiang Jiang Honggang Fu 《Nano Research》 SCIE EI CAS CSCD 2014年第5期731-742,共12页
Small Ag clusters confined in the channels of ordered mesoporous anatase TiO2 have been fabricated via a vacuum-assisted wet-impregnation method, utilizing well-ordered mesoporous anatase TiO2 with high thermal stabil... Small Ag clusters confined in the channels of ordered mesoporous anatase TiO2 have been fabricated via a vacuum-assisted wet-impregnation method, utilizing well-ordered mesoporous anatase TiO2 with high thermal stability as the host. The composites have been characterized in detail by X-ray diffraction, X-ray photoelectron spectroscopy X-ray absorption fine structure (XAFS) spectroscopy, N2 adsorption, UV-visible diffuse reflectance spectroscopy and transmission electron microscopy. The results indicate that small Ag clusters are formed and uniformly confined in the channels of mesoporous TiO2 with an obvious confinement effect. The presence of strong AgO interactions involving the Ag clusters in intimate contact with the pore walls of mesoporous TiO2 is confirmed by XAFS analysis, and favors the separation of photogenerated electron-hole pairs, as shown by steady-state surface photovoltage spectroscopy and transient-state surface photovoltage measurements. The ordered mesoporous Ag/TiO2 composites exhibit excellent solar-light-driven photocatalytic performance for the degradation of phenol. This is attributed to the synergistic effects between the small Ag clusters acting as traps to effectively capture the photogenerated electrons, and the surface plasmon resonance of the Ag clusters promoting the absorption of visible light. This study clearly demonstrates the high-efficiency utilization of noble metals in the fabrication of high-performance solar-light-driven photocatalysts. 展开更多
关键词 mesoporous tio2 Ag cluster confinement effect solar-light-drivenphotocatalysis surface plasmonresonance
原文传递
Tricrystalline TiO_2 with enhanced photocatalytic activity and durability for removing volatile organic compounds from indoor air 被引量:10
13
作者 Kunyang Chen Lizhong Zhu Kun Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第6期189-195,共7页
It is important to develop efficient and economic techniques for removing volatile organic compounds(VOCs) in indoor air. Heterogeneous Ti O2-based semiconductors are a promising technology for achieving this goal. ... It is important to develop efficient and economic techniques for removing volatile organic compounds(VOCs) in indoor air. Heterogeneous Ti O2-based semiconductors are a promising technology for achieving this goal. Anatase/brookite/rutile tricrystalline Ti O2 with mesoporous structure was synthesized by a low-temperature hydrothermal route in the presence of HNO3.The obtained samples were characterized by X-ray diffraction and N2 adsorption-desorption isotherm. The photocatalytic activity was evaluated by photocatalytic decomposition of toluene in air under UV light illumination. The results show that tricrystalline Ti O2 exhibited higher photocatalytic activity and durability toward gaseous toluene than bicrystalline Ti O2,due to the synergistic effects of high surface area, uniform mesoporous structure and junctions among mixed phases. The tricrystalline Ti O2 prepared at R HNO3= 0.8, containing80.7% anatase, 15.6% brookite and 3.7% rutile, exhibited the highest photocatalytic activity,about 3.85-fold higher than that of P25. The high activity did not significantly degrade even after five reuse cycles. In conclusion, it is expected that our study regarding gas-phase degradation of toluene over tricrystalline Ti O2 will enrich the chemistry of the Ti O2-based materials as photocatalysts for environmental remediation and stimulate further research interest on this intriguing topic. 展开更多
关键词 VOC Photocatalysis Tricrystalline tio2 Nanomaterials mesoporous Gaseous
原文传递
Plasmonic Au Decorated Single-crystal-like TiO2-NaYF4 Mesoporous Microspheres for Enhanced Broadband Photocatalysis 被引量:1
14
作者 Yuanwei Wang Yihua Zhu +4 位作者 Xiaoling Yang Jianhua Shen Jingrun Zhu Shaohong Qian Chunzhong Li 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2017年第6期949-956,共8页
Single-crystal-like TiO2 mesoporous microspheres have been reported with high photocatalytic activity under ultraviolet light (UV light) because of their high specific surface areas and single-crystal-like channel w... Single-crystal-like TiO2 mesoporous microspheres have been reported with high photocatalytic activity under ultraviolet light (UV light) because of their high specific surface areas and single-crystal-like channel walls. In this work, plasmonic gold nanoparticles (Au NPs) and fl-NaYF4: Yb3+, Er3+ upconversion nanoparticles (UCNPs) were composited with single-crystal-like TiO2 mesoporous microspheres through a series of facile approaches, aiming at broadening response region of solar light from UV to visible and near infrared light and enhancing the photocata- lyric activity further. The structure was rationally designed by modifying the pore size of TiO2 mesoporous micro- spheres so as to anchor plasmonic Au NPs, and covering β-NaYF4: Yb3+, Er3+ with SiO2 in order to embed UCNPs into TiO2 mesoporous microspheres via hydrophilic interaction. This work studied the attribution of Au NPs and UCNPs to photocatalysis and found out that combining Au NPs and certain amount of UCNPs with single-crystal- like TiO2 mesoporous microspheres in a monolithic architecture would bring enhanced broadband photocatalytic activity under simulated solar light. Consequently, the composite photocatalyts containing 150 mg UCNPs showed a significant enhancement in reaction rate, which was 36.02% higher than commercial P25 and 85.09% higher than pure TiO2 mesoporous microspheres under simulated solar light. 展开更多
关键词 single-crystal-like tio2 mesoporous microspheres surface plasmon resonance upconversion nano-particles
原文传递
Efficiency improvement of flexible dye-sensitized solar cells by introducing mesoporous TiO_2 microsphere 被引量:5
15
作者 FAN LeQing CHEN Yuan +4 位作者 WU JiHuai LI ZhaoLei XIAO YaoMing HUANG MiaoLiang YU HaiJun 《Science China Chemistry》 SCIE EI CAS 2013年第10期1470-1477,共8页
Mesoporous TiO2microsphere(MTM)was synthesized via a simple solution route and then mixed with commercial TiO2(P25)to form highly homogeneous and stable TiO2colloid by simple hydrothermal treatment.The TiO2colloid was... Mesoporous TiO2microsphere(MTM)was synthesized via a simple solution route and then mixed with commercial TiO2(P25)to form highly homogeneous and stable TiO2colloid by simple hydrothermal treatment.The TiO2colloid was coated onto the plastic conductive substrate to prepare mesoporous TiO2film for flexible dye-sensitized solar cells(DSSCs)by low-temperature heat treatment.The influence of MTM content on the physicochemical properties of the flexible TiO2film was characterized by scanning electron microscope,transmission electron microscopy,X-ray diffraction,energy-dispersive X-ray spectrometer,N2adsorption-desorption isotherms,UV–vis absorption and diffuse reflectance spectra.It is revealed that with increasing the MTM content,the dye-loading capability of TiO2film and light-harvesting efficiency of flexible DSSCs are improved due to MTM having high surface area and acting as a light scattering center,respectively,resulting in the enhancement of photocurrent of flexible DSSCs.However,more and larger cracks having negative effect on the performances of flexible DSSCs are formed simultaneously.Under the optimal condition with MTM content of 20%,a flexible DSSC with overall light-to-electric energy conversion efficiency of 2.74%is achieved under a simulated solar light irradiation of 100 mW cm 2(AM 1.5),with 26%improvement in comparison with DSSCs based on P25 alone. 展开更多
关键词 mesoporous tio2 microsphere dye-sensitized solar cell flexible mesoporous tio2 film hydrothermal treatment
原文传递
Preparation of dye-sensitized solar cells with high photocurrent and photovoltage by using mesoporous titanium dioxide particles as photoanode material 被引量:4
16
作者 Yi Zhang Bao Zhang +6 位作者 Xiao Peng Lin Liu Shuo Dong Liping Lin Si Chen Shuxian Meng Yaqing Feng 《Nano Research》 SCIE EI CAS CSCD 2015年第12期3830-3841,共12页
Several mesoporous TiO2 (MT) materials were synthesized under different conditions following a hydrothermal procedure using poly(ethylene-glycol)- block-poly(propylene-glycol)-block-poly(ethylene-glycol) (P12... Several mesoporous TiO2 (MT) materials were synthesized under different conditions following a hydrothermal procedure using poly(ethylene-glycol)- block-poly(propylene-glycol)-block-poly(ethylene-glycol) (P123) as the template and titanium isopropoxide as the titanium source. The molar ratios of Ti/P123, and the pH values of the reaction solution in an autoclave were investigated. Various techniques such as Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), laser Raman spectrometry (LRS), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the products. Then, these materials were assembled into dye-sensitized solar cells (DSSCs). Analysis of the J-V curves and electrochemical impedance spectroscopy (EIS) were applied to characterize the cells. The results indicated that the specific surface area and crystalline structure of these materials provide the possibility of high photocurrent for the cells, and that the structural characteristics of the specimens led to increased electron transfer resistance of the cells, which was beneficial for the improvement of the photovoltage of the DSSCs. The highest photoelectric conversion efficiency of the cells involving MT materials reached 8.33%, which, compared with that of P25- based solar cell (5.88%), increased by 41.7%. 展开更多
关键词 dye-sensitized solar cells mesoporous tio2 high photocurrent and photovoltage
原文传递
Template-free synthesis of carbon doped TiO_2 mesoporous microplates for enhanced visible light photodegradation
17
作者 刘聚明 韩卢 +6 位作者 马惠言 田昊 杨桔材 张前程 Benjamin J.Seligmann 王绍斌 刘健 《Science Bulletin》 SCIE EI CAS CSCD 2016年第19期1543-1550,1470,共9页
Titanium dioxide(Ti O_2) is widely employed as a solid photocatalyst for solar energy conversion and environmental remediation. The ability to construct porous Ti O_2 with controlled particle size and narrowed bandgap... Titanium dioxide(Ti O_2) is widely employed as a solid photocatalyst for solar energy conversion and environmental remediation. The ability to construct porous Ti O_2 with controlled particle size and narrowed bandgap is an essential requirement for the design of highly efficient and recyclable photocatalysts. Here, we report a templatefree acetic acid induced method for the synthesis of visiblelight responsive carbon-doped Ti O_2 microplates with high crystallinity and mesoporous structure. It is shown that the electron-withdrawing bidentate carboxylate ligands derived from acetic acid can narrow the bandgap of Ti O_2(1.84 e V)substantially. Moreover, the resultant microplate photocatalysts exhibit excellent photocatalytic efficiency and solid–liquid separation performance, which will be beneficial for future industrial applications. 展开更多
关键词 Acetic acid CARBOXYLATE tio2 mesoporous microplates Carbon doped Bandgap narrowing
原文传递
Performance of CdS/CdSe/ZnS quantum dot-sensitized TiO_2 mesopores for solar cells 被引量:1
18
作者 Tung Ha Thanh Quang Vinh Lam +1 位作者 Thai Hoang Nguyen Thanh Dat Huynh 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第7期66-69,共4页
We prepare CdS/CdSe/ZnS thin films by successive ionic layer adsorption and reaction method. Results show a wider photoresponse range of TiO2 mesopores from the ultraviolet region to the visible light region. Sequenti... We prepare CdS/CdSe/ZnS thin films by successive ionic layer adsorption and reaction method. Results show a wider photoresponse range of TiO2 mesopores from the ultraviolet region to the visible light region. Sequentially assembled CdS/CdSe/ZnS quantum and photocurrent efficiency. A high efficiency of dots exhibit significantly improved light-harvesting ability 1.059354% is obtained. 展开更多
关键词 CdSe Performance of CdS/CdSe/ZnS quantum dot-sensitized tio2 mesopores for solar cells ZnS TIO
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部