In order to solve the problem of high computing cost and low simulation accuracy caused by discontinuity of incision in traditional meshless model,this paper proposes a soft tissue deformation model based on the Marqu...In order to solve the problem of high computing cost and low simulation accuracy caused by discontinuity of incision in traditional meshless model,this paper proposes a soft tissue deformation model based on the Marquardt algorithm and enrichment function.The model is based on the element-free Galerkin method,in which Kelvin viscoelastic model and adjustment function are integrated.Marquardt algorithm is applied to fit the relation between force and displacement caused by surface deformation,and the enrichment function is applied to deal with the discontinuity in the meshless method.To verify the validity of the model,the Sensable Phantom Omni force tactile interactive device is used to simulate the deformations of stomach and heart.Experimental results show that the proposed model improves the real-time performance and accuracy of soft tissue deformation simulation,which provides a new perspective for the application of the meshless method in virtual surgery.展开更多
The steady state solution of long slender marine structures simply indicates the steady motion response to the excitation at top of the structure.It is very crucial especially for deep towing systems to find out how t...The steady state solution of long slender marine structures simply indicates the steady motion response to the excitation at top of the structure.It is very crucial especially for deep towing systems to find out how the towed body and towing cable work under certain towing speed.This paper has presented a direct algorithm using Runge-Kutta method for steady-state solution of long slender cylindrical structures and compared to the time iteration calculation;the direct algorithm spends much less time than the time-iteration scheme.Therefore, the direct algorithm proposed in this paper is quite efficient in providing credible reference for marine engineering applications.展开更多
All step-by-step integration methods available at present for structural dynamic analysis use the displacement, velocity, and acceleration vectors computed at a previous interval for evaluating those at an advanced ti...All step-by-step integration methods available at present for structural dynamic analysis use the displacement, velocity, and acceleration vectors computed at a previous interval for evaluating those at an advanced time step. Hence, an accumulated error will be definitely introduced after such integration. This paper presents a novel time-domain-advance integration method for transient elastodynamic problems in which the exact initial conditions are strictly satisfied for the solutions for each time step. In this way, the accumu- lated error can be eliminated and the approximate solutions will converge to the exact ones uniformly on the whole time domain. Therefore. the new method is more accurate. When applying to a structural dynamic problem, the present mehtod does not have to use the initial acceleration as is required by most other algorithms and the corresponding computation can be avoided. The present method is simple in representation, easy to be programmed, and especially suitable for accurate analyses of long-time problems. The comparison of numerical results with exact ones shows that the present method is much more accurate than some most widely used algorithms.展开更多
Because the conventional ultra wideband(UWB) radar imaging algorithm cannot meet the demand in the capability of multiple targets detection,a novel UWB radar imaging algorithm based on the near field radiation theor...Because the conventional ultra wideband(UWB) radar imaging algorithm cannot meet the demand in the capability of multiple targets detection,a novel UWB radar imaging algorithm based on the near field radiation theory of dipole is presented.On the foundation of researching the principle of a time domain imaging algorithm,the back projection(BP) algorithm is derived and analyzed.Firstly,the far field sampling data are transferred to the near field sampling data by using the near field radiation theory of dipole.Then the BP algorithm is applied to target detection.The capability of the new algorithm to detect the multi-target is verified by using the finite-difference time-domain method,and the threedimensional images of targets are obtained.The coupling effect between targets for imaging is analyzed.The simulation results show that the new UWB radar imaging algorithm based on the near field radiation theory of dipole could weaken the coupling effect for imaging,and as a result the quality of imaging is improved.展开更多
China has a vast territory with a great demand for electricity. However, the resources are in reverse distribution in the country. Therefore, high voltage direct current transmission has great practical significance a...China has a vast territory with a great demand for electricity. However, the resources are in reverse distribution in the country. Therefore, high voltage direct current transmission has great practical significance and been widely used. However, traditional fault location methods have a lot of problems in engineering application for the length of transmission line and the complexity of the terrain. This paper proposes a comprehensive evaluation algorithm based on the travelling wave method and time domain method. It also proposes a concept of fault point reliability. This algorithm analyzes the fault point reliability in the whole transmission line to determine the specific location of the fault point. This paper proves that the algorithm has high reliability by PSCAD simulation software.展开更多
The micro-genetic algorithm (MGA) optimization combined with the finite-difference time-domain (FDTD) method is applied to design a band-notched ultra wide-band (UWB) antenna. A U-type slot on a stepped U-type UWB mon...The micro-genetic algorithm (MGA) optimization combined with the finite-difference time-domain (FDTD) method is applied to design a band-notched ultra wide-band (UWB) antenna. A U-type slot on a stepped U-type UWB monopole is used to obtain the band-notched characteristic for 5 GHz wireless local area network (WLAN) band. The measured results show that voltage standing wave ration (VSWR) less than 2 covers 3.1-10.6 GHz operating band and VSWR more than 2 is within 5.150-5.825 GHz notched one with the highest value of 5.6. Agreement among the calculated, HFSS simulated and measured results validates the effiectiveness of this MGA-FDTD method, which is efficient for UWB antennas design.展开更多
A new method to reduce the numerical dispersion of the three-dimensional Alternating Di-rection Implicit Finite-Difference Time-Domain (3-D ADI-FDTD) method is proposed. Firstly,the numerical formulations of the 3-D A...A new method to reduce the numerical dispersion of the three-dimensional Alternating Di-rection Implicit Finite-Difference Time-Domain (3-D ADI-FDTD) method is proposed. Firstly,the numerical formulations of the 3-D ADI-FDTD method are modified with the artificial anisotropy,and the new numerical dispersion relation is derived. Secondly,the relative permittivity tensor of the artificial anisotropy can be obtained by the Adaptive Genetic Algorithm (AGA). In order to demon-strate the accuracy and efficiency of this new method,a monopole antenna is simulated as an exam-ple. And the numerical results and the computational requirements of the proposed method are com-pared with those of the conventional ADI-FDTD method and the measured data. In addition the re-duction of the numerical dispersion is investigated as the objective function of the AGA. It is found that this new method is accurate and efficient by choosing proper objective function.展开更多
基金This work was supported,in part,by the National Nature Science Foundation of China under grant numbers 61502240,61502096,61304205,61773219in part,by the Natural Science Foundation of Jiangsu Province under grant number BK20191401+1 种基金in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fundin part,by the Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET)fund.
文摘In order to solve the problem of high computing cost and low simulation accuracy caused by discontinuity of incision in traditional meshless model,this paper proposes a soft tissue deformation model based on the Marquardt algorithm and enrichment function.The model is based on the element-free Galerkin method,in which Kelvin viscoelastic model and adjustment function are integrated.Marquardt algorithm is applied to fit the relation between force and displacement caused by surface deformation,and the enrichment function is applied to deal with the discontinuity in the meshless method.To verify the validity of the model,the Sensable Phantom Omni force tactile interactive device is used to simulate the deformations of stomach and heart.Experimental results show that the proposed model improves the real-time performance and accuracy of soft tissue deformation simulation,which provides a new perspective for the application of the meshless method in virtual surgery.
基金the National Natural Science Foundation of China(Nos.51009092 and 50909061)the Doctoral Foundation of Education Ministry of China (No.20090073120013)the National High Technology Research and Development Program (863) of China (No.2008AA092301-1)
文摘The steady state solution of long slender marine structures simply indicates the steady motion response to the excitation at top of the structure.It is very crucial especially for deep towing systems to find out how the towed body and towing cable work under certain towing speed.This paper has presented a direct algorithm using Runge-Kutta method for steady-state solution of long slender cylindrical structures and compared to the time iteration calculation;the direct algorithm spends much less time than the time-iteration scheme.Therefore, the direct algorithm proposed in this paper is quite efficient in providing credible reference for marine engineering applications.
文摘All step-by-step integration methods available at present for structural dynamic analysis use the displacement, velocity, and acceleration vectors computed at a previous interval for evaluating those at an advanced time step. Hence, an accumulated error will be definitely introduced after such integration. This paper presents a novel time-domain-advance integration method for transient elastodynamic problems in which the exact initial conditions are strictly satisfied for the solutions for each time step. In this way, the accumu- lated error can be eliminated and the approximate solutions will converge to the exact ones uniformly on the whole time domain. Therefore. the new method is more accurate. When applying to a structural dynamic problem, the present mehtod does not have to use the initial acceleration as is required by most other algorithms and the corresponding computation can be avoided. The present method is simple in representation, easy to be programmed, and especially suitable for accurate analyses of long-time problems. The comparison of numerical results with exact ones shows that the present method is much more accurate than some most widely used algorithms.
基金supported by the Key Laboratory of Millimeter Waves of China (K200907)
文摘Because the conventional ultra wideband(UWB) radar imaging algorithm cannot meet the demand in the capability of multiple targets detection,a novel UWB radar imaging algorithm based on the near field radiation theory of dipole is presented.On the foundation of researching the principle of a time domain imaging algorithm,the back projection(BP) algorithm is derived and analyzed.Firstly,the far field sampling data are transferred to the near field sampling data by using the near field radiation theory of dipole.Then the BP algorithm is applied to target detection.The capability of the new algorithm to detect the multi-target is verified by using the finite-difference time-domain method,and the threedimensional images of targets are obtained.The coupling effect between targets for imaging is analyzed.The simulation results show that the new UWB radar imaging algorithm based on the near field radiation theory of dipole could weaken the coupling effect for imaging,and as a result the quality of imaging is improved.
文摘China has a vast territory with a great demand for electricity. However, the resources are in reverse distribution in the country. Therefore, high voltage direct current transmission has great practical significance and been widely used. However, traditional fault location methods have a lot of problems in engineering application for the length of transmission line and the complexity of the terrain. This paper proposes a comprehensive evaluation algorithm based on the travelling wave method and time domain method. It also proposes a concept of fault point reliability. This algorithm analyzes the fault point reliability in the whole transmission line to determine the specific location of the fault point. This paper proves that the algorithm has high reliability by PSCAD simulation software.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘The micro-genetic algorithm (MGA) optimization combined with the finite-difference time-domain (FDTD) method is applied to design a band-notched ultra wide-band (UWB) antenna. A U-type slot on a stepped U-type UWB monopole is used to obtain the band-notched characteristic for 5 GHz wireless local area network (WLAN) band. The measured results show that voltage standing wave ration (VSWR) less than 2 covers 3.1-10.6 GHz operating band and VSWR more than 2 is within 5.150-5.825 GHz notched one with the highest value of 5.6. Agreement among the calculated, HFSS simulated and measured results validates the effiectiveness of this MGA-FDTD method, which is efficient for UWB antennas design.
基金the National Natural Science Foundation of China (No. 60271012)Research Foundation of ZTE Corporation.
文摘A new method to reduce the numerical dispersion of the three-dimensional Alternating Di-rection Implicit Finite-Difference Time-Domain (3-D ADI-FDTD) method is proposed. Firstly,the numerical formulations of the 3-D ADI-FDTD method are modified with the artificial anisotropy,and the new numerical dispersion relation is derived. Secondly,the relative permittivity tensor of the artificial anisotropy can be obtained by the Adaptive Genetic Algorithm (AGA). In order to demon-strate the accuracy and efficiency of this new method,a monopole antenna is simulated as an exam-ple. And the numerical results and the computational requirements of the proposed method are com-pared with those of the conventional ADI-FDTD method and the measured data. In addition the re-duction of the numerical dispersion is investigated as the objective function of the AGA. It is found that this new method is accurate and efficient by choosing proper objective function.