期刊文献+
共找到260篇文章
< 1 2 13 >
每页显示 20 50 100
A Dimension-Splitting Variational Multiscale Element-Free Galerkin Method for Three-Dimensional Singularly Perturbed Convection-Diffusion Problems 被引量:1
1
作者 Jufeng Wang Yong Wu +1 位作者 Ying Xu Fengxin Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期341-356,共16页
By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is propose... By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability. 展开更多
关键词 Dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method interpolating variational multiscale element-free Galerkin(VMIEFG)method dimension splitting method singularly perturbed convection-diffusion problems
在线阅读 下载PDF
Stabilization meshless method for convection-dominated problems
2
作者 张小华 欧阳洁 王建瑜 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第8期1067-1075,共9页
It is weN-known that the standard Galerkin is not ideally suited to deal with the spatial discretization of convection-dominated problems. In this paper, several techniques are proposed to overcome the instabilitY iss... It is weN-known that the standard Galerkin is not ideally suited to deal with the spatial discretization of convection-dominated problems. In this paper, several techniques are proposed to overcome the instabilitY issues in convection-dominated problems in the simulation with a meshless method. These stable techniques included nodal refinement, enlargement of the nodal influence domain, full upwind meshless technique and adaptive upwind meshless technique. Numerical results for sample problems show that these techniques are effective in solving convection-dominated problems, and the adaptive upwind meshless technique is the most effective method of all. 展开更多
关键词 meshless method convection-diffusion problem stability method
在线阅读 下载PDF
A new complex variable meshless method for transient heat conduction problems 被引量:5
3
作者 王健菲 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期42-50,共9页
In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is pres... In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper. 展开更多
关键词 meshless method improved complex variable moving least-square approximation com-plex variable meshless method transient heat conduction problem
原文传递
New complex variable meshless method for advection-diffusion problems 被引量:1
4
作者 王健菲 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期92-98,共7页
In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equi... In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency. 展开更多
关键词 meshless method improved complex variable moving least-square approximation improved complex variable meshless method advection-diffusion problem
原文传递
The Direct Discontinuous Galerkin Methods with Implicit-Explicit Runge-Kutta Time Marching for Linear Convection-Diffusion Problems 被引量:2
5
作者 Haijin Wang Qiang Zhang 《Communications on Applied Mathematics and Computation》 2022年第1期271-292,共22页
In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear conve... In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear convection-diffusion problems.In the spatial discretization,both the original DDG methods and the refined DDG methods with interface corrections are considered.In the time discretization,the convection term is treated explicitly and the diffusion term implicitly.By the energy method,we show that the corresponding fully discrete schemes are unconditionally stable,in the sense that the time-stepis only required to be upper bounded by a constant which is independent of the mesh size h.Opti-mal error estimate is also obtained by the aid of a special global projection.Numerical experiments are given to verify the stability and accuracy of the proposed schemes. 展开更多
关键词 Direct discontinuous Galerkin method Implicit-explicit scheme stability analysis Energy method convection-diffusion problem
在线阅读 下载PDF
A Novel Spacetime Collocation Meshless Method for Solving Two- Dimensional Backward Heat Conduction Problems 被引量:1
6
作者 Chihyu Liu Chengyu Ku +1 位作者 Jingen Xiao Weichung Yeih 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第1期229-252,共24页
In this article,a meshless method using the spacetime collocation for solving the two-dimensional backward heat conduction problem(BHCP)is proposed.The spacetime collocation meshless method(SCMM)is to derive the gener... In this article,a meshless method using the spacetime collocation for solving the two-dimensional backward heat conduction problem(BHCP)is proposed.The spacetime collocation meshless method(SCMM)is to derive the general solutions as the basis functions for the two-dimensional transient heat equation using the separation of variables.Numerical solutions of the heat conduction problem are expressed as a series using the addition theorem.Because the basis functions are the general solutions of the governing equation,the boundary points may be collocated on the spacetime boundary of the domain.The proposed method is verified by conducting several heat conduction problems.We also carry out numerical applications to compare the SCMM with other meshless methods.The results show that the SCMM is accurate and efficient.Furthermore,it is found that the recovered boundary data on inaccessible boundary can be obtained with high accuracy even though the over specified data are provided only at a 1/6 portion of the spacetime boundary. 展开更多
关键词 SPACETIME COLLOCATION meshless method BACKWARD heat conduction problem basis functions.
在线阅读 下载PDF
A Local Meshless Method for Two Classes of Parabolic Inverse Problems
7
作者 Wei Liu Baiyu Wang 《Journal of Applied Mathematics and Physics》 2018年第5期968-978,共11页
A local meshless method is applied to find the numerical solutions of two classes of inverse problems in parabolic equations. The problem is reconstructing the source term using a solution specified at some internal p... A local meshless method is applied to find the numerical solutions of two classes of inverse problems in parabolic equations. The problem is reconstructing the source term using a solution specified at some internal points;one class is that the source term is time dependent, and the other class is that the source term is time and space dependent. Some numerical experiments are presented and discussed. 展开更多
关键词 meshless method Moving Least SQUARES LOCAL Radial Basis Functions Inverse problem PARABOLIC Equation
在线阅读 下载PDF
ANALYSIS OF THE IMPLICIT-EXPLICIT ULTRA-WEAK DISCONTINUOUS GALERKIN METHOD FOR CONVECTION-DIFFUSION PROBLEMS 被引量:1
8
作者 Haijin Wang Anping Xu Qi Tao 《Journal of Computational Mathematics》 SCIE CSCD 2024年第1期1-23,共23页
In this paper,we first present the optimal error estimates of the semi-discrete ultra-weak discontinuous Galerkin method for solving one-dimensional linear convection-diffusion equations.Then,coupling with a kind of R... In this paper,we first present the optimal error estimates of the semi-discrete ultra-weak discontinuous Galerkin method for solving one-dimensional linear convection-diffusion equations.Then,coupling with a kind of Runge-Kutta type implicit-explicit time discretization which treats the convection term explicitly and the diffusion term implicitly,we analyze the stability and error estimates of the corresponding fully discrete schemes.The fully discrete schemes are proved to be stable if the time-stepτ≤τ0,whereτ0 is a constant independent of the mesh-size h.Furthermore,by the aid of a special projection and a careful estimate for the convection term,the optimal error estimate is also obtained for the third order fully discrete scheme.Numerical experiments are displayed to verify the theoretical results. 展开更多
关键词 The ultra-weak discontinuous Galerkin method convection-diffusion Implicitexplicit time discretization stability Error estimate
原文传递
A MULTISTEP CHARACTERISTIC FINITE DIFFERENCE METHOD FOR TWO-DIMENSIONAL NONLINEAR CONVECTION-DIFFUSION PROBLEMS
9
作者 YU Xijun(Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,P. O.Box 8009-26, Beijing 100088, China) 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1999年第4期323-334,共12页
A multistep characteristic finite difference method is given on the basis ofthe linear and quadratic interpolations for solving two-dimensional nonlinear convection-diffusion problems. The convergence of approximate s... A multistep characteristic finite difference method is given on the basis ofthe linear and quadratic interpolations for solving two-dimensional nonlinear convection-diffusion problems. The convergence of approximate solutions is obtained in L2. 展开更多
关键词 TWO-DIMENSIONAL nonlinear convection-diffusion problem an MULTISTEP char-acteristic DIFFERENCE method convergence error estimate.
在线阅读 下载PDF
Streamline-Diffusion Method of a Lowest Order Nonconforming Rectangular Finite Element for Convection-Diffusion Problem
10
作者 Dong-yang SHI Hong-xin CUI Hong-bo GUAN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第2期427-434,共8页
The streamline-diffusion method of the lowest order nonconforming rectangular finite element is proposed for convection-diffusion problem. By making full use of the element's special property, the same convergence or... The streamline-diffusion method of the lowest order nonconforming rectangular finite element is proposed for convection-diffusion problem. By making full use of the element's special property, the same convergence order as the previous literature is obtained. In which, the jump terms on the boundary are added to bilinear form with simple user-chosen parameter δKwhich has nothing to do with perturbation parameter εappeared in the problem under considered, the subdivision mesh size hKand the inverse estimate coefficient μin finite element space. 展开更多
关键词 convection-diffusion problem streamline-diffusion method error estimate nonconforming rectangular finite element
原文传递
Secondary Nonlinear Stability of General Linear Methods for Stiff Initial Value Problems
11
作者 Xiao Aiguo & Yan Zizong (Department of Mathematics, Xiangtan University, Hunan, 411105, P.R.China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第3期83-89,共7页
In 1992, Cooper [2] has presented some new stability concepts for Runge-Kutta methods whichis based on two slightly different test problems, and obtained the algebraic conditions that guarantee newstability properties... In 1992, Cooper [2] has presented some new stability concepts for Runge-Kutta methods whichis based on two slightly different test problems, and obtained the algebraic conditions that guarantee newstability properties. In this paper, we extend these results to general linear methods and to more generalproblem class Kστ. The concepts of (k, p, q)-secondary stability and (k, p. q)-secondary stability are introduced, and the criteria of secondary algebraic stability are also established. The criteria relax algebraicstability conditions while retaining the virtues of a nonlinear test problem. 展开更多
关键词 General linear methods Stiff problems Secondary nonlinear stability
在线阅读 下载PDF
The complex variable meshless local Petrov-Galerkin method of solving two-dimensional potential problems 被引量:1
12
作者 杨秀丽 戴保东 张伟伟 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期49-55,共7页
Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential proble... Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method. 展开更多
关键词 meshless method complex variable moving least-square method complex variable meshless local Petrov-Galerkin method potential problems
原文传递
A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
13
作者 王启防 戴保东 栗振锋 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期238-244,共7页
On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is ... On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method. 展开更多
关键词 meshless method complex variable moving least-square method complex variable meshless localPetrov-Galerkin method transient heat conduction problems
原文传递
RATE OF CONVERGENCE OF SCHWARZ ALTERNATING METHOD FOR TIME-DEPENDENT CONVECTION-DIFFUSION PROBLEM
14
作者 Jian-wei Hu Cai-hua Wang 《Journal of Computational Mathematics》 SCIE EI CSCD 2002年第5期479-490,共12页
Presents a study that examined the application of an overlapping domain decomposition method to the solution of time-dependent convection-diffusion problems. Background on the Schwartz alternating procedure; Applicati... Presents a study that examined the application of an overlapping domain decomposition method to the solution of time-dependent convection-diffusion problems. Background on the Schwartz alternating procedure; Application of two kinds of Schwartz alternating procedure to solve the numerical approximation problem; Numerical results. 展开更多
关键词 rate of convergence Schwarz alternating method convection-diffusion problem
全文增补中
Two-level stabilized finite element method for Stokes eigenvalue problem 被引量:1
15
作者 黄鹏展 何银年 冯新龙 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第5期621-630,共10页
A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered. This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh si... A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered. This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a Stokes problem on a fine mesh with mesh size h -- O(H2), which can still maintain the asymptotically optimal accuracy. It provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution, which involves solving a Stokes eigenvalue problem on a fine mesh with mesh size h. Hence, the two-level stabilized finite element method can save a large amount of computational time. Moreover, numerical tests confirm the theoretical results of the present method. 展开更多
关键词 Stokes eigenvalue problem stabilized method lowest equal-order pair two-level method
在线阅读 下载PDF
Adaptive Finite Element Method for Steady Convection-Diffusion Equation
16
作者 Gelaw Temesgen Mekuria Jakkula Anand Rao 《American Journal of Computational Mathematics》 2016年第3期275-285,共12页
This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary condi... This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary conditions. To overcome such singularities arising from these critical regions, the adaptive finite element method is employed. This scheme is based on the streamline diffusion method combined with Neumann-type posteriori estimator. The effectiveness of this approach is illustrated by different examples with several numerical experiments. 展开更多
关键词 convection-diffusion problem Streamline Diffusion Finite Element method Boundary and Interior Layers A Posteriori Error Estimators Adaptive Mesh Refinement
在线阅读 下载PDF
An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems 被引量:15
17
作者 王聚丰 孙凤欣 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期53-59,共7页
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the II... In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method. 展开更多
关键词 meshless method improved interpolating moving least-square method improved inter-polating element-free Galerkin method potential problem
原文传递
A new complex variable element-free Galerkin method for two-dimensional potential problems 被引量:4
18
作者 程玉民 王健菲 白福浓 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期43-52,共10页
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-f... In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method. 展开更多
关键词 meshless method improved complex variable moving least-square approximation im- proved complex variable element-free Galerkin method potential problem
原文传递
An Effective Meshless Approach for Inverse Cauchy Problems in 2D and 3D Electroelastic Piezoelectric Structures
19
作者 Ziqiang Bai Wenzhen Qu Guanghua Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2955-2972,共18页
In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within... In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data. 展开更多
关键词 Generalized finite difference method meshless method inverse Cauchy problems piezoelectric problems electroelastic analysis
在线阅读 下载PDF
Stability analysis for nonlinear multi-variable delay perturbation problems
20
作者 王洪山 张诚坚 《Journal of Southeast University(English Edition)》 EI CAS 2003年第2期193-196,共4页
This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t... This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), and εy′(t)=g(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), where 0<ε1. A sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition. 展开更多
关键词 multi-variable delay perturbation problems Euler method stability INTERPOLATION
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部