By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is propose...By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.展开更多
It is weN-known that the standard Galerkin is not ideally suited to deal with the spatial discretization of convection-dominated problems. In this paper, several techniques are proposed to overcome the instabilitY iss...It is weN-known that the standard Galerkin is not ideally suited to deal with the spatial discretization of convection-dominated problems. In this paper, several techniques are proposed to overcome the instabilitY issues in convection-dominated problems in the simulation with a meshless method. These stable techniques included nodal refinement, enlargement of the nodal influence domain, full upwind meshless technique and adaptive upwind meshless technique. Numerical results for sample problems show that these techniques are effective in solving convection-dominated problems, and the adaptive upwind meshless technique is the most effective method of all.展开更多
In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is pres...In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper.展开更多
In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equi...In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.展开更多
In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear conve...In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear convection-diffusion problems.In the spatial discretization,both the original DDG methods and the refined DDG methods with interface corrections are considered.In the time discretization,the convection term is treated explicitly and the diffusion term implicitly.By the energy method,we show that the corresponding fully discrete schemes are unconditionally stable,in the sense that the time-stepis only required to be upper bounded by a constant which is independent of the mesh size h.Opti-mal error estimate is also obtained by the aid of a special global projection.Numerical experiments are given to verify the stability and accuracy of the proposed schemes.展开更多
In this article,a meshless method using the spacetime collocation for solving the two-dimensional backward heat conduction problem(BHCP)is proposed.The spacetime collocation meshless method(SCMM)is to derive the gener...In this article,a meshless method using the spacetime collocation for solving the two-dimensional backward heat conduction problem(BHCP)is proposed.The spacetime collocation meshless method(SCMM)is to derive the general solutions as the basis functions for the two-dimensional transient heat equation using the separation of variables.Numerical solutions of the heat conduction problem are expressed as a series using the addition theorem.Because the basis functions are the general solutions of the governing equation,the boundary points may be collocated on the spacetime boundary of the domain.The proposed method is verified by conducting several heat conduction problems.We also carry out numerical applications to compare the SCMM with other meshless methods.The results show that the SCMM is accurate and efficient.Furthermore,it is found that the recovered boundary data on inaccessible boundary can be obtained with high accuracy even though the over specified data are provided only at a 1/6 portion of the spacetime boundary.展开更多
A local meshless method is applied to find the numerical solutions of two classes of inverse problems in parabolic equations. The problem is reconstructing the source term using a solution specified at some internal p...A local meshless method is applied to find the numerical solutions of two classes of inverse problems in parabolic equations. The problem is reconstructing the source term using a solution specified at some internal points;one class is that the source term is time dependent, and the other class is that the source term is time and space dependent. Some numerical experiments are presented and discussed.展开更多
In this paper,we first present the optimal error estimates of the semi-discrete ultra-weak discontinuous Galerkin method for solving one-dimensional linear convection-diffusion equations.Then,coupling with a kind of R...In this paper,we first present the optimal error estimates of the semi-discrete ultra-weak discontinuous Galerkin method for solving one-dimensional linear convection-diffusion equations.Then,coupling with a kind of Runge-Kutta type implicit-explicit time discretization which treats the convection term explicitly and the diffusion term implicitly,we analyze the stability and error estimates of the corresponding fully discrete schemes.The fully discrete schemes are proved to be stable if the time-stepτ≤τ0,whereτ0 is a constant independent of the mesh-size h.Furthermore,by the aid of a special projection and a careful estimate for the convection term,the optimal error estimate is also obtained for the third order fully discrete scheme.Numerical experiments are displayed to verify the theoretical results.展开更多
A multistep characteristic finite difference method is given on the basis ofthe linear and quadratic interpolations for solving two-dimensional nonlinear convection-diffusion problems. The convergence of approximate s...A multistep characteristic finite difference method is given on the basis ofthe linear and quadratic interpolations for solving two-dimensional nonlinear convection-diffusion problems. The convergence of approximate solutions is obtained in L2.展开更多
The streamline-diffusion method of the lowest order nonconforming rectangular finite element is proposed for convection-diffusion problem. By making full use of the element's special property, the same convergence or...The streamline-diffusion method of the lowest order nonconforming rectangular finite element is proposed for convection-diffusion problem. By making full use of the element's special property, the same convergence order as the previous literature is obtained. In which, the jump terms on the boundary are added to bilinear form with simple user-chosen parameter δKwhich has nothing to do with perturbation parameter εappeared in the problem under considered, the subdivision mesh size hKand the inverse estimate coefficient μin finite element space.展开更多
In 1992, Cooper [2] has presented some new stability concepts for Runge-Kutta methods whichis based on two slightly different test problems, and obtained the algebraic conditions that guarantee newstability properties...In 1992, Cooper [2] has presented some new stability concepts for Runge-Kutta methods whichis based on two slightly different test problems, and obtained the algebraic conditions that guarantee newstability properties. In this paper, we extend these results to general linear methods and to more generalproblem class Kστ. The concepts of (k, p, q)-secondary stability and (k, p. q)-secondary stability are introduced, and the criteria of secondary algebraic stability are also established. The criteria relax algebraicstability conditions while retaining the virtues of a nonlinear test problem.展开更多
Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential proble...Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.展开更多
On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is ...On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method.展开更多
Presents a study that examined the application of an overlapping domain decomposition method to the solution of time-dependent convection-diffusion problems. Background on the Schwartz alternating procedure; Applicati...Presents a study that examined the application of an overlapping domain decomposition method to the solution of time-dependent convection-diffusion problems. Background on the Schwartz alternating procedure; Application of two kinds of Schwartz alternating procedure to solve the numerical approximation problem; Numerical results.展开更多
A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered. This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh si...A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered. This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a Stokes problem on a fine mesh with mesh size h -- O(H2), which can still maintain the asymptotically optimal accuracy. It provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution, which involves solving a Stokes eigenvalue problem on a fine mesh with mesh size h. Hence, the two-level stabilized finite element method can save a large amount of computational time. Moreover, numerical tests confirm the theoretical results of the present method.展开更多
This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary condi...This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary conditions. To overcome such singularities arising from these critical regions, the adaptive finite element method is employed. This scheme is based on the streamline diffusion method combined with Neumann-type posteriori estimator. The effectiveness of this approach is illustrated by different examples with several numerical experiments.展开更多
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the II...In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.展开更多
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-f...In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method.展开更多
In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within...In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.展开更多
This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t...This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), and εy′(t)=g(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), where 0<ε1. A sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY20A010021,LY19A010002,LY20G030025)the Natural Science Founda-tion of Ningbo City,China(Grant Nos.2021J147,2021J235).
文摘By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.
基金the National Natural Science Foundation of China(No.10590353)theNatural Science Foundation of Shaanxi Province of China(No.2005A16)
文摘It is weN-known that the standard Galerkin is not ideally suited to deal with the spatial discretization of convection-dominated problems. In this paper, several techniques are proposed to overcome the instabilitY issues in convection-dominated problems in the simulation with a meshless method. These stable techniques included nodal refinement, enlargement of the nodal influence domain, full upwind meshless technique and adaptive upwind meshless technique. Numerical results for sample problems show that these techniques are effective in solving convection-dominated problems, and the adaptive upwind meshless technique is the most effective method of all.
基金Project supported by the National Natural Science Foundation of China(Grant No.11171208)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)the Innovation Fund for Graduate Student of Shanghai University of China (Grant No.SHUCX120125)
文摘In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project,China(Grant No. S30106)the Innovation Fund for Graduate Student of Shanghai University,China (Grant No. SHUCX120125)
文摘In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.
基金the NSFC grant 11871428the Nature Science Research Program for Colleges and Universities of Jiangsu Province grant 20KJB110011Qiang Zhang:Research supported by the NSFC grant 11671199。
文摘In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear convection-diffusion problems.In the spatial discretization,both the original DDG methods and the refined DDG methods with interface corrections are considered.In the time discretization,the convection term is treated explicitly and the diffusion term implicitly.By the energy method,we show that the corresponding fully discrete schemes are unconditionally stable,in the sense that the time-stepis only required to be upper bounded by a constant which is independent of the mesh size h.Opti-mal error estimate is also obtained by the aid of a special global projection.Numerical experiments are given to verify the stability and accuracy of the proposed schemes.
文摘In this article,a meshless method using the spacetime collocation for solving the two-dimensional backward heat conduction problem(BHCP)is proposed.The spacetime collocation meshless method(SCMM)is to derive the general solutions as the basis functions for the two-dimensional transient heat equation using the separation of variables.Numerical solutions of the heat conduction problem are expressed as a series using the addition theorem.Because the basis functions are the general solutions of the governing equation,the boundary points may be collocated on the spacetime boundary of the domain.The proposed method is verified by conducting several heat conduction problems.We also carry out numerical applications to compare the SCMM with other meshless methods.The results show that the SCMM is accurate and efficient.Furthermore,it is found that the recovered boundary data on inaccessible boundary can be obtained with high accuracy even though the over specified data are provided only at a 1/6 portion of the spacetime boundary.
文摘A local meshless method is applied to find the numerical solutions of two classes of inverse problems in parabolic equations. The problem is reconstructing the source term using a solution specified at some internal points;one class is that the source term is time dependent, and the other class is that the source term is time and space dependent. Some numerical experiments are presented and discussed.
基金Research sponsored by NSFC grants 11871428 and 12071214Nature Science Research Program for Colleges and Universities of Jiangsu Province grant 20KJB110011+1 种基金Research is supported in part by NSFC grants U1930402the fellowship of China Postdoctoral Science Foundation(No.2020TQ0030).
文摘In this paper,we first present the optimal error estimates of the semi-discrete ultra-weak discontinuous Galerkin method for solving one-dimensional linear convection-diffusion equations.Then,coupling with a kind of Runge-Kutta type implicit-explicit time discretization which treats the convection term explicitly and the diffusion term implicitly,we analyze the stability and error estimates of the corresponding fully discrete schemes.The fully discrete schemes are proved to be stable if the time-stepτ≤τ0,whereτ0 is a constant independent of the mesh-size h.Furthermore,by the aid of a special projection and a careful estimate for the convection term,the optimal error estimate is also obtained for the third order fully discrete scheme.Numerical experiments are displayed to verify the theoretical results.
文摘A multistep characteristic finite difference method is given on the basis ofthe linear and quadratic interpolations for solving two-dimensional nonlinear convection-diffusion problems. The convergence of approximate solutions is obtained in L2.
基金Supported by the National Natural Science Foundation of China(No.11271340)
文摘The streamline-diffusion method of the lowest order nonconforming rectangular finite element is proposed for convection-diffusion problem. By making full use of the element's special property, the same convergence order as the previous literature is obtained. In which, the jump terms on the boundary are added to bilinear form with simple user-chosen parameter δKwhich has nothing to do with perturbation parameter εappeared in the problem under considered, the subdivision mesh size hKand the inverse estimate coefficient μin finite element space.
文摘In 1992, Cooper [2] has presented some new stability concepts for Runge-Kutta methods whichis based on two slightly different test problems, and obtained the algebraic conditions that guarantee newstability properties. In this paper, we extend these results to general linear methods and to more generalproblem class Kστ. The concepts of (k, p, q)-secondary stability and (k, p. q)-secondary stability are introduced, and the criteria of secondary algebraic stability are also established. The criteria relax algebraicstability conditions while retaining the virtues of a nonlinear test problem.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11102125)
文摘Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.
基金supported by the National Natural Science Foundation of China(Grant No.51078250)the Research Project by Shanxi Scholarship Council of Shanxi Province,China(Grant No.2013-096)the Scientific&Technological Innovation Program for Postgraduates of Taiyuan University of Science and Technology,China(Grant No.20125026)
文摘On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method.
基金Project supported by the Natural Science Foundation of China Grant No. 19771050, No. 10171052 by the Foundation of National Key Laboratory of Computational Physics.
文摘Presents a study that examined the application of an overlapping domain decomposition method to the solution of time-dependent convection-diffusion problems. Background on the Schwartz alternating procedure; Application of two kinds of Schwartz alternating procedure to solve the numerical approximation problem; Numerical results.
基金Project supported by the National Natural Science Foundation of China(Nos.10901131,10971166, and 10961024)the National High Technology Research and Development Program of China (No.2009AA01A135)the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No.2010211B04)
文摘A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered. This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a Stokes problem on a fine mesh with mesh size h -- O(H2), which can still maintain the asymptotically optimal accuracy. It provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution, which involves solving a Stokes eigenvalue problem on a fine mesh with mesh size h. Hence, the two-level stabilized finite element method can save a large amount of computational time. Moreover, numerical tests confirm the theoretical results of the present method.
文摘This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary conditions. To overcome such singularities arising from these critical regions, the adaptive finite element method is employed. This scheme is based on the streamline diffusion method combined with Neumann-type posteriori estimator. The effectiveness of this approach is illustrated by different examples with several numerical experiments.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)
文摘In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)the Innovation Fund Project for Graduate Student of Shanghai University,China (Grant No. SHUCX112359)
文摘In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method.
基金the Natural Science Foundation of Shandong Province of China(Grant No.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140)the Key Laboratory ofRoad Construction Technology and Equipment(Chang’an University,No.300102253502).
文摘In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.
文摘This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), and εy′(t)=g(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), where 0<ε1. A sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition.