期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An improved memristor model for brain-inspired computing 被引量:1
1
作者 周二瑞 方粮 +1 位作者 刘汝霖 汤振森 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期537-543,共7页
Memristors, as memristive devices, have received a great deal of interest since being fabricated by HP labs. The forgetting effect that has significant influences on memristors' performance has to be taken into accou... Memristors, as memristive devices, have received a great deal of interest since being fabricated by HP labs. The forgetting effect that has significant influences on memristors' performance has to be taken into account when they are employed. It is significant to build a good model that can express the forgetting effect well for application researches due to its promising prospects in brain-inspired computing. Some models are proposed to represent the forgetting effect but do not work well. In this paper, we present a novel window function, which has good performance in a drift model. We analyze the deficiencies of the previous drift diffusion models for the forgetting effect and propose an improved model. Moreover,the improved model is exploited as a synapse model in spiking neural networks to recognize digit images. Simulation results show that the improved model overcomes the defects of the previous models and can be used as a synapse model in brain-inspired computing due to its synaptic characteristics. The results also indicate that the improved model can express the forgetting effect better when it is employed in spiking neural networks, which means that more appropriate evaluations can be obtained in applications. 展开更多
关键词 memristor drift diffusion model synaptic brain-inspired computing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部